## Part II

## Linear codes

## CHAPTER 2: Linear codes

## ABSTRACT

Most of the important codes are special types of so-called linear codes.
Linear codes are of very large importance because they have very concise description, very nice properties, very easy encoding and,
in principle, easy to describe decoding.

## Linear codes

Linear codes are special sets of words of the length $n$ over an alphabet $\{0, . ., q-1\}$, where $q$ is a power of prime. Since now on sets of words $F_{q}^{n}$ will be considered as vector spaces $V(n, q)$ of vectors of length $n$ with elements from the set $\{0, . ., q-1\}$ and arithmetical operations will be taken modulo $q$.

Definition A subset $C \subseteq V(n, q)$ is a linear code if
$1 u+v \in C$ for all $u, v \in C$
2 $a u \in C$ for all $u \in C, a \in G F(q)$
Example Codes $C_{1}, C_{2}, C_{3}$ introduced in Lecture 1 are linear codes.
Lemma A subset $C \subseteq V(n, q)$ is a linear code if one of the following conditions is satisfied
$1 C$ is a subspace of $V(n, q)$
12 sum of any two codewords from $C$ is in $C$ (for the case $q=2$ )
If $C$ is a $k$-dimensional subspace of $V(n, q)$, then $C$ is called $[n, k]$-code. It has $q^{k}$ codewords. If minimal distance of $C$ is $d$, then it is called $[n, k, d]$ code.

Linear codes are also called "group codes".

## Exercise

Which of the following binary codes are linear?

$$
\begin{aligned}
& C_{1}=\{00,01,10,11\} \\
& C_{2}=\{000,011,101,110\} \\
& C_{3}=\{00000,01101,10110,11011\} \\
& C_{5}=\{101,111,011\} \\
& C_{6}=\{000,001,010,011\} \\
& C_{7}=\{0000,1001,0110,1110\}
\end{aligned}
$$

## How to create a linear code

Notation If $S$ is a set of vectors of a vector space, then let $\langle S\rangle$ be the set of all linear combinations of vectors from $S$.
Theorem For any subset $S$ of a linear space, $\langle S\rangle$ is a linear space that consists of the following words:

- the zero word,
- all words in S,
- all sums of two or more words in S.

Example

$$
\begin{aligned}
S & =\{0100,0011,1100\} \\
\langle S\rangle & =\{0000,0100,0011,1100,0111,1011,1000,1111\}
\end{aligned}
$$

## Basic properties of linear codes

Notation: $w(x)$ (weight of $x$ ) denotes the number of non-zero entries of $x$.
Lemma If $x, y \in V(n, q)$, then $h(x, y)=w(x-y)$.
Proof $x-y$ has non-zero entries in exactly those positions where $x$ and $y$ differ.
Theorem Let $C$ be a linear code and let weight of $C$, notation $w(C)$, be the smallest of the weights of non-zero codewords of $C$. Then $h(C)=w(C)$.
Proof There are $x, y \in C$ such that $h(C)=h(x, y)$. Hence $h(C)=w(x-y) \geq w(C)$.
On the other hand, for some $x \in C$

$$
w(C)=w(x)=h(x, 0) \geq h(C)
$$

## Consequence

- If $C$ is a code with $m$ codewords, then in order to determine $h(C)$ one has to make $\binom{m}{2}=\theta\left(m^{2}\right)$ comparisons in the worth case.
- If $C$ is a linear code, then in order to compute $h(C), m-1$ comparisons are enough.


## Basic properties of linear codes

If $C$ is a linear $[n, k]$-code, then it has a basis consisting of $k$ codewords.
Example
Code

$$
\begin{aligned}
C_{4}= & \{0000000,1111111,1000101,1100010 \\
& 0110001,1011000,0101100,0010110 \\
& 0001011,0111010,0011101,1001110 \\
& 0100111,1010011,1101001,1110100\}
\end{aligned}
$$

has the basis

$$
\begin{aligned}
& \{1111111,1000101,1100010,0110001\} \text {. } \\
& \text { How many different bases has a linear code? }
\end{aligned}
$$

Theorem A binary linear code of dimension $k$ has

$$
\frac{1}{k!} \prod_{i=0}^{k-1}\left(2^{k}-2^{i}\right)
$$

bases.

## Advantages and disadvantages of linear codes I.

Advantages - big.
1 Minimal distance $h(C)$ is easy to compute if $C$ is a linear code.
2 Linear codes have simple specifications.

- To specify a non-linear code usually all codewords have to be listed.
- To specify a linear $[n, k]$-code it is enough to list $k$ codewords )of a basis).

Definition A $k \times n$ matrix whose rows form a basis of a linear $[n, k]$-code (subspace) $C$ is said to be the generator matrix of $C$.
Example The generator matrix of the code

$$
C_{2}=\left\{\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right\} \text { is }\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

and of the code

$$
C_{4}=\text { is }\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

3 There are simple encoding/decoding procedures for linear codes.

Advantages and disadvantages of linear codes II.

## Disadvantages of linear codes are small:

a Linear $q$-codes are not defined unless $q$ is a prime power.
@ The restriction to linear codes might be a restriction to weaker codes than sometimes desired.

## Equivalence of linear codes

Definition Two linear codes $G F(q)$ are called equivalent if one can be obtained from another by the following operations:
(a) permutation of the positions of the code;
(b) multiplication of symbols appearing in a fixed position by a non-zero scalar.

Theorem Two $k \times n$ matrices generate equivalent linear $[n, k]$-codes over $G F(q)$ if one matrix can be obtained from the other by a sequence of the following operations:
(a) permutation of the rows
(b) multiplication of a row by a non-zero scalar
(c) addition of one row to another
(d) permutation of columns
(e) multiplication of a column by a non-zero scalar

Proof Operations (a) - (c) just replace one basis by another. Last two operations convert a generator matrix to one of an equivalent code.

## Equivalence of linear codes

Theorem Let $G$ be a generator matrix of an $[n, k]$-code. Rows of $G$ are then linearly independent . By operations (a) - (e) the matrix $G$ can be transformed into the form: $\left[I_{k} \mid A\right]$ where $I_{k}$ is the $k \times k$ identity matrix, and $A$ is a $k \times(n-k)$ matrix.

## Example

$$
\begin{aligned}
& \left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right) \rightarrow \\
& \left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right) \rightarrow
\end{aligned}
$$

## Encoding with a linear code

## is a vector $\times$ matrix multiplication

Let $C$ be a linear $[n, k]$-code over $G F(q)$ with a generator matrix $G$.
Theorem $C$ has $q^{k}$ codewords.
Proof Theorem follows from the fact that each codeword of $C$ can be expressed uniquely as a linear combination of the basis vectors.
Corollary The code $C$ can be used to encode uniquely $q^{k}$ messages.
Let us identify messages with elements $V(k, q)$.
Encoding of a message $u=\left(u_{1}, \ldots, u_{k}\right)$ with the code $C$ :

$$
u \cdot G=\sum_{i=1}^{k} u_{i} r_{i} \text { where } r_{1}, \ldots, r_{k} \text { are rows of } G .
$$

Example Let $C$ be a [7, 4]-code with the generator matrix

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

A message $\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ is encoded as:??? For example:
0000 is encoded as ?
1000 is encoded as ............................................ ?
1110 is encoded as ......................................... ?

## Uniqueness of encodings

## with linear codes

Theorem If $G=\left\{w_{i}\right\}_{i=1}^{k}$ is a generator matrix of a binary linear code $C$ of length $n$ and dimension $k$, then

$$
v=u G
$$

ranges over all $2^{k}$ codewords of $C$ as $u$ ranges over all $2^{k}$ words of length $k$.
Therefore

$$
C=\left\{u G \mid u \in\{0,1\}^{k}\right\}
$$

Moreover

$$
u_{1} G=u_{2} G
$$

if and only if

$$
u_{1}=u_{2}
$$

Proof If $u_{1} G-u_{2} G=0$, then

$$
0=\sum_{i=1}^{k} u_{1, i} w_{i}-\sum_{i=1}^{k} u_{2, i} w_{i}=\sum_{i=1}^{k}\left(u_{1, i}-u_{2, i}\right) w_{i}
$$

And, therefore, since $w_{i}$ are linearly independent, $u_{1}=u_{2}$.

## Decoding of linear codes

Decoding problem: If a codeword: $x=x_{1} \ldots x_{n}$ is sent and the word $y=y_{1} \ldots y_{n}$ is received, then $e=y-x=e_{1} \ldots e_{n}$ is said to be the error vector. The decoder must decide, from $y$, which $x$ was sent, or, equivalently, which error e occurred.
To describe main Decoding method some technicalities have to be introduced
Definition Suppose $C$ is an $[n, k]$-code over $G F(q)$ and $u \in V(n, q)$. Then the set

$$
u+C=\{u+x \mid x \in C\}
$$

is called a coset ( $u$-coset) of $C$ in $V(n, q)$.
Example Let $C=\{0000,1011,0101,1110\}$
Cosets:

$$
\begin{aligned}
& 0000+C=C \\
& 1000+C=\{1000,0011,1101,0110\} \\
& 0100+C=\{0100,1111,0001,1010\}=0001+C \\
& 0010+C=\{0010,1001,0111,1100\}
\end{aligned}
$$

Are there some other cosets in this case?
Theorem Suppose $C$ is a linear $[n, k]$-code over $G F(q)$. Then
(a) every vector of $V(n, k)$ is in some coset of $C$,
(b) every coset contains exactly $q^{k}$ elements,
(c) two cosets are either disjoint or identical.

## Nearest neighbour decoding scheme:

Each vector having minimum weight in a coset is called a coset leader.

1. Design a (Slepian) standard array for an $[n, k]$-code $C$ - that is a $q^{n-k} \times q^{k}$ array of the form:

| codewords | coset leader | codeword 2 | $\ldots$ | ${\text { codeword } 2^{k}}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | coset leader | + | $\ldots$ | + |
|  | $\ldots$ | + | + | + |
|  | coset leader | + | $\ldots$ | + |
|  | coset leader |  |  |  |

## Example

| 0000 | 1011 | 0101 | 1110 |
| :--- | :--- | :--- | :--- |
| 1000 | 0011 | 1101 | 0110 |
| 0100 | 1111 | 0001 | 1010 |
| 0010 | 1001 | 0111 | 1100 |

A word $y$ is decoded as codeword of the first row of the column in which $y$ occurs.
Error vectors which will be corrected are precisely coset leaders!
In practice, this decoding method is too slow and requires too much memory.

## Probability of good error correction

What is the probability that a received word will be decoded correctly - that is as the codeword that was sent (for binary linear codes and binary symmetric channel)?

Probability of an error in the case of a given error vector of weight $i$ is

$$
p^{i}(1-p)^{n-i}
$$

Therefore, it holds.
Theorem Let $C$ be a binary $[n, k]$-code, and for $i=0,1, \ldots, n$ let $\alpha_{i}$ be the number of coset leaders of weight $i$. The probability $P_{\text {corr }}(C)$ that a received vector when decoded by means of a standard array is the codeword which was sent is given by

$$
P_{\text {corr }}(C)=\sum_{i=0}^{n} \alpha_{i} p^{i}(1-p)^{n-i}
$$

Example For the [4, 2]-code of the last example

$$
\alpha_{0}=1, \alpha_{1}=3, \alpha_{2}=\alpha_{3}=\alpha_{4}=0
$$

Hence

$$
P_{\text {corr }}(C)=(1-p)^{4}+3 p(1-p)^{3}=(1-p)^{3}(1+2 p)
$$

If $p=0.01$, then $P_{\text {corr }}=0.9897$

## Probability of good error detection

Suppose a binary linear code is used only for error detection.
The decoder will fail to detect errors which have occurred if the received word $y$ is a codeword different from the codeword $x$ which was sent, i. e. if the error vector $e=y-x$ is itself a non-zero codeword.

The probability $P_{\text {undetect }}(C)$ that an incorrect codeword is received is given by the following result.

Theorem Let $C$ be a binary $[n, k]$-code and let $A_{i}$ denote the number of codewords of $C$ of weight $i$. Then, if $C$ is used for error detection, the probability of an incorrect message being received is

$$
P_{\text {undetect }}(C)=\sum_{i=0}^{n} A_{i} p^{i}(1-p)^{n-i}
$$

Example In the case of the [4, 2] code from the last example

$$
\begin{gathered}
A_{2}=1 A_{3}=2 \\
P_{\text {undetect }}(C)=p^{2}(1-p)^{2}+2 p^{3}(1-p)=p^{2}-p^{4}
\end{gathered}
$$

For $p=0.01$

$$
P_{\text {undetect }}(C)=0.000099
$$

## Dual codes

Inner product of two vectors (words)

$$
u=u_{1} \ldots u_{n}, \quad v=v_{1} \ldots v_{n}
$$

in $V(n, q)$ is an element of $G F(q)$ defined (using modulo $q$ operations) by

$$
u \cdot v=u_{1} v_{1}+\ldots+u_{n} v_{n} .
$$

Example In $\quad V(4,2): 1001 \cdot 1001=0$
In $\quad V(4,3): 2001 \cdot 1210=2$

$$
1212 \cdot 2121=2
$$

If $u \cdot v=0$ then words (vectors) $u$ and $v$ are called orthogonal.
Properties If $u, v, w \in V(n, q), \lambda, \mu \in G F(q)$, then

$$
u \cdot v=v \cdot u,(\lambda u+\mu v) \cdot w=\lambda(u \cdot w)+\mu(v \cdot w)
$$

Given a linear $[n, k]$-code $C$, then the dual code of $C$, denoted by $C^{\perp}$, is defined by

$$
C^{\perp}=\{v \in V(n, q) \mid v \cdot u=0 \text { if } u \in C\} .
$$

Lemma Suppose $C$ is an $[n, k]$-code having a generator matrix $G$. Then for $v \in V(n, q)$

$$
v \in C^{\perp} \Leftrightarrow v G^{\top}=0
$$

where $G^{\top}$ denotes the transpose of the matrix $G$.
Proof Easy.

## PARITE CHECKS versus ORTHOGONALITY

For understanding of the role the parity checks play for linear codes, it is important to understand relation between orthogonality and special parity checks.

If words $x$ and $y$ are orthogonal, then the word $y$ has even number of ones (1's) in the positions determined by ones (1's) in the word $x$.

This implies that if words $x$ and $y$ are orthogonal, then $x$ is a parity check word for $y$ and $y$ is a parity check word for $x$.

Exercise: Let the word

$$
100001
$$

be orthogonal to a set $S$ of binary words of length 6 . What can we say about the words in $S$ ?

## EXAMPLE

For the $[n, 1]$-repetition code $C$, with the generator matrix

$$
G=(1,1, \ldots, 1)
$$

the dual code $C^{\perp}$ is $[n, n-1]$-code with the generator matrix $G^{\perp}$, described by

$$
G^{\perp}=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 0 \\
1 & 0 & 1 & 0 & \ldots & 0 \\
& \ldots & & & & \\
1 & 0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

## Parity check matrices

## Example If

$$
C_{5}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) \text {, then } C_{5}^{\perp}=C_{5}
$$

If

$$
C_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \text {, then } C_{6}^{\perp}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

Theorem Suppose $C$ is a linear $[n, k]$-code over $G F(q)$, then the dual code $C^{\perp}$ is a linear [ $n, n-k]$-code.

Definition A parity-check matrix $H$ for an $[n, k]$-code $C$ is a generator matrix of $C^{\perp}$.

## Parity check matrices

Definition A parity-check matrix $H$ for an $[n, k]$-code $C$ is a generator matrix of $C^{\perp}$.
Theorem If $H$ is parity-check matrix of $C$, then

$$
C=\left\{x \in V(n, q) \mid x H^{\top}=0\right\}
$$

and therefore any linear code is completely specified by a parity-check matrix.
Example Parity-check matrix for

$$
C_{5} \text { is }\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

and for

$$
C_{6} \text { is }\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
$$

The rows of a parity check matrix are parity checks on codewords. They say that certain linear combinations of elements of every codeword are zeros.

## Syndrome decoding

Theorem If $G=\left[I_{k} \mid A\right]$ is the standard form generator matrix of an $[n, k]$-code $C$, then a parity check matrix for $C$ is $H=\left[-A^{\top} \mid I_{n-k}\right]$.
Example

$$
\text { Generator matrix } \left.G=\left|I_{4}\right| \begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array} \right\rvert\, \Rightarrow \text { parity check m. } \left.H=\left|\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1
\end{array}\right| I_{3} \right\rvert\,
$$

Definition Suppose $H$ is a parity-check matrix of an $[n, k]$-code $C$. Then for any $y \in V(n, q)$ the following word is called the syndrome of $y$ :

$$
S(y)=y H^{\top} .
$$

Lemma Two words have the same syndrom iff they are in the same coset.
Syndrom decoding Assume that a standard array of a code $C$ is given and, in addition, let in the last two columns the syndrom for each coset be given.

| 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |

When a word $y$ is received, compute $S(y)=y H^{\top}$, locate $S(y)$ in the "syndrom column", and then locate $y$ in the same row and decode $y$ as the codeword in the same column and in the first row.

## KEY OBSERVATION for SYNDROM COMPUTATION

When preparing a "syndrome decoding" it is sufficient to store only two columns: one for coset leaders and one for syndromes.

## Example

| coset leaders | syndromes |
| :---: | :---: |
| $I(z)$ | $z$ |
| 0000 | 00 |
| 1000 | 11 |
| 0100 | 01 |
| 0010 | 10 |

Decoding procedure

- Step 1 Given y compute $S(y)$.
- Step 2 Locate $z=S(y)$ in the syndrome column.
- Step 3 Decode $y$ as $y-I(z)$.

Example If $y=1111$, then $S(y)=01$ and the above decoding procedure produces

$$
1111-0100=1011
$$

Syndrom decoding is much faster than searching for a nearest codeword to a received word. However, for large codes it is still too inefficient to be practical.

In general, the problem of finding the nearest neighbour in a linear code is NP-complete. Fortunately, there are important linear codes with really efficient decoding.

## Hamming codes

An important family of simple linear codes that are easy to encode and decode, are so-called Hamming codes.
Definition Let $r$ be an integer and $H$ be an $r \times\left(2^{r}-1\right)$ matrix columns of which are non-zero distinct words from $V(r, 2)$. The code having $H$ as its parity-check matrix is called binary Hamming code and denoted by $\operatorname{Ham}(r, 2)$.

## Example

$$
\begin{gathered}
\operatorname{Ham}(2,2)=H=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \Rightarrow G=\left[\begin{array}{lllll}
1 & 1 & 1
\end{array}\right] \\
\operatorname{Ham}(3,2)=H=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \Rightarrow G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

Theorem Hamming code $\operatorname{Ham}(r, 2)$
■ is $\left[2^{r}-1,2^{r}-1-r\right]$-code,

- has minimum distance 3 ,
- is a perfect code.

Properties of binary Hamming codes Coset leaders are precisely words of weight $\leq 1$. The syndrome of the word $0 \ldots 010 \ldots 0$ with 1 in $j$-th position and 0 otherwise is the transpose of the $j$-th column of $H$.

## Hamming codes - decoding

Decoding algorithm for the case the columns of $H$ are arranged in the order of increasing binary numbers the columns represent.

- Step 1 Given y compute syndrome $S(y)=y H^{\top}$.
- Step 2 If $S(y)=0$, then y is assumed to be the codeword sent.
- Step 3 If $S(y) \neq 0$, then assuming a single error, $S(y)$ gives the binary position of the error.


## Example

For the Hamming code given by the parity-check matrix

$$
H=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

and the received word

$$
y=1101011
$$

we get syndrome

$$
S(y)=110
$$

and therefore the error is in the sixth position.
Hamming code was discovered by Hamming (1950), Golay (1950).
It was conjectured for some time that Hamming codes and two so called Golay codes are the only non-trivial perfect codes.

## Comment

Hamming codes were originally used to deal with errors in long-distance telephon calls.

## ADVANTAGES of HAMMING CODES

Let a binary symmetric channel be used which with probability $q$ correctly transfers a binary symbol.

If a 4-bit message is transmitted through such a channel, then correct transmission of the message occurs with probability $q^{4}$.

If Hamming $(7,4,3)$ code is used to transmit a 4-bit message, then probability of correct decoding is

$$
q^{7}+7(1-q) q^{6}
$$

In case $q=0.9$ the probability of correct transmission is 0.6561 in the case no error correction is used and 0.8503 in the case Hamming code is used - an essential improvement.

## IMPORTANT CODES

- Hamming ( $7,4,3$ )-code. It has 16 codewords of length 7 . It can be used to send $2^{7}=128$ messages and can be used to correct 1 error.
- Golay $(23,12,7)$-code. It has 4096 codewords. It can be used to transmit 8388608 messages and can correct 3 errors.
- Quadratic residue (47, 24, 11)-code. It has

$$
16777216 \text { codewords }
$$

and can be used to transmit

$$
140737488355238 \text { messages }
$$

and correct 5 errors.

- Hamming and Golay codes are the only non-trivial perfect codes.


## GOLAY CODES - DESCRIPTION

Golay codes $G_{24}$ and $G_{23}$ were used by Voyager I and Voyager II to transmit color pictures of Jupiter and Saturn. Generation matrix for $G_{24}$ has the form

$$
G=\left(\begin{array}{llllllllllllllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

$G_{24}$ is $(24,12,8)$-code and the weights of all codewords are multiples of 4. $G_{23}$ is obtained from $G_{24}$ by deleting last symbols of each codeword of $G_{24} . G_{23}$ is $(23,12,7)$-code.

## GOLAY CODES - CONSTRUCTION

Matrix $G$ for Golay code $G_{24}$ has actually a simple and regular construction.

The first 12 columns are formed by a unitary matrix $I_{12}$, next column has all 1's.

Rows of the last 11 columns are cyclic permutations of the first row which has 1 at those positions that are squares modulo 11 , that is

$$
0,1,3,4,5,9 .
$$

## REED-MULLER CODES

Reed-Muller codes form a family of codes defined recursively with interesting properties and easy decoding.

If $D_{1}$ is a binary [ $n, k_{1}, d_{1}$ ]-code and $D_{2}$ is a binary $\left[n, k_{2}, d_{2}\right]$-code, a binary code $C$ of length $2 n$ is defined as follows $C=\left\{u \mid u+v\right.$, where $\left.u \in D_{1}, v \in D_{2}\right\}$.

Lemma $C$ is $\left[2 n, k_{1}+k_{2}, \min \left\{2 d_{1}, d_{2}\right\}\right]$-code and if $G_{i}$ is a generator matrix for $D_{i}$, $i=1,2$, then $\left[\begin{array}{cc}G_{1} & G_{2} \\ 0 & G_{2}\end{array}\right]$ is a generator matrix for $C$.

Reed-Muller codes $R(r, m)$, with $0 \leq r \leq m$ are binary codes of length $n=2^{m} \cdot R(m, m)$ is the whole set of words of length $n, R(0, m)$ is the repetition code.

If $0<r<m$, then $R(r+1, m+1)$ is obtained from codes $R(r+1, m)$ and $R(r, m)$ by the above construction.

Theorem The dimension of $R(r, m)$ equals $1+\binom{m}{1}+\ldots+\binom{m}{r}$. The minimum weight of $R(r, m)$ equals $2^{m-r}$. Codes $R(m-r-1, m)$ and $R(r, m)$ are dual codes.

## Singleton Bound

Singleton bound: Let $C$ be a $q$-ary $(n, M, d)$-code.
Then

$$
M \leq q^{n-d+1}
$$

Proof Take some $d-1$ coordinates and project all codewords to the resulting coordinates.
The resulting codewords are all different and therefore $M$ cannot be larger than the number of $q$-ary words of length $n-d-1$.
Codes for which $M=q^{n-d+1}$ are called MDS-codes (Maximum Distance Separable).

Corollary: If $C$ is a $q$-ary linear $[n, k, d]$-code, then

$$
k+d \leq n+1
$$

## Shortening and puncturing of linear codes

Let $C$ be a $q$-ary linear [ $n, k, d$ ]-code. Let

$$
D=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \mid\left(x_{1}, \ldots, x_{n-1}, 0\right) \in C\right\} .
$$

Then $D$ is a linear $[n-1, k-1, d]$-code - a shortening of the code $C$.
Corollary: If there is a $q$-ary $[n, k, d]$-code, then shortening yields a $q$-ary [ $n-1, k-1, d]$-code.

Let $C$ be a $q$-ary $[n, k, d]$-code. Let

$$
E=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \mid\left(x_{1}, \ldots, x_{n-1}, x\right) \in C, \text { for some } x \leq q\right\}
$$

then $E$ is a linear $[n-1, k, d-1]$-code - a puncturing of the code $C$.
Corollary: If there is a $q$-ary $[n, k, d]$-code with $d>1$, then there is a $q$-ary [ $n-1, k, d-1]$-code.

## Reed-Solomon Codes

An important example of MDS-codes are $q$-ary Reed-Solomon codes $\operatorname{RSC}(k, q)$, for $k \leq q$.
They are codes generator matrix of which has rows labelled by polynomials $X^{i}$, $0 \leq i \leq k-1$, columns by elements $0,1, \ldots, q-1$ and the element in a row labelled by a polynomial p and in a column labelled by an element $u$ is $p(u)$.
$\operatorname{RSC}(k, q)$ code is [ $q, k, q-k+1$ ] code.
Example Generator matrix for $\operatorname{RSC}(3,5)$ code is

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 4 & 4 & 1
\end{array}\right]
$$

## Interesting property of Reed-Solomon codes:

$$
\operatorname{RSC}(k, q)^{\perp}=\operatorname{RSC}(q-k, q)
$$

Reed-Solomon codes are used in digital television, satellite communication, wireless communication, barcodes, compact discs, DVD,... They are very good to correct burst errors - such as ones caused by solar energy.

## Soccer Games Betting System

Ternary Golay code with parameters $(11,729,5)$ can be used to bet for results of 11 soccer games with potential outcomes 1 (if home team wins), 2 (if guests win) and 3 (in case of a draw).

If 729 bets are made, then at least one bet has at least 9 results correctly guessed.

In case one has to bet for 13 games, then one can usually have two games with pretty sure outcomes and for the rest one can use the above ternary Golay code.

## LDPC (Low-Density Parity Check) - codes

A LDPC code is a binary linear code whose parity check matrix is very sparse - it contains only very few 1's.

A linear [ $n, k$ ] code is a regular [ $n, k, r, c$ ] LDPC code if $r \ll n, c \ll n-k$ and its parity-check matrix has exactly $r$ 1's in each row and exactly $c 1$ 's in each column.

In the last years LDPC codes are replacing in many important applications other types of codes for the following reasons:

1 LDPC codes are in principle also very good channel codes, so called Shannon capacity approaching codes, they allow the noise threshold to be set arbitrarily close to the theoretical maximum - to Shannon limit - for symmetric channel.
[ Good LDPC codes can be decoded in time linear to their block length using special (for example "iterative belief propagation") approximation techniques.
[3 Some LDPC codes are well suited for implementations that make heavy use of parallelism.

Parity-check matrices for LDPC codes are often (pseudo)-randomly generated, subject to sparsity constrains. Such LDPC codes are proven to be good with a high probability.

## Discovery and applications of LDOC codes

LDPC codes were discovered in 1960 by R.C.
Gallager in his PhD thesis, but ignored till 1996 when linear time decoding methods were discovered for some of them.

LDPC codes are used for: deep space communication; digital video broadcasting; 10GBase-T Ethernet, which sends data at 10 gigabits per second over Twisted-pair cables; Wi-Fi standard,....

## Tanner graph representation of LDPC codes

An $[n, k]$ LDPC code can be represented by a bipartite graph between a set of $n$ top "variable-nodes ( v -nodes)" and a set of bottom ( $n-k$ ) "constrain nodes ( $c$-nodes)".


The corresponding parity check matrix has $n-k$ rows and $n$ columns and $i$-th column has 1 in the $j$-th row exactly in case if $i$-th $v$-node is connected to $j$-th c-node.

$$
H=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

## Tanner graphs - continuation

Valid codewords for the LDPC-code with Tanner graph

with parity check matrix

$$
H=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

have to satisfy constrains

$$
\begin{gathered}
a_{1}+a_{2}+a_{3}+a_{4}=0 \\
a_{3}+a_{4}+a_{6}=0 \\
a_{1}+a_{4}+a_{5}=0
\end{gathered}
$$

