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ABSTRACT

Motivation: Computational techniques for microbial genomic
sequence analysis are becoming increasingly important. With next-
generation sequencing technology and the human microbiome
project underway, current sequencing capacity is significantly greater
than the speed at which organisms of interest can be studied
experimentally. Most related computational work has been focused
on sequence assembly, gene annotation and metabolic network
reconstruction. We have developed a method that will primarily
use available sequence data in order to determine prokaryotic
transcription factor (TF) binding specificities.
Results: Specificity determining residues (critical residues) were
identified from crystal structures of DNA–protein complexes and TFs
with the same critical residues were grouped into specificity classes.
The putative binding regions for each class were defined as the set
of promoters for each TF itself (autoregulatory) and the immediately
upstream and downstream operons. MEME was used to find putative
motifs within each separate class. Tests on the LacI and TetR TF
families, using RegulonDB annotated sites, showed the sensitivity of
prediction 86% and 80%, respectively.
Availability: http://ural.wustl.edu/~gsahota/HTHmotif/
Contact: stormo@wustl.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
There are more bacterial species than from any other kingdom,
but only a few have been studied in much detail. Their relatively
small genomes make them readily amenable to sequencing and
they now constitute the most abundant genome sequences in the
public databases. Projects such as the Human Microbiome Project
(Turnbaugh et al., 2007) and other metagenomic sequencing projects
(Riesenfeld et al., 2004) promise to significantly increase the amount
of genomic sequence from bacterial species. For most of these
species, the genome sequence is the only available information so
computational approaches are essential to learning more about their
characteristics and capabilities.

Most current computational analyses focus on sequence assembly
(Pop, 2009; Ye and Tang, 2009), the phylogenetic distributions
of species (Hamady et al., 2009; Pei et al., 2009), functional
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classification of gene (Qin et al., 2010; Selengut et al., 2010)
and metabolic network reconstruction (Ye and Doak, 2009). Many
of these analyses are accomplished through the identification of
homologous proteins with known function and the inference of
functional conservation in the newly sequenced species. As of yet,
there has been little computational work focused on transcriptional
regulation in these prokaryotic systems. In this article, we present a
novel sequence-based method to infer the specificities of prokaryotic
transcription factors (TFs) through the comparisons of their DNA-
binding domains and applying a motif-finding algorithm to likely
binding regions.

Most prokaryotic TFs contain a helix-turn-helix (HTH) fold,
where the second helix, also known as the recognition helix,
primarily contacts DNA (Harrison, 1991; Perez-Rueda and Collado-
Vides, 2000; Santos et al., 2009). Using crystal structures of
protein–DNA complexes, we can determine a set of residues that
is important for defining the specificity of the protein, the ‘critical
residues’. Commonly, these HTH TFs bind as homodimers with
palindromic DNA specificities. Previous studies have utilized those
features to identify regulatory motifs in related bacterial species
but in those cases the TF that binds the motif was not identified
except in cases where the motif corresponded to one for a known
TF (McCue et al., 2002; Qin et al., 2003). In general, when the
binding motif for a specific TF is known, and orthologous TFs are
identified in other species, one can transfer the knowledge about
the motif and predict genes that are regulated by the TF in the
new species (Alkema et al., 2004; Gelfand et al., 2000b; Tucker
et al., 2004; Yu et al., 2004). Making connections between novel
motifs and the TFs that bind them can also be accomplished by
taking into account additional information (Tan et al., 2005). In
that study, the most useful information for identifying the TF that
bound to a specific motif was the proximity of the TF, within
the genome, to the locations of the predicted binding sites. In a
similar approach, motifs for orthologous TF were predicted based
on the assumption of autoregulation (Sorokin et al., 2009). In an
earlier study of the Escherichia coli transcriptome, ∼55% of the TFs
analyzed were estimated to be autoregulated (Martínez-Antonio and
Collado-Vides, 2003). Our analysis using RegulonDB 6.7 (Gama-
Castro et al., 2008) indicates that this value increases to 78% if one
also includes the promoters of neighboring operons.

Motif finders typically depend on having at least one of two
types of data. In a ‘phylogenetic footprinting’ approach one has
orthologous genes from a set of species and attempts to find
the conserved binding site motifs that control their expression
(Berezikov et al., 2004; Blanchette and Tompa, 2002; Cliften et al.,
2003; Wang and Stormo, 2005). Using such data one can often find
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potentially functional regulatory motifs, but the TFs that bind to
them are frequently unknown. The other general approach uses sets
of sequences within one species for which experimental data suggest
they contain common binding sites. This may be the promoters
(or other regulatory regions) that are known to be regulated by a
common TF, or sets of genes that are found to be co-regulated,
perhaps by unknown TFs (Bailey and Elkan, 1994; Buhler and
Tompa, 2002; Down and Hubbard, 2005; Hertz and Stormo, 1999;
Liu et al., 2001; Pavesi et al., 2001; Thompson et al., 2003).
More recently ChIP-chip and ChIP-Seq methods have been used to
identify genomic regions that bind to a specific TF. Both kinds of data
can be used simultaneously, where sets of genes within one species
are thought to be co-regulated, or at least co-bound by the same
TF, and one also has the orthologous regions from multiple species
from which to focus on the conserved sites (Gelfand et al., 2000a;
Jensen et al., 2005; Kellis et al., 2003; Moses et al., 2004; Prakash
et al., 2004; Siddharthan et al., 2005; Sinha, 2007; Wang and Stormo,
2003). But for the vast majority of sequenced bacterial species, data
that can be used to identify the binding sites for specific TFs is not
available. There is generally no experimental data from which to
identify co-regulated genes, and frequently bacterial TFs, such as
LacI, only regulate one gene so that canonical motif finding would
not work. While motifs can be found for orthologous genes across
multiple species that often works only for relatively closely related
species and not for the entire distribution of bacterial genomes that
are sequenced (Lozada-Chávez et al., 2006; Price et al., 2007). In
analyzing metagenomic data, the definition of orthologous genes
also becomes quite difficult because one only has partial genome
sequences. It also does not identify the TF that binds to the motif,
which is necessary to be able to begin determining the regulatory
networks across bacteria.

The approach we take in this article relies on three types of
information. The first is the identification of bacterial TFs that
contain HTH domains and their classification into subfamilies based
on the primary protein sequence signatures within the HTH domain
using Pfam (Finn et al., 2010). These subfamilies are not necessarily
functionally related, as many times the functions of a specific protein
are determined by a separate effector domain, but proteins within
the same subfamily are likely to interact with DNA very similarly,
and in particular to use the same critical residues for determining the
binding specificity of the TF (Contreras-Moreira and Collado-Vides,
2006; Morozov and Siggia, 2007; Siggers et al., 2005). The second
type of information is the structure of the DNA–protein complex
for at least one member of the subfamily, which is obtained from
PDB (Dutta et al., 2009). There are 22 subfamilies of bacterial HTH
TFs that have at least one known crystal structure from which we
can determine the protein residues, within the HTH domain, that
determine the binding specificity. We cluster together TFs from
the same subfamily that also contain the same critical residues
as we expect them to bind to identical, or at least very similar,
motifs whether or not they are orthologous TFs. The third type of
information we need in order to assign motifs to each TF cluster
is a set of likely binding regions. For this we rely on the fact,
mentioned above, that most bacterial TFs regulate themselves and/or
adjacent operons. Therefore, we only need short contigs, containing
the TF and its promoter as well as adjacent promoters, to have a high
likelihood of having regions that contain binding sites for the TFs.
Although there are currently many complete bacterial genomes in the

Fig. 1. Flowchart describing overall method. The shapes are standard
flowchart shapes, with the disk showing a database, parallelograms showing
user input, the rectangle showing processes, inverted triangles showing
merging, diamonds showing selection and the rounded box showing the
terminating state.

database, there are also many genomes represented only by whole-
genome shotguns (WGS) in which the contigs are considerably
shorter, and the large-scale microbiome projects that are beginning
will also generate large datasets with much smaller contigs. The
approach we apply in this article will be able to leverage that type
of data to identify the binding motifs for many uncharacterized
bacterial TFs, which opens the way to start modeling regulatory
networks. We demonstrate this approach on two HTH subfamilies,
TetR and LacI which are large HTH subclasses with protein–DNA
crystal structures and palindromic specificities. Initially, this large
size will be important in order to have enough sequences within each
specificity class to confidently find motifs.

2 METHODS
A conceptual overview of the method is shown in Figure 1. The
implementation was via a series of Perl scripts, using inline C code for
the pairwise sequence alignment for speed.

2.1 Processing genomes
Four main types of genomic data were selected from the NCBI ftp site
for this project: completed bacterial genomes, completed plasmid genomes,
completed phage genomes and bacterial WGS projects. For the former three
datasets, the genbank DNA sequence (gbk), the protein translation tables
(ptt) and rna translation tables (rnt) and the protein fasta sequence (faa) files
were retrieved. For the plasmids and the phages (retrieved as viruses), they
were filtered to only contain bacterial or phage sequences, respectively. In the
case of the WGS sequences, these subfiles were generated from the genbank
flat file (gbff). The downloaded files were validated for correct file format
structure and the gbk files were used to recreate the ptt and rnt files when
errors were found. Each separate gbk file, with its ptt and rnt annotations, was
further processed into operon and promoters using distance cutoffs similar
to those used previously (Liu et al., 2008; Price et al., 2005; Tan et al.,
2005): a 50 bp intergenic cutoff for determining operon membership and
a 400 bp maximum promoter length relative the first gene of the operon.
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The minimum promoter size was required to be 50 bp. Circular sequences
were appropriately handled both in defining the operons as well as their
respective promoters.

2.2 Determining critical residues
To classify the proteins into their respective HTH subfamilies, HMMER
v3.0rc2 (Eddy, 2009) and Pfam v24.0 were used. The PDB files for each
Pfam entry were used to determine the critical residues for that subfamily
(ie. residues that contact DNA). This was achieved using a modified version
of PDB2PQR v1.5 (Dolinsky et al., 2007) to find all protein residues within
3.5 Å of a DNA base pair (excluding backbone atoms) that may form van der
Waals contacts or hydrogen bonds, where the distance cutoff was 3.4 Å and
30˚ maximal angle between the acceptor, donor and donor hydrogen atoms.
A maximum of two hydrogen bonded bridging waters were allowed between
the protein and DNA base. The union of all of these sets of potential contacts
yielded the critical residues.

2.3 Finding TF family members
The hidden markov model (HMM) for the Pfam entry was used to search
through the fasta sequences using hmmsearch. TFs containing multiple
domains of an HTH subfamily were removed. The resulting domains were
then aligned using hmmalign. In order to try to maintain a similar binding
mechanism, no gaps/insertions were allowed in the alignment within the
range bounded by the critical residues unless the same gaps/insertions had
also been seen in the PDB structures. Critical residues were also constrained
to fall within the boundaries of the HMM domain.

2.4 Defining putative binding regions
Under the assumption that prokaryotic TFs regulate nearby operons, for every
TF, the upstream promoter and the two promoters of the neighboring operon
in either direction were concatenated to generate a ‘super-promoter’, which
potentially contains a binding site for the TF. The WGS sequence data was in
the form of contigs rather than finished full-length sequences; thus, there was
no guarantee that all three component promoters would be part of the same
contig. In these cases where the contigs did not contain all of the specified
promoters, the subset of present relevant promoters was used to define the
super-promoter.

2.5 Clustering TFs and generating USPs
For each HTH subfamily, these critical residue (CR) sets, which will be
referred to as CR tags, were used to cluster the TF protein sequences.
These clusters of TFs needed be mapped into clusters of putative binding
regions in order to proceed with motif finding. Given the biased distribution
of sequenced genomes and the potential for non-unique genomes in the
procedure above, a simple mapping of the TFs to their super-promoters
would not be sufficient to generate an approporiate dataset for motif finding.
Instead, a subset, known as unique super-promoters (USPs), was defined as
described.

To compare two super-promoters, the component promoter sequences
were compared. To mitigate differences due to promoter shuffling or
varying sizes of super-promoters, an all-by-all comparison was performed,
using a trimmed Needleman–Wunsch (NW; Needleman and Wunsch, 1970)
alignment (1/-1, -2 score scheme for match/mismatch, gap, respectively,
excluding the trailing gaps). The alignment score for each pair of promoters
was normalized to fall between 0 and 1. The Hungarian algorithm (Kuhn,
2005) optimization was applied to the normalized NW scores to determine
the best pairs of related promoter sequences. The ‘super-promoter’weighting
score was defined as the average of the best component pairwise scores. These
weighting scores were used to generate a hierarchical complete linkage tree
via the perl module Algorithm-Cluster version 1.4.6 and using a threshold
of 90% of the theoretical maximum score, this tree was cut to define clusters
of sequences. Each resulting cluster of promoter sequences was considered

one effective sequence and the sequence closest to the center of the cluster
was chosen as the exemplar. If multiple sequences were equidistant from the
center, ties were broken using the length of the sequence and the species of
origin. This set of exemplar sequences was the USP set for each TF cluster
and used for the motif finding procedure described below.

2.6 Motif finding
An expectation maximization (EM) based algorithm, specifically Multiple
Em for Motif Elicitation (MEME) v4.3.0 (Bailey and Elkan, 1994) was used
to determine the motifs of these USP sets. Only TF clusters with a minimum
of 10 USPs were used in motif finding. A maximum of three motifs were
reported for each cluster. MEME was run allowing zero or one site per
sequence (zoops); the sites were required to be palindromic and the motif
width was restricted to be between 15 and 25 bp. For further analysis, motifs
were required to have an e-value of <1. The result of motif finding was a
set of motifs that likely contained the true representative binding site of the
CR tag cluster members.

2.7 Validation
All TFs and promoter sequences from E.coli K12 MG1655 (genbank
code NC_000913) along with the corresponding promoter sequence cluster
members were excluded from the motif discovery sets so that they could
be used as independent test sets for evaluating the effectiveness of this
procedure to identify true motifs for bacterial TFs. In order to validate the
predicted motifs, a Z-score-based metric was used to search the sites defined
in RegulonDB 6.7. The position weight matrix (PWM) was calculated from
the frequency matrix as has been described earlier, using a pseudocount of 1
(Hertz et al., 1990). The weighted mean and variance was determined for
each column (position) of the PWM, weighting by the relative background
frequencies for each base. The mean and variance of the PWM were
calculated as the sum of the means and variances of the individual columns.
The standard deviation was calculated as the square root of the summed
variance. Sequences were scored using an additive model as the sum of
the PWM elements for each sequence position. The threshold Z-score of 5,
corresponding to roughly one match in the E.coli genome by chance, was
used to specify whether the RegulonDB site matched the motif. A motif was
considered correct if any of the RegulonDB sites for that TF exceeded this
threshold. The quality measure is the sensitivity of finding a correct motif,
(TP) / (TP+FN).

3 RESULTS
Between releases 176 and 177, Genbank contained 1056 complete
bacterial genomes and 634 WGS datasets as well as 2011 plasmid
and 543 phage genomes. In this study, we have focused on the LacI
(PF00356) and TetR (PF00440) Pfam HTH subfamilies (Table 1).

Table 1. Dataset sizes for LacI and TetR

Type LacI (PF00356) TetR (PF00440)

Domains 5989 23 119
TFs 5258 (1827) 21 883 (6207)
USP >=10 sequences 1733 (32) 8124 (226)
Predicted motifs 1716 (31) 7923 (214)
Within 1HD of motif CR tag 1958 (95) 11 394 (1335)
Within 2HD of motif CR tag 2409 (293) 16 929 (3801)

The values shown are the number of sequences (with the exception of the first values
that are the number of domains) and within the parentheses are the number of specificity
clusters. Briefly, USPs are promoter sets that have been filtered to remove redundancy
(see Section 2 for more detail). Hamming Distance (HD) is a measure of similarity, the
number of substitutions required to change one string into another.
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Fig. 2. Log-scale plot showing size distribution of specificity clusters for
LacI (inverted triangles) and TetR (squares).

These two subfamilies comprise roughly 1/10 of the HTH domains
in the Pfam clan CL0123. From that set of DNA sequences, for LacI
there are 5989 domains. When filtered to remove gaps in restricted
positions, multiple domains and missing promoter sequences, there
are 5258 TFs remaining, and we defined the critical residues based
on three LacI family proteins that have structures bound to DNA:
LacI (PDB codes 1efa, 1jwl, 2pe5); CcpA (PDB codes 1rzr, 1zvv);
and PurR (PDB codes 1bdh,1 bdi, 1jfs, 1jft, 1jh9, 1pnr, 1qp0, 1qp4,
1qp7, 1qpz, 1qqa, 1qqb, 1vpw, 1wet, 1zay, 2pua, 2pub, 2puc, 2pud,
2pue, 2puf, 2pug). Based on those structures, we determine that there
are 10 critical residues (positions 2,3,12,13,14,17,18,24,25,26) in the
respective Pfam HMM domain (PF00356). Using those 10 positions
to define the specificity classes, there are a total of 1827 classes.
There are 23 119 TetR domains which, after the same data filtering
as above, lead to 21 883 TFs. In TetR, we defined the critical residues
based on three proteins that have structures bound to DNA in the
PDB: TetR (PDB code 1qpi); QacR (PDB code 1jt0); CGL2612
(PDB code 2yvh). Based on those structures, we determine that
there are seven critical residues (positions 20, 29, 30, 31, 32, 34, 35)
from the respective Pfam HMM domain (PF00440). Using those
seven positions to define specificity classes, there are a total of
6207 classes. The distribution of the sequences into these specificity
clusters is shown in Figure 2.

The identity of the residues at the critical residue positions defines
a sequence tag. For example, the cluster TetR-SPKGSYH refers to
the set of all proteins that are classified as belonging to the TetR
family of HTH proteins and have residues S, P, K, G, S, Y, H in HMM
alignment positions 20, 29, 30, 31, 32, 34, 35, respectively. For
motif finding, the promoter sequences with potential binding sites
were inferred using the computationally derived operons, taking the
promoter of the operon containing the TF, and the upstream and
downstream operon promoters as well. These three promoters were
concatenated into a ‘super-promoter’, which likely contained at least
one binding site for the TF.

There are a large number of similar genomes that have been
sequenced; many times these are simply different strains of model
prokaryotic organisms. This introduces the issue of similar sequence
due to a similar lineage which could be resolved using a phylogenetic
tree. However, there is also the potential issue of horizontal
gene transfer as well. In order to resolve the potential promoter
redundancy issue, if the promoters were too similar, they were
reduced to one exemplar sequence.

Table 2. Validation results for LacI using RegulonDB 6.7

Locus ID Name CR Tag Sequences USP Matches in
RegulonDB

Autoreg

b1658 purR IKSTTSHRFV 168 60 Y +
b2837 galR IKSVASRPKA 140 45 Y +
b3753 rbsR MKSTSSHRFV 116 41 Y +
b4241 treR IKGKSSRSGV 97 15 Y +
b0345 lacI LYSYQSRSHV 37 14 Y +
b2714 ascG MLSKASRGYV 62 11 Y +
b3934 cytR MKSTASRDKV 85 12 N +
b1320 ycjW IYSKSSRTNI 61 20 − +

The matches in RegulonDB are coded as follows: Y means a match to any site, N means
no matches and – means no RegulonDB site. The autoreg column is a + if there is a
match to the super-promoter and - if there is no match.

Table 3. Validation results for TetR using RegulonDB 6.7

Locus ID Name CR Tag Sequences USP Matches in
RegulonDB

Autoreg

b3963 fabR RAPTSYR 193 81 Y −
b1649 nemR SPKGSYH 141 49 Y +
b0313 betI ASTGISH 98 41 Y +
b3264 envR NTRGAYW 104 27 Y +
b1013 rutR ESKTNLY 95 18 N +
b3641 slmA ASEAAYR 282 148 − +
b0846 ybjK RPLGSTY 118 45 − +
b4251 yjgJ ANPPSYA 87 19 − +
b0796 ybiH RNIATTY 105 17 − +
b1111 ycfQ AKAPTYA 97 17 − +

The matches in RegulonDB are coded as follows: Y means a match to any site, N means
no matches and – means no RegulonDB site. The autoreg column is a + if there is a
match to the super-promoter and - if there is no match.

In order to ensure stability in motif finding, a minimum of 10
USPs was required for running MEME. With this threshold criteria,
there were 32 (1733) and 226 (8124) classes (TFs) for LacI and TetR,
respectively, and putative motifs were obtained for 31 and 214 of
them. The majority of classes without motif prediction were simply
due to a lack of sufficient USPs to reliably undertake motif finding
(Table 1).

RegulonDB was used to validate the datasets where E.coli was
excluded. These datasets comprise a subset of the full dataset
and will be described in further detail; however, the predicted
motifs and sequence datasets for all of the classes are available at
http://ural.wustl.edu/~gsahota/HTHmotif/. The external validation
test using RegulonDB showed that in LacI, there were six true
positives and one false negative, for an accuracy of 86% (Table 2
and Supplementary Fig. 1). For TetR, there were four true positives
and one false negative, for an accuracy of 80% (Table 3 and
Supplementary Fig. 2). Additionally, we included an analysis of
whether the motif was present as part of the super-promoter of the
excluded TF to test the hypothesis of local regulation (Tables 2
and 3). In most instances, it appears to be a valid assumption, but
even in TetR-RAPTYSR where this assumption was not true, the
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protocol was still able to predict the correct motif, due to local
regulation in other bacterial organisms in the same cluster.

4 DISCUSSION
Using primarily genomic sequence data augmented with structural
priors, we are able to determine putative motifs for a number of
bacterial TFs in two families. The method described is capable
of working not only with fully sequenced genomes, but also
with sufficiently long contigs, allowing for the use of assembled
metagenomic reads. Using the MEME program, putative motifs
were determined for 31 (LacI) and 214 (TetR) classes of TFs
representing ∼1/3 of the sequences of each of these TF families. For
validation, classes that had an excluded E.coli USPs were selected,
8 (LacI) and 10 (TetR). Of these selected classes, 7 (LacI) and 5
(TetR) had known regulatory sites in RegulonDB. The majority of
these motifs, 6/7 for LacI and 4/5 for TetR, were consistent with
the known regulatory sites defined based on RegulonDB, validating
this approach. Even some of the motifs that did not match to known
sites with scores exceeding our stringent threshold still had fairly
high scores and are likely to be very similar to the true motifs for
those classes.

While this approach has proven to be useful, there are several
modifications to the method we describe in this article that should
offer further improvements in our ability to determine binding motifs
for bacterial TFs. The current protocol assumes a fixed-width gap
between the half-sites of the motif. However, there is no guarantee
that proteins with similar critical residues must have similar gaps in
the spacer region between the half-sites, as the regions of the protein
that determine these variable gaps are generally outside of the DNA
binding domain (Laguri et al., 2003; Mao et al., 2005; Reece and
Ptashne, 1993). Even within the test set, we can see evidence of
multiple widths in TetR-SPKGSYH. In the first and third motif, there
is a TAGACC half site, separated by a 4 or 0 base spacer from the
complementary GGTCTA. For TetR-NPKGSYH, these spacers are
3 or 0 bases. An EM-based algorithm that allowed variable spacing
between the two parts of E.coli promoters had been published
previously (Cardon and Stormo, 1992) and a similar approach could
increase the power of detecting some motifs that may be missed
simply because they have multiple binding widths. Current gapped
motif finders are not capable of dealing with sequence fragments,
which is important in the context of the ‘super-promoters’.

We only applied MEME to classes with at least 10 USPs because
motif finding is more reliable with larger datasets. However, many
of the classes with less than 10 USPs are very similar to other classes
with 10 or more, and we expect that TFs with very similar critical
residues will bind to very similar motifs. This means that we could
use the motifs from the larger classes as priors to aid in the discovery
of the motifs for the smaller classes. As shown in Table 1, there are
an additional 95 and 1335 classes that are at a Hamming distance
of one (HD = 1) away from the larger classes for the LacI and TetR
families, respectively. If we go to HD = 2, the number of classes
increases to 293 (LacI) and 3801 (TetR). This could greatly increase
the number of TF classes for which motifs could be determined
and further expand the repertoire of TF-motif pairs. In the current
implementation, a set of putative motifs is predicted for the TF
cluster; however, the correct motif within the set is not specified.
In conjunction with the above-described gapped motif finder, these
HD classes could also be used to filter out inconsistent or incorrect

motif predictions, under the assumption that similar CR tags lead to
similar half-sites or motifs. This refined analysis would lead to a one-
to-one mapping of a predicted motif to a TF cluster. Another benefit
of having a large number of TF-motif pairs is the determination of the
interacting residues. Our choice of the critical residues is based on
crystal structures of DNA–protein complexes where we have used
a distance cutoff between an amino acid and a base pair to identify
those residues that may, in at least some members of the family,
contribute to the specificity of binding. It has been shown before that
interface residues are only partially conserved across DNA binding
domains (Contreras-Moreira et al., 2010). In this article, the union of
all such residues was used, leading to a potential overspecification of
the critical residue set, in turn decreasing the size of certain classes.
In addition, it may be that some residues, while close to the DNA, do
not participate in binding specificity and could be eliminated from
the critical residue set, which would increase the size of the classes.
In general, correlations between the aligned protein sequences and
alignments of the motifs can be useful in determining which protein
residues interact with which base pairs (Mahony et al., 2007; Noyes
et al., 2008). This could then be used to determine the critical
residues even for TF families currently without crystal structures
for DNA–protein complexes.

Finally, there are many more HTH families that can be addressed
with this approach. HTH proteins are classified as the clan CL0123
in Pfam and there are 141 HTH subfamilies of which 22 are mainly
bacterial domains and contain protein–DNA crystal structures where
the domain interacts with DNA. When taking into account the
variability in size of the families, this actually covers approximately
1/2 of the potential HTH TF proteins, so the method has significant
potential to cover a large amount of the potential HTH TF proteins.
In some of these families, we may have motifs with variable gaps
in their spacer regions and differing configurations of the half-sites
such as direct repeats instead of palindromic motifs, and sometimes
even mixtures of the two modes. This will require a modification to
the current protocol, but may provide for a much larger collection
of binding motifs for specific bacterial TFs.
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