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ABSTRACT

Motivation: Disulfide bonds stabilize protein structures and play
relevant roles in their functions. Their formation requires an oxidizing
environment and their stability is consequently depending on
the redox ambient potential, which may differ according to the
subcellular compartment. Several methods are available to predict
cysteine-bonding state and connectivity patterns. However, none of
them takes into consideration the relevance of protein subcellular
localization.
Results: Here we develop DISLOCATE, a two-step method based on
machine learning models for predicting both the bonding state and
the connectivity patterns of cysteine residues in a protein chain. We
find that the inclusion of protein subcellular localization improves the
performance of these predictive steps by 3 and 2 percentage points,
respectively. When compared with previously developed methods for
predicting disulfide bonds from sequence, DISLOCATE improves the
overall performance by more than 10 percentage points.
Availability: The method and the dataset are available at
the Web page http://www.biocomp.unibo.it/savojard/Dislocate.html.
GRHCRF code is available at http://www.biocomp.unibo.it/savojard
/biocrf.html.
Contact: piero.fariselli@unibo.it
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1 INTRODUCTION
The formation of disulfide bonds between cysteine residues is
essential for folding, stability and maturation of many proteins
(Inaba, 2010). Predicting which cysteines in a protein sequence
form disulfide bonds plays a relevant role in protein structural
and functional annotation (Singh, 2008; Tsai et al., 2007). Several
computational methods are available, which can be grouped
as: (i) methods that predict the disulfide-bonding state (Chen et al.,
2004; Martelli et al., 2002; Mucchielli-Giorgi et al., 2002; Savojardo
et al., 2011); (ii) methods that predict the connectivity patterns,
assuming that the cysteine-bonding state is known (Fariselli and
Casadio, 2001; Ferrè and Clote, 2005; Song et al., 2007; Vullo and
Frasconi, 2004); (iii) methods that compute both features (Cheng
et al., 2006; Taskar et al., 2005; Vincent et al., 2008).

∗To whom correspondence should be addressed.

Proteins that contain disulfide bonds are rarely found in the
cytoplasm and are routinely secreted (Kadokura et al., 2003).
Disulfide bond formation in Eukaryotes happens in the lumen
of the endoplasmic reticulum (Heras et al., 2007; Sevier et al.,
2007). These experimental studies show that the localization in
the different cell compartments plays a relevant role in disulfide
bond generation and stabilization. However, to the best of our
knowledge none of the methods developed so far has actually
exploited information on the subcellular localization of proteins.
Protein datasets with experimentally known subcellular localization
are available as well. Several efficient prediction methods were
developed to predict subcellular localization (Casadio et al., 2008;
Imai and Nakai, 2010). Here, we propose DISLOCATE, a novel two-
stage method for disulfide bond prediction in Eukaryotes based on
machine learning approaches. We show that the inclusion of protein
subcellular localization improves the performance of disulfide bond
prediction methods. This improvement is noticeable also when the
subcellular localization is predicted with BaCelLo (Pierleoni et al.,
2006).

2 MATERIAL AND METHODS

2.1 Datasets
From PDB (release May 2010), we extracted 1797 eukaryotic protein
structures with resolution <2.5 Å with at least two cysteine residues
and global pairwise sequence similarity <25%. We refer to this dataset
as PDBCYS: it includes 7619 free and 3194 bonded cysteines. Since
the selected proteins contained some measure of sequence similarity, we
clustered the remaining chains using a local sequence similarity score.
First, we ran a BLAST sequence search using all the proteins of the set
versus themselves. Then, for each pair of proteins we selected the higher
bidirectional (say p1 versus p2 or p2 versus p1) sequence identity as reported
in the BLAST output. We subsequently treated the proteins as a node
of a graph and assigned an edge between two nodes only where local
sequence identity between the corresponding protein sequences was >25%.
In addition, we computed the connected components of the graph and treated
each group of nodes as a protein cluster. Finally, the clusters were grouped
in 20 disjoint sets used to train and test the method. For sake of comparison,
we also adopted the same procedure on the SPX- set (Cheng et al., 2006).

2.2 PDBCYS subcellular localization
For each protein in PDBCYS, we extracted from the corresponding UniProt
file the annotated subcellular localization, considering five different macro
compartments: chloroplast, cytoplasm, mitochondrion, nucleus and secreted.
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Table 1. Subcellular localization of protein chains containing bonded and
free cysteines

Localization Bonded Free Number of
cysteines (%) cysteines (%) proteins

Chloroplast 11 89 28
Cytoplasm 9 91 472
Mitochondrion 2 98 62
Nucleus 5 95 322
Secreted 79 21 227

The distribution of the different proteins in the various compartments is
reported in Table 1. The 62% of the PDBCYS proteins (1121 chains
including 4894 free and 1598 bonded cysteines) is endowed with subcellular
localization.

To predict subcellular localization, we adopted a cross-validation
version of BaCelLo (Pierleoni et al., 2006) also aiming at preventing an
overestimation of the predictive contribution.

2.3 Predicting disulfide-bonding state
Disulfide-bonding state of cysteines is predicted with Grammatical-
Restrained Hidden Conditional Random Fields (GRHCRFs). GRHRCFs
have been recently introduced as a promising framework for solving
sequence labeling tasks (Fariselli et al., 2009). Here, for the sake of clarity, we
introduce GRHCRFs starting from linear conditional random fields (CRFs).
Linear CRFs can also be seen as discriminative versions of Hidden Markov
Models (HMMs) and we will describe them applying this approach (Lafferty
et al., 2001; Sutton and McCallum, 2007).

2.3.1 From HMMs to CRFs. A HMM is defined by its transition (as,t)
and emission (es(c)) probabilities (Durbin et al., 1998). Given an observed
sequence of symbols X ={x1,...,xL} and a sequence of states Y ={y1,...,yL},
the joint probability of X and Y can be computed by the HMM as:

p(Y ,X)=
L∏

j=1

ayj−1,yj eyj (xj) (1)

where the variable j runs over the length of the sequence X and an explicit
begin state (y0) is indicated by the index of position 0. Here, we adopt the
convention of using uppercase letters for the entire sequences (X and Y ) and
lowercase letters for the single elements (xi and yj). The Equation (1) can be
rewritten in an exponential form by introducing new variables: τs,t = log(as,t)
and µs(c)= log(es(c)):

p(Y ,X)=
L∏

j=1

exp
[
τyj−1,yj +µyj (xj)

]
(2)

Taking into consideration Kroneker’s deltas (δ(a,b)=1 if a=b, 0 otherwise),
p(Y ,X) can be rewritten as follows:

p(Y ,X)=
L∏

j=1

exp

[∑
s,t

τs,t fs,t(yj−1,yj)+
∑
s,c

µs(c)gs,c(yt,xj)

]
(3)

where fs,t(yj−1,yj)=δ(s,yj−1)δ(t,yj) and gs,c(yj,xj)=δ(s,yj)δ(c,xj) are
feature functions, respectively, defined over (state, state) and (state, symbol)
pairs.

A step forward to the CRF is to ‘relax’ the assumption that τs,t and µs(c)
are log-probabilities, assigning them arbitrary values. However, in order to
maintain the meaning of joint probability, a ‘global’ normalization factor (Z)

Fig. 1. Automaton adopted to define the cysteine grammar in protein
sequences. States Bo and Be define bonding labels while states Fo and Fe
indicate free cysteine labels.

is needed, such as:

p(Y ,X) =
L∏

j=1
exp

[∑
s,t
τs,t fs,t (yj−1,yj )+∑

s,c
µs(c)gs,c(yt ,xj )

]

Z

= 1
Z

L∏
j=1
ψj(yj−1,yj,xj)

(4)

The notation is simplified by introducing the so-called potential functions ψj

(Lafferty et al., 2001). In spite of the additional flexibility of τs,t and µs(c),
it can be shown that p(Y ,X) describes exactly the HMM class (Sutton and
MacCallum, 2007). Generative models as these model both the sequence
of states Y and the observed sequence of symbols X. The last step toward
linear CRFs is to write the conditional distribution p(Y |X) using the previous
definition of p(Y ,X) as:

p(Y |X) = p(Y ,X)∑
Y ′ p(Y ′,X)

=
∏L

j=1ψj (yj−1,yj ,xj )∑
Y ′

∏L
j=1ψj (yj−1,yj ,xj )

= 1
Z(X)

∏L
j=1ψj(yj−1,yj,xj)

(5)

where the normalization factor over all possible sequences of labels Y ′ is
usually referred to as a partition function Z(X). The discriminative nature
of CRFs (as the conditional probability p(Y |X) is directly modeled) offers
several advantages over generative approaches such as HMMs, including
the relaxation of the strong independence assumptions implied in HMMs
(Fariselli et al., 2009; Lafferty et al., 2001). Finally, linear CRFs can further
relax the definition of the functions making them dependent on the sequence
X :ψj(yj−1,yj,X). With this notation, for instance, we can have feature
functions that take into consideration a window around the j-th position
or global sequence descriptors such as the subcellular localization.

2.3.2 From CRFs to GRHCRFs. One of the problems with linear CRFs is
the fact that the set of observed labels {yj} coincides with the set of states {sj}.
However, in order to identify biological meaningful predictions, the observed
sequence of label Y can be considered as generated by an automaton with
several different states, sharing the same type of label. For instance, the
automaton presented in Figure 1 defines the simplest disulfide grammar with
four states, but the observed sequences of labels contain only two symbols:
free (F) and bonded (B). This makes the model cumbersome to treat because,
in order to map the automaton into the observed sequence, a new artificial
(and unambiguous) relabeling of the observed sequence has to be created
(for instance, the sequence of observed labels Y = FBFB must be converted
in Fe, Bo, Fo, Be). Any time that a new model is tested, a new artificial
sequence of labels must be generated. Furthermore, grammatical rules such
as forbidden transitions must be learned from the examples. This may lead
to erroneous predictions if the rules are not sufficiently represented into the
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training examples. Alternatively, the rules can be hard-coded in the source
code (and have to be consequently adapted when the grammar changes) by
setting the corresponding transitions to −∞.

To overcome these limitations, we introduced the GRHCRFs (Fariselli
et al., 2009). GRHCRFs decouples the observed sequence of labels from the
set of states introducing a hidden set of variables. Like HMMs, GRHCRFs
can be represented through a finite state machine (FSM) with some missing
transitions between states. The structure of the FSM is determined by the
specific grammar used for the problem at hand. In order to better generalize,
GRHCRFs (as well as HMMs) define a one-to-many mapping between labels
and FSM states and, at the same time, restrict the accepted predictions to only
those that correspond to an allowed path in the FSM. A function �(s)=y,
is defined to map each state s to a given observed label y. The potential
functions φj for each sequence position j are defined as:

φj(sj−1,sj,yj,X)=ψj(yj−1,yj,X)�
(
sj−1,sj

)
�(sj,yj) (6)

The φj are defined similarly to the CRF potential functions with the added
constraints:

�(s,t)=
{

1 if (s,t) is a valid transition

0 otherwise
(7)

�(s,y)=
{

1 if �(s)=y

0 otherwise
(8)

that ensure that the only valid path of the FSM is considered. The probability
of a sequence of labels Y given an observation sequence X is obtained as:

p(Y |X)= Z(Y ,X)

Z(X)
(9)

where Z(Y ,X) and Z(X) are normalization factors defined as:

Z(Y ,X)=
∑

s

L∏
j=1

φj(sj−1,sj,yj,X) (10)

Z(X)=
∑

Y

Z(Y ,X) (11)

that can be computed using the forward–backward procedure (Fariselli et al.,
2009).

The model parameters �={θk}={τs,t,µs,σ (c)} associated to each
feature are learned by maximizing log-likelihood over training data
D={(X (i),Y (i))|i=1,...,N}:

�(�,D)= log
N∏

i=1

p(Y (i)|X (i);�)−
∑

k

θ2
k

2σ2

=
N∑

i=1

log Z(Y (i),X (i))−logZ(X (i))−
∑

k

θ2
k

2σ2

(12)

where the last term is a Gaussian prior regularizer (Lafferty et al., 2001). The
maximization is carried out using the Limited memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) quasi-Newton optimization algorithm (Byrd
et al., 1995).

As far as expressiveness is concerned, linear CRFs and GRHCRFs
are in many instances theoretically equivalent. However, the decoupling
between states and observed labels allows the GRHCRFs to model
ambiguous conditions: the sequence of observed labels can be associated
with several different paths on the FSA. In these cases, GRHCRFs can
exploit the ambiguity summing over all possible solutions and obtaining
better performance (Fariselli et al., 2009). However, in the case of the FSA
of Figure 1, both models are theoretically similar, and GRHCRFs collapses to
‘constrained CRFs’. Nonetheless, GRHCRFs are simpler to deal with when
grammar rules are introduced.

2.3.3 Bonding state prediction with GRHCRFs. For the bonding state
prediction, we adopted the automaton described in Figure 1. The arrows
represent the allowed transitions, while the B and F circles, respectively,
represent the bonding and non-bonding cysteine states. The labels ‘e’ (even)
and ‘o’ (odd) indicate the number of cysteines in the bonding state so far
processed. The path can end only from an e-label state. This guarantees
that only correct even predictions are assigned when considering intra-chain
disulfide bonds.

To assign the bonding state, we encoded each cysteine with a ‘local
vector’ representing the sequence nearest neighborhood. The vector is
computed starting from the Position Specific Scoring Matrix (PSSM) as
internally computed by PSI-BLAST using BLOSUM62 (Altschul et al.,
1997). The input vector represents each cysteine in the protein sequence
and its neighborhoods, by defining a window of size w=2k+1 centered on
each cysteine. The encoding vector consists in 20×w components, where
20 is the number of residue types. We supplemented the local encoding
(PSSM) with the piece of information provided by the subcellular localization
(PSSM + SL) as obtained by the BaCelLo predictor in cross-validation.

On a more practical level, for each cysteine in position j and for each state
s, the GRHCRFs defines the following state features:

• gs(xj+k[a]) for k in {−w/2,...,w/2} and a in {Residue Alphabet} and

• gs(o) for o in {Global Features}

where w is the width of the window around the cysteine of position j, and
the set of global features can be 1 or 0 depending on the different types
of subcellular localizations. The functions gs(xj+k[a]) are weighted by the
corresponding position (j+k) and residue type (a) values extracted from the
PSSM.

2.3.4 Details on the employment of BaCelLo. The predictions provided
by the BaCelLo have been integrated into the input vector of our method. As
training dataset for BaCelLo, we employed its original training set described
in Pierleoni et al. (2006). In order to make this procedure as fair as possible,
we proceeded as follows: each protein in our dataset has been aligned using
BLAST against the BaCelLo training set and the relevant hits with an e<1e-3
for that protein have been identified. Then, the hits found have been removed
from the BaCelLo training set and the predictor has been retrained on this
reduced set. Finally, the protein subcellular localization has been predicted
using the re-trained BaCelLo predictor. This guarantees that each protein has
been processed with a training set that does not contain homologous proteins.

2.4 Predicting connectivity patterns
Once the cysteine-bonding state is assigned, we predict the connectivity
pattern of the subsets of proteins that contain at least a pair of cysteines in
the bonding state. The connectivity pattern is assigned by applying a support
vector regression (SVR) approach (similarly to Song et al., 2007). The SVR
predictions of each possible pair of cysteines is used as edge weight and the
Edmond–Gabow algorithm is adopted to predict the most probable disulfide
pattern (Fariselli and Casadio, 2001).

In order to evaluate SVR, we use the same 20-fold cross-validation
procedure described above, considering only proteins with at least two
disulfide bridges. SVRs were trained using an input encoding based on global
and local information. The global information (that does not depend on each
particular cysteine pair) is defined by the Normalized Protein Length (one real
value), the Protein Molecular Weight (one real value) and the protein amino
acid composition (20 real values). The local pairwise encoding (that depends
on each particular cysteine pair) consists of the following descriptors:

• two PSSM-based windows centered into the cysteines forming the
pairs. We used a window of length 13, the one that performed better
among the several different-size windows we tested. With this choice,
we ended up with a vector of 13×20×2=520 components;

• the relative order of the cysteines. This feature is encoded with 2 real
values that represent the normalized relative order of a cysteines pair.
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Given a protein with n cysteines (C1,C2,...,Cn), the corresponding
normalized ordered list of cysteines is given by (1/n, 2/n, …, n/n).
For each pair of cysteines, the corresponding values are then taken from
the list (e.g. the pair (C1,C4) is encoded as (1/n,4/n));

• the cysteine separation distance. This feature is encoded with 1 real
value that represents the log-cysteine sequence separation computed
as SEP(Ci,Cj)= log(|j−i|) where i and j are sequence positions of
cysteines Ci and Cj, respectively.

Finally, we provided to the SVR an input vector of 545 components based
on all features described above.

For the SVR implementation, we used the libsvm package
(http://www.csie.ntu.edu.tw/~cjlin/libsvm) with a RBF kernel.

2.5 Measuring scoring efficiency
Here Tp, Tn, Fp and Fn are, respectively, true positives, true negatives, false
positives and false negatives with respect to the disulfide-bonding state class.
The disulfide-bonding state predictions are evaluated using the following
indices:

• Q2 or accuracy that evaluates the number of correctly predicted
cysteines divided by the total number of cysteines:

Q2 = Tp+Tn

Tp+Tn+Fp+Fn
(13)

• Precision (Pr) of the disulfide-bonding state class that is the number of
correctly predicted cysteines divided by the total number of predicted
cysteines in the positive class:

Pr = Tp

Tp+Fp
(14)

• Recall (Rc) of the disulfide-bonding state class is the number of
correctly predicted cysteines divided by the total number of observed
bonded cysteines:

Rc = Tp

Tp+Fn
(15)

• F1, defined as the harmonic mean of Pr and Rc:

F1 = 2 × Pr ×Rc

Pr +Rc
(16)

• Matthews Correlation Coefficient (CC) defined as follows:

CC= (Tp × Tn − Fp × Fn)√
(Tp+Fp)×(Tp+Fn)×(Tn+Fp)×(Tn+Fn)

(17)

• Qprot is the number of correctly predicted proteins Ncp divided by the
total number of proteins Np:

Qprot = Ncp

Np
(18)

When we score the connectivity pattern prediction, we also compute
the following indices:

• Pb is the number of correctly predicted bonds Nc divided by the total
number of predicted bridges Np:

Pb = Nc

Np
(19)

• Rb is the number of correctly predicted bonds Nc divided by the number
of observed bonds Nb:

Rb = Nc

Nb
(20)

• Qp is the number of correctly predicted disulfide patterns Npat divided
over the total number of proteins Np:

Qp = Npat

Np
(21)

Table 2. GRHCRF and linear CRF performance as a function of different
inputs

Model Input Qprot CC Q2 Pr Rc F1

(%) (%) (%) (%) (%) (%)

CRF PSSM 79 70 88 84 73 78
GRHCRF PSSM 83 80 91 91 83 87
GRHCRF PSSM + OSL 87 85 93 92 87 90
GRHCRF PSSM + PSL 86 83 93 91 86 87

OSL and PSL, respectively, represent the observed and predicted subcellular
information. Relative errors associated to each index are all below 1%. For index
definition, see Section 2.

3 RESULTS AND DISCUSSION

3.1 Model selection procedure
Both CRF and SVR depend on hyperparameters that need to be
adjusted (σ2 in the regularization term of CRF, γ and C in SVR).
Furthermore, both in the bonding state prediction and in the disulfide
connectivity prediction, part of the input is based on a window
of flanking residues centered on the cysteines. The size of these
windows needs to be set as well.

All these parameters have been chosen by performing a cross-
validation procedure. The dataset was first divided into a number
of balanced sets as described in Section 2.1. Using this data split,
we selected the parameters by averaging the best values obtained
for each training set (in many cases, they are the same). With
this procedure, we ended up with the following training-based
parameters: σ2 =0.05 and w=15 for the CRF and γ=0.0625,
C =11.31 and w=13 for the SVR.

3.2 Predicting the disulfide-bonding state: the role of
subcellular localization

We applied the GRHCRF method for the prediction of the
disulfide-bonding states of cysteines with a 20-fold cross-validation
procedure. The best results (with input window w=15) are reported
in Table 2. For sake of comparison (and using the same input
encoding), we also trained CRF models based on the same FSA
of Figure 1, using artificial sequences of labels derived from a FSA
parsing. However, in order to highlight the effect of the grammatical
constraints, CRF models in Table 2 were not provided with hard-
coded forbidden transitions (τst) set to −∞. The results show that the
grammatical rules are not easy to be acquired from the examples,
since the GRHCRF models outperform the CRF ones in Table 2.
As mentioned above, in the simple case of the FSM of Figure 1,
GRHCRFs collapse to linear CRFs when both label and grammatical
constraints are taken into account.

From Table 2, it is also evident that subcellular localization
plays a significant role in predicting the cysteine-bonding state.
In particular, Qprot (accuracy per protein) and CC (Matthews
correlation coefficient) scores indicate that information derived from
the observed subcellular localization (OSL) increases up by five
percentage points the method performance. The improvement is
slightly lower when the predicted subcellular localization (PSL) is
included in the input vector, indicating that BaCelLo is endowed
with a high prediction score. It is worth mentioning that in PDBCYS
the trivial cases are not present (chains that contain a single cysteine).
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Table 3. Scoring the prediction of disulfide connectivity when the cysteine-
bonding state is known

Index Number of bonds

2 3 4 5 All

Rb =Pb 75 (1) 60 (2) 57 (2) 46 (3) 60 (2)
Qp 75 (1) 48 (2) 44 (3) 19 (5) 54 (2)

Relative errors for each index in terms of percentage are reported within parenthesis.
SVR description and index definition are provided in Section 2.

Table 4. Prediction of protein disulfide bonds with DISLOCATE as a
function of the number of disulfide bonds

#B PSSM PSSM + PSL

Rb Pb Qp Rb Pb Qp

1 80 (1) 38 (3) 72 (1) 83 (1) 46 (3) 76 (1)
2 64 (2) 50 (2) 60 (2) 67 (2) 52 (2) 61 (2)
3 46 (3) 41 (3) 34 (3) 47 (3) 41 (3) 35 (3)
4 52 (2) 35 (3) 33 (3) 52 (2) 37 (3) 35 (3)
5 39 (3) 39 (3) 15 (6) 39 (3) 39 (3) 15 (6)
All 52 (2) 41 (3) 34 (3) 52 (2) 42 (3) 36 (3)

#B, number of bonds. PSSM, input with PSSM. PSSM + PSL, input that add the
predicted subcellular localization. Relative errors for each index in terms of percentage
are reported within parenthesis. For index definition see Section 2.

3.3 Predicting connectivity patterns
To train and test the predictor of connectivity patterns based on
SVR, we adopted the same 20-fold partition of the dataset after
removing chains that contained less than two disulfide bonds per
structure (Table 3). Here, we assume a perfect knowledge of the
disulfide-bonding state of cysteines (Table 3). The SVR aims to
predict the connectivity pattern that gets increasingly complex as the
number of disulfide bonds increases (Fariselli and Casadio, 2002).
The procedure does not restrict the prediction to the connectivity
patterns that are present in the dataset and allows prediction of never-
seen-before patterns (the restricted procedure can be implemented
as well, improving the method performance, Singh 2008; Tsai et al.,
2007; Vincent et al., 2008).

3.4 DISLOCATE: the integrated predictor of cysteine
bonds in proteins considering subcellular
localization

The prediction of subcellular localization, of cysteine-bonding states
and of their topology, is then integrated into DISLOCATE, that takes
a protein sequence as input. To evaluate DISLOCATE, both wrong
disulfide state predictions and wrong connectivity assignments are
taken into account when scoring the performance. Subcellular
localization is considered as an input added feature. Values reported
in Table 4 are obtained with a cross-validation procedure and as
a function of the number of known disulfide bonds in the protein
chain. It is patent that information on subcellular localization, albeit
predicted, increases DISLOCATE performance for proteins with up
to four disulfide bridges.

Table 5. Prediction of protein disulfide bonds with DISLOCATE as a
function of the number of cysteines

#Cys PSSM PSSM + PSL

Rb Pb Qp Rb Pb Qp

2 48 (2) 64 (2) 92 (1) 75 (1) 44 (3) 96 (1)
3 19 (5) 33 (3) 89 (1) 41 (3) 62 (2) 93 (1)
4 58 (2) 68 (2) 85 (1) 58 (2) 68 (2) 85 (1)
5 43 (3) 67 (2) 86 (1) 43 (3) 67 (2) 86 (1)
6 47 (3) 45 (3) 76 (1) 48 (2) 46 (3) 76 (1)
7 49 (2) 58 (2) 86 (1) 45 (3) 55 (2) 85 (1)
8 48 (2) 46 (3) 73 (1) 47 (3) 44 (3) 74 (1)
9 38 (3) 46 (3) 89 (1) 56 (2) 56 (2) 90 (1)
10 46 (3) 46 (3) 60 (2) 47 (3) 46 (3) 60 (2)
All 47 (3) 51 (2) 83 (1) 49 (2) 48 (2) 86 (1)

#Cys, number of cysteines; PSSM, input with PSSM; PSSM + PSL, input that add the
predicted subcellular localization. Relative errors for each index in terms of percentage
are reported within parenthesis. For index definition, see Section 2.

In Table 5, we report its accuracy as a function of the number
of cysteines in the proteins (up to 10 cysteines), independently of
the observed or predicted bonding state. Data show that when the
predicted subcellular localization is added (PSL), the performance
of the method increases. It is worth mentioning that when accuracy
is scored as a function of the number of cysteines (Table 5), the
vast majority of the protein sequences contain only free cysteines,
resulting in higher Qp values if compared to the case that consider
only proteins with disulfide bonds (Table 4).

3.5 Comparison with other methods
Our method exploits protein subcellular localization in Eukaryotes
according to the computations resulting by a cross-validated
version of BaCelLo (Pierleoni et al., 2006). However, for sake of
comparison, we benchmarked DISLOCATE with other methods that
were tested on SPX- (Cheng et al., 2006). This dataset comprises
51% of proteins from Prokaryotes (out of 2547 protein structures).
Unfortunately, it is not possible to compare the performance of the
two separate steps (disulfide-bonding state and connectivity pattern
predictions) with the available methods on a single dataset, since
in the literature this information is not reported. In particular, for
the prediction of the connectivity patterns most of the approaches
adopt the highly redundant SP39 dataset (Fariselli and Casadio,
2001), where the sequence homology (if not properly handled)
can mask the real performance (Supplementary Table S1). With
this aim, here we retrain DISLOCATE (with the same parameter
selected for PDBCYS) using a 10-fold cross-validation procedure.
These 10 subsets were selected in order to prevent sequences with
local similarity >25% from being extracted from two different sets
(the cross-validation folds are available on the DISLOCATE Web
page). BaCelLo predictions are obtained using the cross-validation
procedure described above (Section 2.3.4).

DISLOCATE results are shown in Table 6 without and with
the added subcellular localization feature (first and second groups
of columns, respectively). Our data are compared with the
scoring indices of state-of-the-art predictors as derived from the
literature (Cheng et al., 2006; Vincent et al., 2008). The higher
DISLOCATE overall accuracy is due to the fact that the vast
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Table 6. Comparison with other approaches on SPX- dataset

#B Dislocate Dislocate APTK + Disulfind DIproa

PSSM PSSM + PSL 1-NNa +1-NNa

Rb Pb Qp Rb Pb Qp Rb Pb Qp Rb Pb Qp Rb Pb Qp

1 90 69 88 92 74 90 30 30 27 30 30 30 – – –
2 70 54 69 71 60 70 51 54 47 51 51 49 – – –
3 60 54 53 63 54 55 63 65 58 66 67 61 – – –
4 46 36 30 48 37 32 50 51 40 48 49 37 – – –
All 60 51 50 62 52 53 43 44 37 43 44 39 32 48 –

#B, number of bonds. PSSM, input with PSSM; PSSM + PSL, input that add the
subcellular localization. All the values are percentage (%).
aValues taken from Vincent et al. (2008). For the indices, see Section 2.

majority of the proteins in SPX- contains 1 or 2 bridges and in
this case, DISLOCATE outperforms other methods. DISLOCATE,
unlike other predictors, does not restrict the spectrum of possible
connectivity patterns considered by the nearest neighbor approach
(1-NN). This is reflected in the accuracy indices for 3 and 4 bonds
where the DISLOCATE performance is lower than those including
1-NN approach that filters out connectivity patterns not present in
SPX- (Vincent et al., 2008). The probability of randomly predicting
a correct connectivity pattern decreases exponentially as the number
of disulfide bonds increase (Fariselli and Casadio, 2001). Indeed, the
number of possible patterns is 1, 3, 15 and 105 when the number
of disulfide bonds is 1, 2, 3 and 4, respectively. Accordingly, a high
number of disulfide bonds determines a decrease in DISLOCATE
performances. DISLOCATE and the other methods predict all the
possible patterns at 1 and 2 number of bonds. However, at 3 and 4
bonds the 1-NN restricts the selection to 13 (out of 15) and 18 (out
of 105) patterns, respectively. Therefore, DISLOCATE outperforms
its random predictor 7.6 (Qp ×15) and 30 folds (Qp ×105), when 3
and 4 bonds in the disulfide patterns are considered. In turn, for the
same number of bonds in the pattern, the best 1-NN-filtered approach
scores 7.6 (Qp ×13) and 7.3 (Qp ×18) higher than random.

Furthermore, adding the subcellular localization feature improves
DISLOCATE performance for each number of bonds in the disulfide
pattern. In this benchmarking, the role of subcellular localization in
improving the prediction is blurred by the fact that only 49% of the
sequences are from Eukaryotes.

4 DISLOCATE SERVER
GRHCRF code is available under the GPL license and can
be downloaded at the page http://www.biocomp.unibo.it/savojard/
biocrf.html. The complete implementation of DISLOCATE
is also freely accessible as Web server at the Web page
http://www.biocomp.unibo.it/savojard/Dislocate.html. The server
interface is extremely user friendly, and requires only to paste or
upload a protein sequence from Eukaryotes. The only choice left
to the user is the section of the organism kingdom type: animals
(default), fungi and plants. This is necessary to activate the BaCelLo
subcellular localization prediction (Pierleoni et al., 2006). The Web
server takes only one protein sequence at a time and it is not intended
for intensive wide-genome scanning.

5 CONCLUSIONS
In this article, we present a new two-step predictor of disulfide
bonds based on a newly developed machine learning model (Fariselli
et al., 2009) and taking protein sequence as input. We show
that the inclusion of protein subcellular localization improves its
performance, indicating that this piece of biological information
is relevant for the classification of the bonding state of cysteine
residues. We also show that the method matches up to with the
available state-of-the-art predictors.
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