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ABSTRACT

Motivation: Building an accurate alignment of a large set of distantly
related protein structures is still very challenging.
Results: This article presents a novel method 3DCOMB that can
generate a multiple structure alignment (MSA) with not only as
many conserved cores as possible, but also high-quality pairwise
alignments. 3DCOMB is unique in that it makes use of both local
and global structure environments, combined by a statistical learning
method, to accurately identify highly similar fragment blocks (HSFBs)
among all proteins to be aligned. By extending the alignments of
these HSFBs, 3DCOMB can quickly generate an accurate MSA
without using progressive alignment. 3DCOMB significantly excels
others in aligning distantly related proteins. 3DCOMB can also
generate correct alignments for functionally similar regions among
proteins of very different structures while many other MSA tools fail.
3DCOMB is useful for many real-world applications. In particular, it
enables us to find out that there is still large improvement room for
multiple template homology modeling while several other MSA tools
fail to do so.
Availability: 3DCOMB is available at http://ttic.uchicago.edu/~jinbo/
software.htm.
Contact: jinboxu@gmail.com
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Multiple protein alignment has been extensively used for
classification, analysis of evolutionary relationship, motif detection
and structure/function prediction. When proteins are distantly
related, sequence methods usually fail to yield accurate alignment. In
contrast, structure methods, which exploit geometrical information,
may still work well. As more protein structures are experimentally
solved, multiple structure alignment (MSA) is becoming more useful
and important. However, developing computational methods for
accurate MSA, especially of a large set of distantly related protein
structures, is still regarded as an open challenge. An MSA method
consists of two critical components: a scoring function measuring
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of the quality of an MSA and an algorithm searching for the MSA
optimizing the score.

Many MSA algorithms have been developed, such as
MAMMOTH (Lupyan et al., 2005), MATT (Menke et al., 2008),
MultiProt (Shatsky et al., 2004), MUSTANG (Konagurthu et al.,
2006), POSA (Ye and Godzik, 2005) and SALIGN (Eswar et al.,
2008; Madhusudhan et al., 2009). These methods can be broadly
divided into two groups: ‘horizontal-first’ or ‘vertical-first’. The
former progressively merges pairwise alignments into an MSA,
which may be suboptimal since pairwise alignment errors carry over
to the final result. The vertical-first methods identify some similar
fragment blocks (SFB) among proteins and then extend the SFB
alignments to MSAs. The number of SFBs could grow exponentially
with respect to the number of proteins, so these methods may have
to examine a large number of SFBs not to miss the best MSA, which
is usually computationally expensive. As such, the challenge facing
a vertical-first method is to identify only those SFBs, which are very
likely contained in the best MSA.

This article presents 3DCOMB, a novel vertical-first method
for MSA. 3DCOMB distinguishes itself from others in its search
algorithm and scoring function. 3DCOMB makes use of both
local and global structure environments, combined by a novel
machine learning method, to accurately identify highly similar
fragment blocks (HSFBs), which are very likely contained in the
best MSA. 3DCOMB searches for the best MSA starting from
the alignment of an HSFB. Local structure environment is used
to describe the structural difference between two short segments
centered on two residues. Global structure environment is used to
measure the similarity of two substructures centered at the two
residues. Both features are combined by a probabilistic graphical
model Conditional Random Fields (CRF) (Lafferty et al., 2001) to
determine if two residues shall be aligned or not. Existing methods
[e.g. BLOMAPS (Wang and Zheng, 2009)] employ only local
structure environment and sometimes fail to detect good HSFBs.
They usually have to examine a large number of not-so-conserved
fragment blocks in order to find the best MSA. In contrast, 3DCOMB
can generate accurate MSAs from only very few HSFBs and thus,
improve accuracy without too much computational time.

Many methods do not explicitly take into consideration the
quality of pairwise alignments in building an MSA, so it may
not necessarily contain high-quality pairwise alignments. 3DCOMB
aims to generate an MSA with not only as many conserved cores
as possible, but also accurate pairwise alignments. A core is a
fully aligned column without any gaps, consisting of one residue
from each input protein. 3DCOMB achieves this by employing
a novel scoring function CORE-LEN×TMscore for MSA where
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CORE-LEN is the number of cores in the MSA. TMscore (Zhang
and Skolnick, 2004), ranging from 0 to 1, is a widely used measure
for pairwise structure similarity. The higher the TMscore, the more
similar two protein structures are. TMscore is the TMscore averaged
over all the pairwise alignments and thus, analogous to ‘sum-of-
pairs’ used for MSA. The strength of this scoring function will be
detailed in Section 2.

Our tests show that 3DCOMB generates alignments with not
only better CORE-LEN and TMscore, but also smaller core RMSD
although it is not explicitly optimized. 3DCOMB significantly excels
others for the alignment of a large group of distantly related proteins.
Although not specifically designed for this, 3DCOMB can also
generate correct alignments for functionally similar sites among
proteins not in the same superfamily while many other MSA tools
fail. We also estimate the gap between 3DCOMB alignments and
the best possible. When proteins are closely related, 3DCOMB
alignments are almost the best possible. Otherwise they may still
have a gap from the best possible. 3DCOMB also helps us find out
that there is still large improvement room for homology modeling,
but several other MSA tools fail to do so.

2 METHODS
This section contains (i) a machine learning method to detect HSFBs, using
both local and global structure information; and (ii) a new scoring function
and an optimization algorithm to search for the best MSA starting from the
HSFBs.

2.1 HSFB
We use both local and global structure environments to determine how
likely two residues should be aligned. To the best of our knowledge, no
previous methods consider the global structure environment. The local
structure environment of a residue consists of 10 structure segments of
length 2k+1(k = 1,2,... ,10) centered at this residue. Given two residues
of two different proteins, the similarity of their local structure environments
is measured by 10 TMscore values, each measuring the similarity of two
structure segments of the same size. The global structure environment of a
residue i is defined as follows. Let N(i,d) denote all the residues in the same
protein within distance cutoff d from i. The global structure environment
of i (under a given distance cutoff d) consists of all the 5mer segments
centered at the residues in N(i,d). Given two residues of different proteins,
to calculate the similarity of their global structure environments, we first
generate a rigid body transformation for them by minimizing the RMSD of
two center 5mer segments. Then we fix this transformation and run dynamic
programming to align them by maximizing TMscore. We generate 10 such
global structure environment features, using 10 distance cutoff values 6,
7, …, 15 Å.

Modeling pairwise structure alignment using CRF: CRFs are probabilistic
graphical models that have been applied to protein secondary structure
prediction (Wang et al., 2010), protein conformation sampling (Zhao et al.,
2010a; Zhao et al., 2010b), protein sequence alignment (Do et al., 2006) and
protein threading (Peng and Xu, 2010). Here, we use CRF to model protein
structure alignment, which then is used to identify HSFBs among proteins
under consideration.

Let p, q denotes two input proteins and their associated structural
features (i.e. local and global structure environment similarity scores). Let
X ={M,Ip,Iq} be a set of three possible alignment states. Meanwhile, M
indicates that two residues are aligned and Ip and Iq indicate insertion at
proteins p and q, respectively. Let A={a1,a2,...,aNA} denote an alignment
between p and q where ai ∈X represents the state (or label) at position i
and NA denotes the length of this alignment. Our CRF model defines the

conditional probability of an alignment A given p and q as follows:

Pθ(A|p,q)=
exp

(
NA∑
i=1

F(A,p,q,i)

)

Z(p,q)
(1)

Z(p,q)=
∑
A′

exp

⎛
⎝NA′∑

i=1

F(A′,p,q,i)

⎞
⎠ (2)

and θ={λ1,λ2,...,λd} is the model parameter and F(A,p,q,i) is a function
estimating the log-likelihood of an alignment at position i:

F(A,p,q,i)=
∑

k

λkek(ai−1,ai)+
∑

l

λlνl(ai,p,q,i) (3)

where ek(ai−1,ai) and νl(ai,p,q,i) are called edge and label feature
functions, respectively. The edge features model the dependency of the state
transition from alignment position i−1 to i. Here, we assume ek(ai−1, ai) is
independent of protein features to make our formulation simple. ek(ai−1, ai)
is equal to 1 if the transition ai−1 →ai exists at position i; otherwise 0. We
forbid transition from Iq to Ip, so there are in total eight state transitions. That
is, k ranges from 1 to 8. The label features model the relationship between
ai and the local and global structure environment similarity scores at the
alignment position i. There are in total 20 different label feature functions,
each corresponding to one local or global structure environment similarity
score. Therefore, l ranges from 1 to 20. To make the formulation simple, we
assume an insertion state is independent of protein features, so modeling of
insertions is implicitly taken into consideration in the edge feature functions.

We train the model parameters using a set of reference alignments taken
from FSSP (Holm and Sander, 1994). In particular, we randomly selected 50
pairs for training and the other 50 pairs for test. The training and test sets have
no overlap with our benchmarks. All the structural alignments (i.e. reference
alignments) were generated by DALI (Holm and Sander, 1993) and each
alignment has a DALI Z-score >8.0. The model parameters are initialized
randomly to a value between 0 and 1 and the training process converges
within ∼100 iterations. Five-fold cross-validation is conducted to determine
the regularization factor in the CRF model. Once the model parameters are
determined, for a given protein pair p and q, we can generate their alignment
by maximizing Pθ(A|p,q). This alignment may not be the best, but can be
used as an initial alignment between p and q. Starting from these initial
alignments, we can build very accurate pairwise alignments (Supplementary
Material).

As shown in Supplementary Figure S1, the global features corresponding
to distance cutoffs 7, 8, 14 and 15 Å have relatively large weight factors.
This is consistent with the findings in da Silveira et al. (2009), which shows
that 7 Å is the best cutoff for distance-based contact definition. Both 14 and
15 Å may be interpreted as the distance cutoffs for second-order contacts.
To speed up, we exclude six local structure environment features and eight
global structure environment features with small weight factors from our final
CRF model. By using only six features, we will not lose much accuracy in
identifying HSFBs. The remaining two global features correspond to global
structure environments at radius 8.0 and 14.0 Å. The remaining four local
features correspond to structure segments with lengths 9, 13, 17 and 21,
respectively.

Detecting HSFBs using CRF: given two protein structures, we can
calculate the marginal probability of two fragments being aligned using
the forward–backward algorithm (Lafferty et al., 2001). In this article, we
consider only fragments of length L=12. Such a fragment is likely to cover
at least one secondary structure segment. A slight change of L will not impact
the final result much. This marginal probability is defined as the similarity
score of two structure fragments. Given a short fragment F1 in protein p1 and
another protein pi, let Fi denote the fragment of the same size in pi, which
has the highest similarity score with F1. All the fragments F1,F2,...,FM

form an HSFB with F1 being the pivot fragment. A protein of size N in
total have N −L+1 HSFBs. Note that the ‘highest similarity’ relationship is
asymmetric. That is, among all fragments in protein pi, Fi is the most similar
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Fig. 1. The 3DCOMB algorithm overview.

one to F1 may not imply that among all fragments of p1, F1 also is the most
similar one to Fi. Therefore, given M proteins with lengths N1,N2,...,NM ,
there are in total (

∑M
i=1 Ni)−ML+M HSFBs.

Ranking HSFBs by spatial consistency: two HSFBs may be geometrically
inconsistent with each other. That is, we cannot superimpose well the
fragments in both HSFBs using a single set of rigid body transformations. We
can calculate the degree to which two HSFBs are geometrically consistent
and then rank all the HSFBs according to their consistency with others.
The HSFB with the highest consistency score is very likely contained in
the best MSA. We use a simple method to estimate the consistency score
of one HSFB as follows. For each fragment in the HSFB, we generate a
rigid body transformation by minimizing the RMSD between this fragment
(Kabsch, 1976) and the pivot fragment. Let B1 ={F11,F12,...,F1M } denote
the HSFB for which we want to calculate its consistency score and F11 is the
pivot fragment. Let Ti(i = 2,3,...,M) denote the rigid body transformations
derived from superimposing F1i to F11. Let B2 ={F21,F22,...,F2M } denote
another HSFB. For any fragment F2i(i=2,3,...,M) in B2, we superimpose
F2i to F21 using the transformation Ti and then calculate the RMSD between
F2i and F21. If the distance is within 3 Å, we increase the consistency score
of B1 by 1, otherwise by 0.

2.2 Algorithm for MSA
Overview: as shown in Figure 1, 3DCOMB first generates a list of pivot
structures. By default, this list contains all the input proteins, so TopK is
equal to M. For each pivot structure, 3DCOMB uses the CRF model to
generate HSFBs, which are ranked by their spatial consistency scores and
only the TopJ with the highest scores are extended to initial MSAs. 3DCOMB
identifies those ‘unanchored’ proteins which are not well aligned to the pivot.
To improve an initial MSA, 3DCOMB conducts TopF trials to realign each

of the ‘unanchored’ proteins to the pivot. Finally, 3DCOMB refine the whole
MSA based on the consensus structure derived from the MSA.

Scoring function: a good MSA should have a large number of cores (i.e.
CORE-LEN) and also a small core RMSD. A core is a fully aligned column,
consisting of one residue from each input protein. In addition, pairwise
alignments in an MSA should also be of high quality. It is challenging to
develop an algorithm that can optimize these criteria simultaneously since
sometimes they contradict with one another. For example, a large CORE-
LEN usually leads to a large RMSD value. A simple solution is to fix one
criterion and then optimize the others, e.g. maximizing CORE-LEN while
restricting RMSD. This solution is not very flexible in that we have to
determine RMSD in advance, not to mention that neither CORE-LEN nor
RMSD is the best measure.

We use CORE-LEN×TMscore as the scoring function where TMscore
of an MSA is defined as the average TMscore of all the pairwise alignments
implied in the MSA. TMscore is widely used to measure the pairwise
structure similarity and the quality of a protein model. It is defined as follows:

TMscore(p,q)= 1

LS

Lali∑
i

1

1+(di/d0(LS)
)2 (4)

d0(LS)=1.24× 3
√

LS −15−1.8 (5)

Meanwhile, Lali is the alignment between protein p and q, LS is the shorter
protein length, di is the deviation of two aligned residues and d0 is the
length-related normalization term.

Our scoring function has the following features: (i) it leads to an MSA
with not only a large number of conserved cores, but also high-quality
pairwise alignments; (ii) the distance between two aligned residues is used
as denominator, so it favors the aligned residue pairs within small distance
and disfavors or even ignores those with large deviation. This enables us
to detect even a small conserved region among proteins of very different
structures. In contrast, RMSD for the whole alignment, even normalized by
alignment length, is (Levitt and Gerstein, 1998; Siew et al., 2000) greatly
affected by a small number of badly aligned residue pairs and not sensitive
in detecting small but conserved regions; (iii) TMscore is also better than the
alignment length since the latter does not take into consideration the distance
deviation of aligned residue pairs; (iv) TMscore is almost independent of the
protein length (Zhang and Skolnick, 2004) since the distance at each position
is normalized by a length-dependent factor. This is particularly useful for the
alignment of a large set of proteins with very different lengths; (v) TMscore
is not only good for alignment, but also very sensitive in detecting fold-level
similarity. As reported in Xu and Zhang (2010), when TMscore >0.6, it is
very likely (90% of chance) that two proteins have the same fold. When
TMscore <0.4, it is very likely (90% of chance) that two proteins have
different folds. When TMscore >0.5, there is 50% of chance that two proteins
have similar folds.

Building an initial MSA from an HSFB: given an HSFB of M structures,
we first generate a set of M −1 rigid body transformations by superimposing
each fragment in the HSFB to the pivot fragment and minimizing the RMSD
of these two fragments. Then we superimpose each structure to the pivot
structure using the transformation generated from fragment superimposition,
and run dynamic programming to generate an alignment of the two structures
by maximizing the TMscore. Finally, we assemble the M −1 pairwise
alignments into an initial MSA using the pivot structure as the anchor.

Adjustment of pairwise alignment: given the initial MSA, we may refine
it by adjusting the pairwise alignment between each input structure and the
pivot structure (Wang and Zheng, 2008). First, we calculate the TMscore of
the pairwise alignment between each input structure and the pivot. If TMscore
<0.5 (Xu and Zhang, 2010), this input structure is called ‘unanchored’.
We adjust the alignment between each unanchored structure and the pivot
using rigid body transformations derived from other TopF HSFBs. In
particular, for each top HSFB, let F1 and F2 denote the fragments in the
HSFB belonging to the pivot and the unanchored structure, respectively. We
realign the unanchored structure to the pivot structure using the rigid body
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transformation generated from minimizing the RMSD between F1 and F2.
The pairwise alignment with the maximum TMscore is kept in the MSA.

Consensus-based MSA refinement: 3DCOMB refines an MSA by
realigning each input structure to the consensus structure, which is
constructed as follows. At each column of this MSA, we calculate the center
of all the aligned residues (only Cα is considered). Second, we merge two
neighbor columns into a single one if the following two conditions are
satisfied: (i) the total number of aligned residues in these two columns is
not more than the total number of input structures; and (ii) the distance
between their two centers is <3.0 Å. We use 3.0 Å as the cutoff because in
native protein structures, >99% of Cα–Cα virtual bonds are >3.0 Å. This
merge procedure is repeated until no columns can be merged. The consensus
structure consists of all the centers. This refinement procedure is repeated
until a given number of iterations or the scoring function cannot be improved
further.

2.3 3DCOMB time complexity
Let N denote the maximum length of the input M protein structures. We
analyze the time complexity of 3DCOMB as follows:

Step 1: Generate HSFB: given one pivot protein and another one, it
takes time O(N2) to generate protein features and run the forward–backward
algorithm to calculate all the marginal probabilities. Afterwards, given one
fragment F in the pivot, it takes time O(N) to detect a fragment on another
protein with the highest similarity score to F. There are M proteins, so the
time complexity of HSFB generation for a given pivot protein is O(MN2).

Step 2: Sort HSFB by spatial consistency: it takes O(M) time to generate
M −1 rigid body transformations to align the fragments in one HSFB. It
takes O(M) time to calculate the spatial consistency score of one HSFB with
another HSFB. So the total time complexity for a given pivot protein is
O(MN2).

Step 3: Building an initial MSA from an HSFB: it takes O(M) time to
generate M −1 rigid body transformations to align the M −1 fragments in
one HSFB to the pivot fragment. It takes O(N2) time to align one structure
to the pivot given a rigid body transformation. The total time complexity is
O(MN2).

Step 4: Adjust pairwise alignments in an initial MSA: given one HSFB and
the pivot protein, we need to conduct at most TopF adjustments to realign
each of the unanchored proteins to the pivot. Each needs to run a dynamic
programming algorithm with time O(N2), so the total time complexity is
O(TopF × MN2).

Step 5: Refine MSA by the consensus-based optimization: empirically, the
length of the consensus structure is <2N , so it takes time O(MN) to build a
consensus structure from a given MSA. The column merge procedure takes
time O(MN) by using a 3D-hashing technique. It takes time O(N2) to align
each structure to the consensus structure. At most 10 iterations are executed
to refine the MSA, so the total time complexity is O(MN2).

The first two steps will be conducted for each of the TopK, resulting in a
time complexity O(TopK × MN2). The last two steps will be conducted for
each of the TopK and TopJ, leading to O(TopK × TopJ × TopF × MN2) time
complexity. The overall time complexity is O(TopK × TopJ × TopF × MN2).

3 RESULTS

3.1 3DCOMB alignment accuracy
The programs to be compared: we compare 3DCOMB with
BLOMAPS (Wang and Zheng, 2009), MAMMOTH (Lupyan et al.,
2005), MAPSCI (Ilinkin et al., 2010), MATT (Menke et al., 2008),
MultiProt (Shatsky et al., 2004) and MUSTANG (Konagurthu
et al., 2006). Meanwhile, BLOMAPS, MultiProt and 3DCOMB
are vertical-first algorithms while the other four are horizontal-first.
We do not compare 3DCOMB with POSA because it has only
a web server version and is not amendable to a large-scale test.

Table 1. Alignment accuracy of seven MSA tools on three benchmarks
HOMSTRAD, SABmark-sup and SABmark-twi

Method CORE-LEN RMSD TMscore

HOMSTRAD
3DCOMB 170.58 2.00 0.800
MAPSCI 162.55 1.87 0.792
MAMMOTH 169.84 3.03 0.786
MATT 169.53 2.00 0.781
BLOMAPS 169.27 2.18 0.779
MUSTANG 169.49 2.66 0.765
MultiProt 140.82 1.33 0.649

SABmark-sup
3DCOMB 106.66 2.59 0.655
MAPSCI 89.51 2.95 0.627
MAMMOTH 105.50 5.78 0.614
MATT 104.12 2.59 0.613
BLOMAPS 101.82 3.11 0.613
MUSTANG 103.86 4.20 0.583
MultiProt 68.70 1.61 0.404

SABmark-twi
3DCOMB 71.63 3.02 0.526
MAPSCI 50.11 4.38 0.466
BLOMAPS 67.20 4.22 0.457
MATT 67.08 2.89 0.453
MAMMOTH 64.97 8.31 0.436
MUSTANG 66.89 5.10 0.422
MultiProt 36.38 1.75 0.259

The accuracy is measured by CORE-LEN, RMSD and TMscore. The values in the table
are averaged over an individual benchmark.

3DCOMB differs from BLOMAPS mainly in that 3DCOMB uses
both local and global structure environments to identify HSFBs
while BLOMAPS uses only local information. 3DCOMB also uses
a better scoring function. 3DCOMB differs from MultiProt in both
search algorithms and scoring functions.

The benchmarks: we use three benchmarks: HOMSTRAD
(Mizuguchi et al., 1998), SABmark-sup and SABmark-twi (Van
Walle et al., 2005). HOMSTRAD contains 398 homologous protein
families, each with at least three structures. SABmark-sup is the
superfamily set in SABmark (version 1.65), containing 425 families
with low to intermediate sequence identity. SABmark-twi represents
the twilight set in SABmark, containing 209 families with low
sequence identity. We apply three metrics CORE-LEN, core RMSD
and TMscore to evaluating all the methods. The former two are also
used by others such as MATT (Menke et al., 2008). We normalize
CORE-LEN by the length of the shortest protein in a group and
denote it as CORE-LEN%.

Performance on HOMSTRAD: 3DCOMB obtains the largest
average CORE-LEN and the third best average core RMSD (slightly
larger than MultiProt and MAPSCI). Note that because MultiProt
uses a very strict cutoff to determine if an aligned column is
a core or not, it always obtains the smallest core RMSD and
also very small CORE-LEN on all the benchmarks. As shown in
Table 1, MAMMOTH and MUSTANG can generate alignments with
CORE-LEN comparable to 3DCOMB, Matt and BLOMAPS, but
much larger RMSD. The average TMscore achieved by 3DCOMB,
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BLOMAPS, MATT, MAMMOTH, MUSTANG, MAPSCI and
MultiProt is 0.800, 0.779, 0.781, 0.786, 0.765, 0.792 and 0.649,
respectively. 3DCOMB not only achieves the best average TMscore,
but also excels others on almost each individual structure group
(Supplementary Fig. S2a).

Performance on SABmark-sup: 3DCOMB obtains the best
average CORE-LEN and TMscore. By core RMSD, 3DCOMB
is second to only MultiProt, but MultiProt obtains a much
smaller CORE-LEN. The average TMscore achieved by 3DCOMB,
BLOMAPS, MATT, MAMMOTH, MUSTANG, MAPSCI and
MultiProt is 0.655, 0.613, 0.613, 0.614, 0.583, 0.627 and 0.404,
respectively. By TMscore, 3DCOMB is ∼4.5% better than the
second best method MAPSCI and also outperforms others on almost
each individual structure group (Supplementary Fig. S2b).

Performance on SABmark-twi: SABmark-twi is more challenging
because it consists of mostly distantly related proteins. However,
3DCOMB excels others at an even larger margin. By CORE-
LEN, 3DCOMB is 6.6% better than the second best method
BLOMAPS and excels others on a majority of structure groups.
By core RMSD, 3DCOMB is second to MultiProit and slightly to
Matt. The TMscore obtained by 3DCOMB, BLOMAPS, MATT,
MAMMOTH, MUSTANG, MAPSCI and MultiProt is 0.526, 0.457,
0.453, 0.436, 0.422, 0.466 and 0.259, respectively. By TMscore,
3DCOMB outperforms the second best algorithm MAPSCI by
12.9% and also excels others on almost each individual structure
group (Supplementary Fig. S2c).

Alignment accuracy versus core definition: different methods may
use different distance cutoff values in determining if an aligned
column is a core or not, so it is unfair to compare them simply in
terms of CORE-LEN and core RMSD without specifying a uniform
distance cutoff. To ensure a more fair comparison, we employ three
cutoff values 4, 5 and 6 Å to determine if an aligned column is a
core or not, respectively. That is, given a fully aligned column, we
calculate all the pairwise distance of the aligned residues. If all the
pairwise distances are within a given cutoff, this column is a core,
otherwise not. As shown in Table 2, regardless of distance cutoffs,
3DCOMB consistently outperforms others in terms of CORE-LEN
for distantly related proteins. In particular, 3DCOMB excels Matt
in terms of both CORE-LEN and core RMSD. MAPSCI has similar
performance as 3DCOMB on HOMSTRAD, but is much worse on
the other two benchmarks.

Performance on large structure groups: 3DCOMB builds MSAs
from only those HSFBs. Does 3DCOMB suffer from using too
few similar fragment blocks (and thus, too few initial MSAs) in
aligning a large structure group (with >15 structures) consisting
of distantly related proteins? We examined the performance of
3DCOMB on all the large groups in the three benchmarks and
found out that 3DCOMB does not have such an issue. Measured
by TMscore, 3DCOMB excels others especially on the groups
containing distantly related proteins. The advantage of 3DCOMB
over others is even larger on the large structure groups than that on
all the structure groups. See Supplementary Tables S10, S11 and S12
for detailed results.

3.2 How much room is left for further improvement?
Given a set of M structures, how good is a given MSA in terms
of a specific quality metric (e.g. TMscore)? Can we estimate the
difference between this MSA and the best possible even if we do not

Table 2. Performance of seven MSA tools when three distance cutoff values
4.0, 5.0 and 6.0 Å are used to determine if an aligned column is a core or not

Method 4.0 Å 5.0 Å 6.0 Å

HOMSTRAD
3DCOMB 141.98 (1.35) 152.38 (1.49) 159.09 (1.62)
BLOMAPS 137.92 (1.38) 149.40 (1.55) 156.92 (1.70)
MAMMOTH 136.40 (1.38) 146.59 (1.54) 153.49 (1.67)
MAPSCI 143.97 (1.38) 154.30 (1.52) 159.35 (1.61)
MATT 138.96 (1.40) 150.24 (1.56) 157.62 (1.69)
MultiProt 137.81 (1.28) 140.45 (1.32) 140.82 (1.33)
MUSTANG 130.86 (1.48) 142.93 (1.65) 150.81 (1.80)

SABmark-sup
3DCOMB 69.26 (1.57) 80.58 (1.79) 88.63 (1.98)
BLOMAPS 65.40 (1.60) 76.92 (1.82) 85.41 (2.02)
MAMMOTH 62.96 (1.52) 72.37 (1.73) 78.95 (1.90)
MAPSCI 66.84 (1.49) 77.59 (1.74) 83.99 (1.92)
MATT 66.11 (1.62) 77.85 (1.87) 86.79 (2.06)
MultiProt 64.86 (1.51) 68.23 (1.59) 68.69 (1.61)
MUSTANG 53.76 (1.56) 64.45 (1.90) 72.82 (2.16)

SABmark-twi
3DCOMB 36.09 (1.67) 45.20 (1.95) 52.54 (2.20)
BLOMAPS 34.10 (1.64) 42.90 (1.89) 49.85 (2.12)
MAMMOTH 27.69 (1.46) 34.26 (1.71) 38.65 (1.91)
MAPSCI 30.92 (1.53) 38.83 (1.83) 44.08 (2.08)
MATT 33.91 (1.67) 42.68 (1.97) 50.14 (2.25)
MultiProt 32.91 (1.63) 35.95 (1.74) 36.34 (1.76)
MUSTANG 22.13 (1.49) 30.08 (1.88) 36.63 (2.26)

The values outside and inside the parenthesis are CORE-LEN and RMSD, respectively.
Bold fonts indicate the best values.

(a) (b) (c)

Fig. 2. MSA upper bound analysis on three datasets (a) HOMSTRAD,
(b) SABmark-sup and (c) SABmark-twi. The X-axis is TMscore of the MSAs
generated by 3DCOMB and the Y -axis is the estimated TMscore difference
between the 3DCOMB alignments and the best possible.

know how to generate the best? This problem is important because
if we can answer it, we may know how much room is left for further
improvement. If the difference is quite small, it does not make much
sense to further search for a better MSA. Here we estimate the (upper
bound) quality, measured by TMscore, of the best possible MSA
using the average TMscore of all the pairwise alignments. However,
it is challenging not to underestimate the TMscore of a protein pair.
To handle this, we employ several tools such as TMalign, DALI,
MATT and MAMMOTH to generate pairwise alignments and then
choose the highest TMscore.

Figure 2 shows the real TMscore of the 3DCOMB alignments
and their estimated TMscore difference from the best possible.
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Overall, the estimated TMscore difference decreases with respect
to the similarity of input structures. That is, when the structures are
quite similar, it is easier to generate an MSA consistent with all the
pairwise alignments. Otherwise, it is much more challenging. When
input structures are distantly related, an MSA consistent with all the
pairwise alignments may not exist at all.

3.3 Specific examples
We have visually examined many structure groups in the three
benchmarks and found out 3DCOMB generates significantly better
alignments for many groups than others. It is very challenging
to visualize the alignments, though. Here, we show three groups
for which 3DCOMB generates correct alignments in functionally
similar regions while others (especially the horizontal-first methods)
fail. See the upplementary Material for more results and case
studies.

SABmark-sup group 323 contains three Glutamine
synthetase/guanido kinase proteins: d1f52a2 [SCOP (Murzin
et al., 1995) ID d.128.1.1, 368 AAs], d1m15a2 (d.128.1.2,
262 AAs) and d1qh4a2 (d.128.1.2, 279 AAs). PDB (Berman et al.,
2002) shows that 1f52 (Glutamine synthetase) and 1m15 (arginine
kinase) bind to ADP. The three proteins share a common core
consisting of two beta-alpha-beta2-alpha repeats and the six-beta
sheets form an unsealed pocket where ATP/ADP binds. That is, the
common core is the active site of the synthetase/kinase.

By the 3DCOMB alignment (Fig. 3a1), we may infer that
the aligned unsealed pocket in 1qh4 possibly is its active site.
This is confirmed by the prediction result from ConCavity
(Capra et al., 2009) in Figure 3a2, which predicts binding sites
without using structure alignment. Two other vertical-first methods
BLOMAPS and MultiProt generate reasonable but worse alignments
than 3DCOMB (Supplementary Fig. S9). All the horizontal-
first methods (MATT, MAPSCI, MUSTANG and MAMMOTH)
generate incorrect alignment for 1f52a2 and the binding sites. This
example demonstrates the vertical-first methods are better than
horizontal-first methods in discovering conserved regions among
proteins which are not very similar and also of very different
sizes.

SABmark-twi group 124 contains six Lysozyme-like proteins:
d153l_ (SCOP ID d.2.1.5, 185 AAs), d1dxja_ (d.2.1.1, 242 AAs),
d1lw9a_ (d.2.1.3, 164 AAs), d1qgia_ (d.2.1.7, 259 AAs), d1qsaa2
(d.2.1.6, 168 AAs) and d3lzt_ (d.2.1.2, 129 AAs). Meanwhile, 153l,
3lzt and 1dxj are goose lysozyme, hen egg-white lysozyme and
jack bean chitinase, respectively. Proteins 1lw9 and 1qgi are T4
lysozyme and chitosanase from Bacillus circulans. d1qsaa2 is Lytic
Transglycosylase Slt70 from Escherichia coli, resembling goose-
type lysozyme (van Asselt et al., 1999). These proteins represent a
superfamily of hydrolases arising from the divergent evolution of
an ancient protein (Robertus et al., 1998).

By SCOP, these proteins have ‘alpha + beta motif for the
active site region’. Although their sequence similarity is low,
they have a conserved core containing two helices and a three-
stranded sheet, which form the substrate binding and catalytic
cleft (Monzingo et al., 1996). Their active binding sites lie in the
cleft between the upper and lower domains. Their two catalytic
centers are located at the upper domain, one in front of the three-
stranded sheet and the other in the N-terminal helix (Saito et al.,
1999).

As shown in Figure 3b1, 3DCOMB correctly aligns the functional
sites described in Monzingo et al. (1996) (i.e. three-sheet plus two-
helix in the upper domain). As shown in Figure 3b2, all the binding
sites with predicted by ConCavity with high confidence are well
aligned. 3DCOMB even correctly aligns the shortest protein 3lzt and
the longest protein 1qgi, which are conserved only in the functional
sites. 3DCOMB also indicates that there are several conserved
helixes in the lower domain. As shown in Supplementary Figure S6,
only 3DCOMB and BLOMAPS generate correct alignments for
the functional sites while all the horizontal-first methods fail. This
confirms the strength of vertical-first methods. However, another
vertical-first method MultiProt fails to produce a correct alignment,
maybe because MultiPort cannot identify good similar fragment
blocks to build initial MSAs.

SABmark-twi group 118 contains six chelatase-like proteins:
d1doza_ (SCOP ID c.92.1.1, 309 AAs), d1m1na_ (c.92.2.3,
477 AAs), d1m1nb_ (c.92.2.3, 522 AAs), d1n2za_ (c.92.2.2,
245 AAs), d1qgoa_ (c.92.1.2, 257 AAs) and d1toaa_
(c.92.2.2, 277 AAs). Meanwhile, d1doza_, d1qgoa_, d1n2za_
and d1toaa are ferrochelatase, cobalt chelatase, vitamin B12
binding protein and Zn2+ binding protein, respectively, and
d1m1na_ and d1m1nb_ are the molybdenum iron (MoFe)
protein of nitrogenase. It is very challenging to align these
proteins since they are similar only at fold level and also of
very different sizes. Even SCOP and CATH are inconsistent
on them. CATH splits d1doza_, d1n2za_, d1qgoa_ and
d1toaa_ into two domains, d1m1na_ into 3 and d1m1nb_
into 4 while SCOP treats all of them as single domain
proteins.

These proteins have different (non-conserved) binding ligands,
but the locations of the binding pockets and the domains surrounding
the pockets are conserved. In particular, d1doza_, d1qgoa_, d1n2za_
and d1toaa_ have two structurally similar lobes (the synonym for
‘domain’, may refer to a smaller substructure unit), each being a
Rossmann-like fold (Al-Karadaghi et al., 1997). These two lobes
interact with each other in a head-to-head manner (Lee et al., 1999)
and the active sites of these four proteins lie in a deep cleft between
the two lobes (Schubert et al., 1999). d1n2za_ and d1toaa_have
a single long helix linking the two lobes, d1doza_ and d1qgoa
do not. This unique helix is possibly adopted to limit the hinge
motion associated with ligand exchange (Lee et al., 1999). d1m1na_
(d1m1nb_ ) has three lobes (Borths et al., 2002) and its αII (βII) and
αIII (βIII) lobes are similar to those in d1n2za_ and d1toaa and also
linked by a helix. Similar to others, the binding ligand of d1m1na_
is located at the interface between the αII and αIII lobes (Kim and
Rees, 1992).

3DCOMB alignment is consistent with the above structural
description and ConCavity prediction, as shown in Figure 3c1
and c2. Only 3DCOMB generates a correct alignment for this group
while all the other methods fail (Supplementary Fig. S5). This result
confirms that 3DCOMB not only has a good search algorithm,
but also a good scoring function (since the other two vertical-first
methods BLOMAPS and MultiProt also fail).

Comparison with a binding site alignment program MultiBind
(Shulman-Peleg et al., 2008): MultiBind needs to know binding site
positions in order to generate alignments while 3DCOMB does not.
MultiBind also runs very slowly and generates many alternative
alignments. Many proteins in these examples have no binding site
information in PDB. In order to run MultiBind, we assign binding
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(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 3. The pictures in (a1), (b1) and (c1) show the 3DCOMB alignments of SABmark-sup 323, SABmark-twi 124 and SABmark-twi 118, respectively.
Proteins are displayed in different colors. The full-core positions (where all proteins are aligned) are displayed in ribbon while the partial-core positions (where
>50% of proteins are aligned) in strand. The pictures in (a2), (b2) and (c2) show the ligand positions of the three structure groups (in spacefill form) and
ConCavity predictions with confidence in colors. Color close to blue indicates low confidence while close to red high, while gray indicates no predictions at
all. (a1) The proteins in blue, green and red are d1qh4a2, d1m15a2 and d1f52a2, respectively. (a2) The ligand ADP is from 1m15. (b1) The proteins in blue,
cyan, dark green, light green, yellow and red are d1lw9a_, d1qgia_, d153l__, d1dxja_, d3lzt__ and d1qsaa2, respectively. (b2) The ligand GlcN6 is from
1qgi. (c1) The proteins in blue, cyan, dark green, light green, yellow and red are d1qgoa_, d1doza_, d1toaa_, d1n2za_, d1m1na_ and d1m1nb_, respectively.
(c2) The ligand heme is from 1doz.

sites to them based upon 3DCOMB alignments and ConCavity
predictions. Even so, for these examples MultiBind cannot generate
correct alignments at functionally similar regions.

3.4 Implications to homology modeling
Multiple template modeling has been used to enhance homology
modeling (Cheng, 2008; Joo et al., 2007; Peng and Xu, 2011).
An interesting question to ask is how much improvement room
is left for this method in terms of alignment accuracy? To answer
this, we conduct an experiment using 47 CASP9 (the 9th Critical
Assessment of Structure Prediction) test targets, all of them have at
least two good templates. See Supplementary Material for a list of
the targets and templates. We use seven MSA tools to build an MSA
for a target and its templates, assuming that the native structures of
the target and templates are known. We also used RaptorX (Peng

and Xu, 2011), one of the best threading programs, to generate
an alignment between the target and its templates, without using
the native structure for the target. All the alignments are fed into
MODELLER to generate 3D models for the targets. As shown in
Supplementary Figure S11 and Table S14, the 3DCOMB models
excel the RaptorX models. That is, there may be still improvement
room for multiple template modeling. However, the 3D models
derived from other MSA tools are not better than the RaptorX
models. This shows that in order to identify the limitation of multiple
template modeling, a good MSA tool is critical. Otherwise we may
reach very different or even opposite conclusions.

3.5 3DCOMB running time analysis
We tested 3DCOMB on an Ubuntu Linux PC with 2 GB RAM and
Intel®Core™2 Quad CPU T5600 @1.83 GHz. The input structures
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are sorted according to the length in ascending order. We use the
TopK =All, TopJ = 1, TopF = 5 as our default parameters to run
3DCOMB on SABmark-twi. 3DCOMB, MATT and MUSTANG
have running times of 43 706, 45 328 and 50 728 s, respectively.
3DCOMB yields better accuracy than MATT and MUSTANG. It
takes MultiProt and MAMMOTH 39 642 and 1279 s, respectively,
to run this benchmark, but they have much worse alignment accuracy
than 3DCOMB and MATT. BLOMAPS and MAPSCI are very
fast, taking only 780 and 240 s. The performance of 3DCOMB
depends on three parameters TopK, TopJ and TopF, which can be
further set smaller to reduce running time without losing much
alignment accuracy. Supplementary Table S13 shows the 3DCOMB
running time and accuracy on SABmark-twi with respect to different
parameter s.

4 DISCUSSION AND FUTURE WORK
This article presents a novel method 3DCOMB for MSA. By using
a probabilistic model to combine both local and global structure
information, we can accurately identify the most conserved short
fragment blocks among proteins to be aligned. These conserved
fragment blocks are very likely contained in the best MSA, so
3DCOMB can quickly extend them to the best MSA. This article
also introduces a novel scoring function to generate an MSA with a
large number of cores and also high-quality pairwise alignments.

We have compared 3DCOMB with BLOMAPS, MAMMOTH,
MAPSCI, MATT, MultiProt and MUSTANG on the popular
benchmarks. Both the MSAs and the pairwise alignments generated
by 3DCOMB are of high quality. In particular, 3DCOMB shows
significant advantages over others in aligning a large set of distantly
related proteins and their functionally similar regions. 3DCOMB
also has a very reasonable running time and can scale well up to a
large structure group.

Currently, 3DCOMB uses only geometrical information. We may
improve 3DCOMB by including sequence information and the
physical–chemical properties of amino acids. Sequence similarity
measure can be used to explicitly model evolutionary relationship.
Other geometrical information such as Voronoi tessellations (Birzele
et al., 2007) and Conformational Letter (CLE) (Zheng, 2008a;
Zheng, 2008b; Zheng and Liu, 2005) can also be used to further
improve HSFB identification.

3DCOMB will be useful for many real-world applications and
sometimes can produce results dramatically different from other
tools. For example, 3DCOMB indicates that there may be still large
improvement room for multiple template modeling while other MSA
tools fail to do so. Coupled with tools like ConCavity (Capra et al.,
2009), 3DCOMB can be potentially used for binding site prediction.
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