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ABSTRACT

Motivation: Increasing use of structural modeling for understanding
structure–function relationships in proteins has led to the need to
ensure that the protein models being used are of acceptable quality.
Quality of a given protein structure can be assessed by comparing
various intrinsic structural properties of the protein to those observed
in high-resolution protein structures.
Results: In this study, we present tools to compare a given
structure to high-resolution crystal structures. We assess packing
by calculating the total void volume, the percentage of unsatisfied
hydrogen bonds, the number of steric clashes and the scaling
of the accessible surface area. We assess covalent geometry by
determining bond lengths, angles, dihedrals and rotamers. The
statistical parameters for the above measures, obtained from high-
resolution crystal structures enable us to provide a quality-score that
points to specific areas where a given protein structural model needs
improvement.
Availability and Implementation: We provide these tools that
appraise protein structures in the form of a web server Gaia
(http://chiron.dokhlab.org). Gaia evaluates the packing and covalent
geometry of a given protein structure and provides quantitative
comparison of the given structure to high-resolution crystal
structures.
Contact: dokh@unc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Modeling protein structure has become an integral part of
biological studies via providing experimentally testable predictions
of molecular interactions. Similarly, comparative modeling plays
an important role in expanding the structural landscape of proteins.
However, important quality control steps are essential to ensure that
any given protein structural model conforms to known properties of
proteins starting from its covalent geometry to ideal atomic packing.
Several studies have measured properties like bond lengths, bond
angles and bond torsions allowable in protein structure (Laskowski
et al., 1993; Ramachandran et al., 1963). Other studies have also
benchmarked properties like steric clashes, hydrogen bonding and
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rotamer outliers (Davis et al., 2007; Hooft et al., 1996; Vriend
and Sander, 1993). In this study, we systematically determine the
distribution of these structural parameters as well as other properties
such as solvent accessibility and void volume, using high-resolution
structures. Based on statistical analysis, we introduce Gaia, a new
web-based tool with filters that systematically report on protein
structure quality.

We select structural filters that represent some of the important
features in stable protein folds: (i) close packing in the buried core
of the protein, which minimizes the void volume in the protein
core; (ii) minimal number of free polar/charged residues in the
buried core of the protein; and (iii) minimal number of sterically
overlapping atoms. These factors are incorporated into the energy
functions of most protein force fields to recapitulate the structure of
the folded state of a protein. However, due to approximations used in
all force fields and insufficient sampling, there can be predicted low
energy decoy structures possessing nonphysical structural features.
Measures that compare theoretical structures with high-resolution
structures on the basis of known characteristics of folded proteins
can be used to ‘filter’ out the nonphysical models from a pool of
predicted models. Additionally, these filters will also point to regions
in a given structure that need to be refined to ensure quality of a
structural model closer to that of the native structure.

In order to report on the packing quality of a given protein
structure, Gaia computes its total void volume, percentage of
unsatisfied hydrogen bond donors/acceptors, and extent of steric
clashes. In addition, to report on the quality of a model
structure’s covalent geometry, Gaia also determines deviant bond
lengths, angles, torsions, side-chain rotamers and the scaling
of accessible surface area with protein length. The users are
also provided with an option to resolve clashes using Chiron
(http://chiron.dokhlab.org), our recently developed rapid clash
minimization routine (Ramachandran et al., 2011) and anomalous
side chain orientations using our force field, Medusa (Ding and
Dokholyan, 2006).

2 METHODS

2.1 High-resolution dataset used in determining
benchmark distributions

To construct our high-resolution dataset, we obtained high-resolution
(<2.5 Å resolution) protein structures determined only using X-ray
crystallography from the protein data bank (PDB) that were at least
25 residues long and did not contain nonprotein biomolecules (such as
ligands/DNA/RNA). We also excluded structures that contained modified
residues except selenomethionine (which we replaced with methionine using
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Medusa). Since we are interested in the properties of globular chains and
not interfaces, we split the structures into individual peptide chains. We
performed clustering of all structures based on similarity of sequences
they represent. We considered only one chain to represent each cluster of
sequences that are at least 80% similar to one another. To filter out structures
that were extremely nonglobular, we used an Rg scaling cutoff of 0.66. We
filtered out structures whose Rg scaled by more than L0.66, where L is the
number of amino acids in the protein. For well-packed globular proteins, we
found the scaling factor to be 0.36. The dataset consists of 3928 individual
chains. Joosten et al. (2009) recently re-refined available high resolution
X-ray structures to obtain optimized structure models featuring better fit to
deposited experimental data and improved geometric quality. Of the selected
3928 chains, we retrieved the structures for those chains that were available
in PDB_REDO database, thereby creating a final dataset with 2163 unique
chains. We used Medusa (Ding and Dokholyan, 2006; Yin, et al., 2007) to
accurately place any missing side-chain atoms in these structures. Of the
2163 structures used, 969 are enzymes as determined using GO annotation
(catalytic activity) and/or the presence of an EC number in the header of
the PDB file. The final list of PDB and chain IDs are provided as a table in
Supplementary Material.

2.2 Steric clashes
We define a steric clash in a protein as any atomic overlap resulting in a Van
der Waals repulsion energy greater than 0.5 kBT, except (i) when the atoms
are bonded, (ii) when the atoms form a disulfide bond or a hydrogen bond, and
(iii) when the atoms involved are backbone atoms and are separated by two
residues. We compute a clash-score for the input protein, which is defined as
the sum of Van der Waals repulsion energies of all clashes normalized by the
number of contacts screened. A detailed description of computation of clash-
score and minimization of clashes is provided elsewhere (Ramachandran
et al., 2011).

2.3 Generation of surface dots
We use our implementation of the algorithm originally proposed by Le Grand
and Merz (Le Grand and Merz, 1993) to compute solvent accessible and
molecular surface area of proteins. The algorithm represents each atom as
a set of dots placed on the surface of the atom. For improved accuracy, we
used 4096 dots to represent the surface of each atom compared to 256 in
the original implementation. For scale-up, we represent the dots as pairs of
spherical angles θ and φ. In our convention, θ=[0,π] and φ=[0,2π). We
first generated dots on the surface of a unit sphere by randomly choosing
θ and φ values within their respective domains. We then performed Monte
Carlo-based simulated annealing to minimize the following cost function
using the Metropolis criterion,

W =
N∑

i<j

1

d2
ij

(1)

where N is the number of dots on the surface and dij is the Euclidian distance
between the dots i and j.

2.4 Solvent accessible surface area
We define the solvent accessible surface area (SASA) of a protein as the
area covered by the center of a solvent sphere, as it rolls over the protein
surface. Considering the radius of the solvent sphere to be 1.4 Å (radius of
one water molecule), we obtain SASA by calculating the surface area of
the protein, when the radii of all its atoms are increased by 1.4 Å. We use
our implementation of the algorithm proposed by LeGrand and Merz (Le
Grand and Merz, 1993) for calculating SASA, where surface of each atom
is represented by 4096 dots and boolean masks are used to delineate buried
and exposed dots on each atom. The reported SASA of a protein therefore
includes the surface area of the voids (if any) in the protein. We have modified

the algorithm to ensure uniform distribution of masks on the surface of a unit
sphere. We define and use a metric hij given by,

hij =1−cosθij (2)

for generating masks instead of,

dij =
√

2
(
1−cosθij

)
(3)

as proposed by LeGrand and Merz (Le Grand and Merz, 1993). We identify
the dot closest to the point D on the line joining the centers of two atoms i
and j and retrieve the appropriate mask to determine the fraction of surface
of atom i not buried by atom j (Supplementary Fig. S1). We repeat this
process for all atom pairs to determine the exposed surface of each atom.
The surface area of the protein can then be computed by summing up the
fractional surface areas contributed by individual atoms.

2.5 Molecular surface area
We define the molecular surface area (MSA) of a protein as the area covered
by the edge of a solvent sphere, as it rolls over the protein surface. MSA
is represented as a sum of three components—contact, toric and reentrant
surfaces (Connolly, 1983).

Contact surface area: we compute the contact surface area using the same
algorithm that we use for computing SASA, but without increasing the radii
of atoms by the radius of the solvent. The contact surface area of the protein
can be formally defined as:

Ac =
N∑

i=1

ni

D
(4πr2

i ) (4)

where ni and ri are the number of exposed dots, and the radius of atom i,
respectively, and D is the total number of dots on the atom, set to be 4096.
Ac includes the contact surface area of voids (if any) in the protein core.

Toric surface area: we analytically calculate the toric surface area covered
by the solvent probe on a pair of atoms i and j, using the following equation:

At =
N∑

i �=j

At,ij =2π
N∑

i �=j

τij

(
(ri +rw)sinθij

(π
2

−θij

)
−rw cosθij

)
(5)

where τij is the fraction of the torus around the overlapping atoms i and j that
is accessible to the solvent probe, ri and rw represent the radii of the atom i
and the probe respectively, and θij is the angle subtended by the atom j at the
center of atom i. We compute τij using edge masks as described by Bystroff
(Bystroff, 2002). The solvent probe may roll over itself causing singularities
in the toric surface. We treat such cases by computing the toric surface area
by atoms i and j using the following equation when (ri +rw)sinθij<rw:

At,ij =2πτij

⎛
⎝ (ri +rw)sinθij

(
π
2 −θij −arccos

(
(ri+rw)sinθij

rw

))
−rw cos

(
θij +arccos

(
(ri+rw)sinθij

rw

))
⎞
⎠ (6)

We use this algorithm to compute the toric surface area of all atom pairs
including those forming voids (if any) in the protein core. Further details on
the mathematical formulation are reported elsewhere (Bystroff, 2002).

Reentrant surface area: we apply the Gauss–Bonnet theorem to calculate
the total reentrant curvature of the protein. Gauss–Bonnet theorem states
that the total Gaussian curvature integrated over a closed manifold equals 2π
times the Euler characteristic of the manifold. This theorem is applicable only
if a normal can be generated unambiguously at every point on the surface of
the manifold (orientable surface). Protein surfaces are orientable and hence
the Gauss–Bonnet theorem can be used to calculate the Gaussian curvature
of a protein. Since the Euler characteristic is geometrically invariant, the
Gaussian curvature integral of a closed 3D surface, i.e. the Connolly
molecular surface of a protein, is the same as that of a sphere and is equal
to 4π. The total Gaussian curvature of the protein can be denoted as a sum
of contact, toric and reentrant curvatures. However, proteins may contain
voids, which are isolated continuous surfaces in the protein core. Each such
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void, if present, must be considered as an independent orientable manifold.
Therefore, the reentrant curvature of the protein is given as

Kr =4mπ−Kc −Kt (7)

where Kr is the total reentrant curvature integral and Kc, Kt represent the
total contact and toric curvature integrals respectively. m represents the total
number of manifolds in the system including the solvent accessible surface
and all the voids. The total contact curvature integral, Kc, can be obtained
using,

Kc =4π
N∑

i=1

ni

D
(8)

and total toric curvature integral Kt can be calculated by,

Kt =
N∑

i �=j

kt,ij =−2π
N∑

i �=j

τij cosθij (9)

Here, the curvature integral of toric surface is negative and we do not need
to consider the overlapping of toric surfaces. Kr can be derived accordingly,
which corresponds to the total reentrant curvature of the protein and
voids since the contact and toric curvatures already take the corresponding
curvatures from voids in the protein into account. We cluster all the exposed
dots on the surface of all exposed atoms to obtain the number of independent
manifolds within the protein. Our approach is different from that employed
by MASKER (Bystroff, 2002) in that we derive the total reentrant surface
analytically using the global Gauss–Bonnet theorem instead of computing
individual reentrant surfaces, which have additional sources of errors. The
reentrant surface area of the protein is then given by

Ar =Krr2
w (10)

2.6 Void volume
We define voids as those internal cavities in the protein core that are
inaccessible to the bulk solvent, but feature a volume greater than or equal to
at least one solvent molecule. We define void volume as the volume of such
internal cavities inaccessible to the bulk solvent. To compute void volume, we
first use our modified implementation of the algorithm proposed by LeGrand
and Merz, to obtain all the dots on the surface of each atom that is not buried
by other atoms (depicted in Supplementary Fig. S2). These exposed dots
could either belong to the surface or internal voids in the protein. We identify
voids by performing single-linkage clustering on these exposed dots using
the distance between them as the clustering criterion. This process yields
one large cluster corresponding to the solvent accessible surface and zero or
more small clusters each corresponding to an internal void (Supplementary
Fig. S2). Since we increase the radius of each atom by the radius of a water
molecule (1.4 Å) before void identification, the minimum volume of the
identified voids is equal to the molecular volume of water. We delineate the
volume of each identified void into (i) solvent excluded volume—the region
from the surface of the atoms to the surface traced out by the center of
the solvent sphere as it rolls on the atoms lining the void and (ii) solvent
accessible volume—which is accessible to the solvent, should a solvent
molecule be able to approach this space within the protein (Supplementary
Fig. S3).

(i) Solvent excluded volume: the solvent excluded volume is composed
of three components: the contact volume (fractional volume accessible to
the solvent probe touching only one atom), the toric volume (fractional
volume inaccessible to the probe touching two atoms at a time) and the
reentrant volume (fractional volume inaccessible to the probe when it touches
three atoms simultaneously). The fractional volume accessible to the probe
touching only one atom can be mathematically computed using,

Vc = 4π

3

N∑
i

ni

D

(
(ri +rw)3 −(ri)

3
)

(11)

v where Vc is the total contact volume, D represents the number of dots on
the atom i, ni is the number of exposed dots facing the void, N is the number

of atoms lining the void, ri is the radius of atom i and rw is the radius of the
probe. To calculate the toric volume of the void, we performed analytical
integration to arrive at the following equation:

Vt =2π
N∑

i �=j

Vt,ij =2π
N∑

i �=j

τij

[
(ri +rw)sinθij

(π
2

−θij

) r2
w

2
−cosθij

r3
w

3

]
(12)

where the terms represent the same quantities as in At . To account for
singularities, we used different lower limits for integration when (ri +
rw)sinθij<rw, generating the following equation.

Vt,ij =τij

⎡
⎣ (ri +rw)sinθij

(
π
2 −θij −arccos

(
(ri+rw)sinθij

rw

))
r2
w
2

−cos
(
θij +arccos

(
(ri+rw)sinθij

rw

))
r3
w
3

⎤
⎦ (13)

We compute the total reentrant curvature for each identified void as described
above. The reentrant volume can then be computed using

Vr = 4π

3
r3

wKr (14)

where Kr is the total reentrant curvature for the void. Since the void is a single
orientable manifold, we do not perform manifold correction in calculation
of void volume, as we perform while calculating the molecular surface area.

(ii) Accessible void volume: we calculate the accessible void volume by
numerical integration: we iteratively increment the radii of all the atoms
(starting from atom radius plus solvent radius) forming the void by 0.01 Å
and sum up the surface area of these voids by 0.01 times at each increment
till the area converges to zero. The total void volume is then obtained by
summation of the independent components of solvent excluded volume and
accessible void volume.

2.7 Unsatisfied hydrogen bond donor/acceptor
We define a polar nitrogen/oxygen atom as an unsatisfied hydrogen bond
donor/acceptor if it is buried from the solvent and is not involved in a
hydrogen bond. If a polar atom belongs to a residue whose total SASA
is zero, it is marked as buried. On the other hand, if the polar atom itself
is buried, but the residue it belongs to features a nonzero SASA, rotamer
changes/side chain dynamics could expose the polar atom, and thus, the polar
atom is classified as being in the shell: an intermediate layer between buried
and solvent accessible regions of the protein. We first build all hydrogen
bonds in a given protein structure using Medusa’s directional hydrogen-
bond potential (Ding and Dokholyan, 2006; Yin, et al., 2007), and then list
all the buried/shell polar atoms that do not form hydrogen bonds.

2.8 Bond lengths, angles, torsions and side chain
rotamers

To ensure the robustness of the covalent geometry of the input protein
structure, we also calculate bond lengths, angles, backbone torsions and side
chain rotamers to detect outliers. For side chain integrity, the nearest rotamer
in the Dunbrack library (Dunbrack and Cohen, 1997) for a given side chain is
determined, and then, the P-values of each of the applicable chi-angles of the
given side chain with respect to the identified standard rotamer is calculated.
A P-value <0.05 is reported as an outlier and presented in the output for a
protein structure on the web server. The bond lengths for all standard bonds
were calculated from our high-resolution dataset, and the mean and standard
deviation from the resulting distributions were used in determining P-values
for bond lengths of the input structure. For bonds with SD<2.5% of the mean
(as calculated from the standard distribution), we reset the SD as 2.5% of the
mean. We reset the SD because the force constants for the bonded term in the
MD force fields allow between 2.5% and 4% deviations in bond lengths at
300K. Thus, to report realistic outliers in modeled structures, we require the
SD to be at least 2.5% of the mean. Similar analysis was performed for angles
and the omega dihedral of the protein backbone. For the φ−ψ dihedrals, a
two-dimensional histogram with bin width of 2˚ was constructed combining
all amino acid types excluding proline and glycine. A separate histogram
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was constructed for proline. In the input structure, residues whose φ−ψ
values belong to a lowly populated bin (roughly <2.5% of the population)
are designated as outliers. The outliers in terms of φ−ψ dihedrals in an
input structure are plotted on top of the heat map of the two-dimensional
histogram.

3 RESULTS AND DISCUSSION
For setting benchmarks to qualify a given structure, we first
generated distributions of our structural filters from the high-
resolution dataset. We analyze these distributions to understand the
behavior of our filters with respect to high-resolution structures.

3.1 Protein surface area (SASA/MSA)
To ensure accuracy of our algorithm in calculating MSA, we first
determined the different components of MSA for simple two and
three sphere systems, where our algorithm accurately reproduced
the analytical solution. To determine the accuracy of our method in
calculating MSA of proteins, we compared on our whole dataset,
different components of MSA determined using our method to that
determined using MSMS (Sanner et al., 1996), one of the standard
programs used by the modeling community. For most structures, we
observe that the contact area computed using our algorithm is within
0.3% of the value obtained using MSMS (Supplementary Fig. S4).
Additionally, for most structures, toric and reentrant surface areas
obtained using our algorithm are within 2% of the value obtained
using MSMS, while the total MSA is within 1% difference. Since
SASA is directly proportional to contact area, the differences in
SASA between our algorithm and MSMS are identical to that of
contact area, <0.3%.

From the distribution of MSA from high-resolution structures,
we observe that MSA scales as a function of chain length (N ,
the number of residues in the protein) with a scaling exponent of
0.8. The scaling exponent is higher than the scaling exponent of
the surface of a globular object in 3D (0.667), suggesting that the
protein surface is fractal-like and more rugged than the surface of
a globular object in 3D. Upon normalization by the factor (chain
length)−0.8, we observe that MSA of high resolution structures
fits well to a Gaussian distribution (Fig. 1). If the P-value of
the normalized MSA of a protein based on the distribution of
high-resolution structures is greater than 0.05, the protein structure
features MSA scaling characteristic of high-resolution structures.
Featuring normalized MSA much greater than that observed in
the standard distribution indicates excessive exposure of protein
residues in a globular protein, which is unfavorable or corresponds to
a nonglobular structure. Having a smaller scaled MSA than observed
for high-resolution structures however is not unfavorable; it merely
indicates a more compact fold than observed in high-resolution
protein structures. Surprisingly, scaling of SASA as a function of
chain length features a smaller scaling exponent of 0.74 (>0.667)
compared to MSA (Supplementary Fig. S5).

3.2 Void volume
We define void volume as the volume of the free space inside a
protein that is enclosed by the Connolly surface but is not accessible
to bulk solvent. Voids in proteins are considered thermodynamically
unfavorable, with early studies indicating destabilization upon
introduction of voids (Eriksson et al., 1992). In this study, we

Fig. 1. Scaling of MSA as a function of protein size. MSA scales with size of
the protein as (length)0.8. Upon normalization of MSA by (length)0.8, MSA
from all structures fits to a Gaussian distribution. The raw plot of MSA versus
the protein length is shown as gray points and the power-law fit is shown as
a black line (inset).

identified individual voids in proteins of our dataset and computed
their volume. We first computed the total void volume of a protein,
which is a sum of the volumes of all voids in a protein. To avoid
bias due to size of the protein, we divided the total void volume
by the chain length (number of amino acids). Even though voids
have been analyzed in proteins before (Busa et al., 2010; Cuff and
Martin, 2004; Kleywegt and Jones, 1994; Liang et al., 1998), none
of the studies employed such a large dataset of structures to build
distributions of total void volumes.

The minimum size of a void we consider is the size of a water
molecule. Ignoring smaller voids may not be detrimental, since they
could arise as structural deformations due to thermal vibrations
of atoms. In contrast, atomic sized voids that we identify are
not explained by protein dynamics, and in the absence of buried
ligand (or water), these voids can lead to significant structural
destabilization of the protein. To find the extent of voids tolerated
by proteins, we computed the distribution of normalized total void
volume of proteins in our high-resolution dataset. We observe that
the normalized total void volume of proteins from our dataset feature
a Gaussian distribution (Fig. 2) with a mean of 0.26±0.66 Å3. Thus,
a 100-residue protein would on average have a total void volume of
∼26 Å3, equivalent to the molecular volume of two water molecules.
However, outliers in this distribution include proteins featuring zero
and nearly zero normalized total void volume (marked with a dotted
circle). Around 17% of proteins in our dataset feature no voids,
contributing to the significant outlier in the distribution. We find
that 100% of small proteins (<50 amino acids) feature no voids,
while 57% of proteins between 50 and 100 amino acids feature no
voids, indicating voids as unfavorable in small and medium sized
proteins (Supplementary Fig. S6). In striking contrast, majority of
proteins having more than 100 amino acids feature at least one void
(Supplementary Fig. S6). Using our large dataset, one can reasonably
estimate the probability of voids expected in a given structure.
To examine possible bias due to buried active sites in enzymes,
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Fig. 2. Distribution of voids in proteins. The distribution of total void volume
of proteins per residue fits well to a Gaussian distribution with the exception
of a total void volume corresponding to values close to zero (dotted circle).
Distribution of the volume of individual voids from all structures in the
dataset reveal an exponential decay for larger voids, while the decay for
smaller voids is much steeper than an exponential. The crossover between
smaller and larger voids occurs around the volume of two water molecules
(23 Å3) (inset).

we performed similar analyses, but with the dataset divided into
enzymes and nonenzymes (Supplementary Fig. S7). The distribution
for enzymes is modestly right shifted, indicating that enzymes on
average feature larger total void volume. Interestingly, the outlier
positioned near zero void volume for enzymes has much lower value
than that observed in the distribution of nonenzymes.

From the distribution of the volume of all individual voids
detected in our dataset, we can observe the range of voids that
occur in proteins (Fig. 2, inset). We observe that the distribution
of individual voids can be fit well with a negative exponential
function if the first four points are excluded (Fig. 2, inset). The
first four points feature a much steeper decay compared to the rest
of the points with the crossover to a conventional exponential decay
occurring around 23 Å3. Remarkably, this crossover point is very
close to the volume of two water molecules, indicating that the
bigger voids occur at much higher probability than expected from
the distribution of smaller voids. This behavior could be explained
by the fact that these bigger voids are more likely to accommodate
ligands. Interestingly, the largest probability is observed for voids
that can fit exactly one water molecule, indicating a prevalence of
singly occurring buried water molecules.

3.3 Unsatisfied hydrogen bond partners
Hydrogen bonds are essential anchors that stabilize a folded protein
(Fleming and Rose, 2005). Even though the exact balance of the
energetics of hydrogen bonds between polar atoms in proteins
compared to the hydrogen bonds between polar atoms and solvent is
debated, in the absence of the solvent in the protein core, any polar
atom that does not form a hydrogen bond results in destabilization.
Absence of secondary structural elements or the presence of polar
side chains in the core leads to unsatisfied hydrogen bonding partners

Fig. 3. Distribution of the percentage of unsatisfied hydrogen bond partners.
The distribution of unsatisfied hydrogen bond partners that are completely
buried is plotted with open squares, with the corresponding Gaussian fit
shown as a solid line (a). The percentage decreases when hydrogen bonds
with buried structural waters are considered (solid circles, Gaussian fit is
plotted as dashed lines) (a). Similar plots for hydrogen-bonding partners in
the shell region of a protein (b).

(considering that the surface polar atoms form hydrogen bonds
with bulk solvent). We measure unsatisfied hydrogen bonds as the
percentage of total polar atoms that do not form hydrogen bonds in
the buried region of the protein and the shell region of the protein
(the buried and shell regions of a protein are defined in Section 2).
We observe that the percentage of unsatisfied hydrogen bonding
partners in the buried region of a protein across our dataset fits to a
Gaussian distribution centered at 0.01% with a SD of 1.7 (Fig. 3a).
Similarly, in the shell region, we observe 6.2±2.5 % of the total
polar atoms that do not form hydrogen bonds (Fig. 3b).

In the absence of hydrogen bonding partners, polar atoms in
the buried regions can form hydrogen bonds with buried structural
waters. Since we use high-resolution structures in our datasets, most
of structural waters in these structures are expected to be resolved.
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Hence we ask the question: what is the influence of buried waters in
lowering the number of polar unsatisfied atoms, thus stabilizing the
protein? After discounting the buried/shell unsatisfied polar atoms
that are within 3.5 Å of a structural water molecule, we observe that
the SD of the distribution of unsatisfied buried polar atoms decreases
from 1.7% to 1.1%. Similarly, the mean percentage of polar atoms in
the shell that do not form hydrogen bonds decreases from 6.2±2.5
to 3.6±2.1. Thus, structural waters make a significant contribution
in forming hydrogen bonds in the shell and buried regions of the
protein.

3.4 Gaia web server
We combine all the filters described here, in the web server Gaia.
Gaia calculates the P-value for various filters of any protein structure
model that is submitted. The P-value for a given filter is calculated
based on the distribution of that filter for high-resolution structures.
We have developed the web interface using PHP and Java script.
The first step in the evaluation entails either uploading a PDB
file or providing a PDB ID. The input structure is checked for
completeness of backbone atoms and any missing side-chain atoms
are reconstructed using Medusa. Subsequently, the values of all
the filters are calculated for the input structure and the results
are stored in a MySQL database. The calculated value of each
structural filter is then plotted along with the distribution of values
obtained from high-resolution structures. Filters with P-values less
than 0.05 are indicated with a warning. A dossier for the input protein
structure, with details of each filter, including a plot of the filter
value with respect to the benchmark distribution and the P-values is
made available for download as a portable document format (PDF)
document.

4 CONCLUSIONS
In this study, we choose steric clashes, SASA/MSA, void volume
and percentage of unsatisfied hydrogen-bond donor/acceptors as
metrics reporting on the quality of packing of the protein core and the
formation of proper contacts in the core and shell. We measure the
quality of any given structure in terms of these metrics by comparing
against the benchmarks from high-resolution crystal structures.

Servers like MolProbity and WHAT IF (Davis et al., 2007;
Hooft et al., 1996; Vriend and Sander, 1993) have revolutionized
structural biology by providing accurate assessment of the quality
of a structure through evaluation of clashes, hydrogen bonds and
protein covalent geometry. Through Gaia, we seek to complement
already existing servers. Gaia is unique in several aspects of protein
structure quality assessment. For example, Gaia provides a unique
way to define clashes using energetics compared to fixed overlap
distance cutoffs (0.4 Å) used by other servers. Furthermore, while
other servers provide a list of hydrogen bonds, Gaia also evaluates
unsatisfied hydrogen bond partners in a protein. Finally, Gaia uses
a novel method to compute void volume in a protein and provides
a statistical score for the total void volume of a protein. Thus, Gaia
provides a systematic, multi-faceted evaluation of the quality of a
protein structure model, including clashes, voids, hydrogen bonds
and molecular surface, in addition to the local, covalent geometry
of individual residues and peptide bonds.

In addition to introducing tools for quantifying the quality of
protein structures, our benchmarks revealed interesting properties

of protein cores. Our finding that majority of small and medium
sized proteins feature no voids, suggests that single domains are
well packed in proteins, while folding of multiple domains may
introduce voids. Further analysis is required to substantiate this
hypothesis. The distribution of the percent buried polar atoms
forming no hydrogen bonds peaks at zero reiterating the strong
penalty for the burial of unsatisfied polar atoms. We also observe
a high probability for voids that can fit just one water molecule,
implying a prevalence of singly occurring buried water that may
be important for structural stability. The possible structural role of
buried waters is further supported by the observation of substantial
number of contacts between buried polar atoms and crystallographic
waters in the structures in our dataset. This discovery is important
in modeling protein structure given that most current methods for
ab initio protein structure prediction do not consider buried structural
waters.

The filters established in this study combined with calculation
of covalent geometry of proteins are available for use by
protein-structural biology community as a web server (Gaia—
http://chiron.dokhlab.org). For a given input protein, Gaia calculates
all the above properties and provides P-values by comparing the
input protein parameters to the distributions obtained from high-
resolution crystal structures. By providing a detailed report on each
of these properties within minutes, Gaia serves as a final filter for
estimating the quality of a given protein structural model.
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