
A Simple Trapezoid Sweep Algorithm for Reporting Red/BlueSegment IntersectionsTimothy M. Chan�Department of Computer ScienceUniversity of British ColumbiaAbstractWe present a new simple algorithm for computing all intersections between two collections of disjointline segments. The algorithm runs in O(n log n+ k) time and O(n) space, where n and k are the numberof segments and intersections respectively. We also show that the algorithm can be extended to handlesingle-valued curve segments with the same time and space bound.1 IntroductionIn this paper, we consider the red/blue segment intersection problem: Given a disjoint set of red line segmentsand a disjoint set of blue line segments in the plane, with a total of n segments, report all k intersections ofred segments with blue segments.This is a special case of the general segment intersection problem of reporting all k pairwise intersectionsof a given set of n line segments in the plane.Although Chazelle and Edelsbrunner[4] gave an asymptotically time-optimal algorithm for the general seg-ment intersection problem which runs in O(n logn+k) time and uses O(n+k) space, simpler methods that useO(n) space exist for the red/blue problem. Mairson and Stol�[6], who also cited Mairson[5] and Mowchenko[7],presented a plane-sweep algorithm for the red/blue intersection problem that runs in asympotically optimalO(n logn + k) time and O(n) space. Chazelle et al.[3] proposed another algorithm that can report red/blueintersections with the same time and space bound, and can also count red/blue intersections in O(n logn)time; their algorithm is later simpli�ed by Palazzi and Snoeyink[8].Here, we give a new simple algorithm that reports all red/blue intersections in O(n logn + k) time andO(n) space, based on a variation of the plane sweep, which we call the trapezoid sweep, and we extend ouralgorithm to deal with curve segments. Our algorithm has smaller constant factors than the ones in [3, 4, 8],and is similar to Mairson and Stol�'s, but Mairson and Stol�'s requires a recursive cone-breaking procedureand needs an additional O(k) space for curve segments.The organization of the paper is as follows: Section 2 describes the basic idea of the algorithm, and Section 3,4, and 5 gives the algorithm; in Section 6, we consider curve segments; and Section 7 is the conclusion.2 The Trapezoid SweepThe classic plane-sweep algorithm of Bentley and Ottmann[2] computes intersections of general line segmentsin the order of increasing x-coordinate and requires O(n logn+k logn) time. In order to remove a logarithmicfactor from k, we shall compute intersections in a somewhat di�erent order that does not result in sorting allintersections.De�ne the blue trapezoidation to be the decomposition of the plane into (closed) trapezoids obtained fromthe blue segments and the vertical extensions of each endpoint (both red and blue) to the blue segments justabove and below it, as shown in Figure 1 (recall that the blue segments are disjoint). For each of theseblue trapezoids, the left and right walls are vertical line segments, the top and bottom sides are parts of bluesegments, and the interior contains no red or blue endpoints.�Supported by a Killam Predoctoral Fellowship.

Figure 1: A blue trapezoidation. (Red segments are dashed.)Our algorithm shall sweep through these blue trapezoids from left to right by a vertical sweep line, andwhenever we hit the right wall of a blue trapezoid T , we add T to our sweep front F and maintain:Invariant: For each red segment sred, the intersections of sred reported so far are exactly the intersectionsof sred that are to the left of, or equal to, the rightmost point of sred in F ; furthermore, each suchintersection is reported only once.F is initially empty. After we have swept through all blue trapezoids, F shall become the entire plane, andwe shall have computed all intersections.3 Data StructuresWe now specify the data structure requirements of our algorithm. To simplify our presentation, we shallignore degeneracies, e.g. we assume that the endpoints and intersections have distinct x-coordinates. Standardperturbation techniques can be used to deal with these degeneracies (for example, see [6]).We �rst assume the following O(1) time operations:� report(sred; sblue) reports the intersection of red segment sred and blue segment sblue.� meet(sred; sblue) returns �1 if sred and sblue don't intersect (or sred or sblue is nil); otherwise, it returnsthe x-coordinate of the intersection of sred and sblue.The input to our algorithm is the sequence of endpoints sorted by x-coordinate, along with the followinginformation:� x[i] is the x-coordinate of the i-th endpoint (in the sorted order).� s[i] is the segment of the i-th endpoint.� type[i] is the type (left or right) of the i-th endpoint.� c[i] is the colour (red or blue) of s[i].The global variables that our algorithm uses are:� xsweep is the x-coordinate of the sweep line.� x0[sred] is the largest x-coordinate of the reported intersections of red segment sred. Initially, x0[sred] isset to the x-coordinate of the left endpoint of sred.� Lred and Lblue are the lists of red, and respectively, blue segments that intersect the sweep line. Thetwo lists are ordered by the y-values of their segments at x-coordinate xsweep. Initially, Lred and Lblueare empty.

F

S

T

s*
blue

sred
*

sa
*

sweep lineFigure 2: Adding a blue trapezoid T to the sweep front F . (Marked points are the intersections reported bythe call advance(sa).)We need the following operations on ordered lists of line segments:� insert(L; s) adds s to list L.� delete(L; s) deletes s from list L.� search(L; s; dir) returns the element in list L that is just greater (or less) than s if dir = +1 (or �1).� next(L; s; dir) returns the successor (or predecessor) of s in list L if dir = +1 (or �1).search()/next() returns nil if its result is unde�ned. We can use balanced-tree structures, such as red-blacktrees or splay trees, to implement these operations in O(logn) time (amortized, for splay trees), and withextra pointers, next() in O(1) time.By the disjointness of red segments and of blue segments, the ordered lists Lred and Lblue can be maintainedas long as we do an insert() whenever the sweep line hits a left endpoint, and a delete() whenever the sweepline hits a right endpoint.4 Adding a Blue Trapezoid to the Sweep FrontSuppose the invariant currently holds, and the sweep line next hits the right wall of the blue trapezoid T , i.e.the right wall of T has the next smallest x-coordinate xsweep.Let S = f(x; y)j x < xsweepg n F . Then S is the part to the left of the sweep line of the union of all bluetrapezoids that intersects the sweep line. In particular, S contains no red or blue endpoints.For each sblue 2 Lblue, de�ne s�blue to be the part of sblue that is in S. For each sred 2 Lred, de�ne s�redto be the part of sred that is to the right of the rightmost point of sred in F and is to the left of the sweepline. Then, for every s 2 Lred [Lblue, s� is a line segment, the left endpoint of s� is on the left boundary ofS (i.e. the boundary of F), the right endpoint of s� is on the right boundary of S (i.e. the sweep line), ands� is contained in S. We thus have Figure 2.For every sred 2 Lred and sblue 2 Lblue, note the following observation from the invariant: s�red and s�blueintersect i� s�red and sblue intersect, i� sred and sblue have an unreported intersection to the left of the sweepline, i� sred and sblue intersect at a point with x-coordinate strictly between x0[sred] and xsweep.We can de�ne a procedure, advance(s), which does the following given s 2 Lblue: for each s�red thatintersects s�, report the intersection of s�red with s� and the intersections of s�red with all other s�blue to left of

that intersection. (See Figure 2.) Then it is not hard to show that we can add T to the sweep front F whilemaintaining the invariant by calling advance(sa) and advance(sb), where sa and sb are the blue segments onthe top and bottom sides of T .To �nd all sred 2 Lred such that s�red and s� intersect, we simply enumerate the sred's in Lred in increasingorder of their y-values at the sweep line, starting with the one that is immediately above s at the sweep line,until we encounter the �rst sred such that s�red and s� don't intersect (then all other s0�red above that s�red don'tintersect with s� since the red segments are disjoint); we proceed in the other direction similarly.Given one such sred (w.l.o.g. assume that sred is above s at the sweep line), to �nd all sblue 2 Lblue suchthat s�red and s�blue intersect at a point to the left of the intersection of s�red and s�, we simply enumerate thesblue's in Lblue in decreasing order of their y-values at the sweep line, starting with s, until we encounter the�rst sblue such that s�red and s�blue don't intersect (then all other s0�blue below that s�blue don't intersect withs�red since the blue segments are disjoint).Hence, the procedure advance() can be written as follows:Procedure advance(s), where s is a blue segment:for dir 2 f+1;�1g dosred search(Lred; s; dir)while x0[sred] < meet(sred; s) < xsweep dosblue swhile x0[sred] < meet(sred; sblue) < xsweep doreport(sred; sblue)sblue next(Lblue; sblue;�dir)x0[sred] meet(sred; s)sred next(Lred; sred; dir)Remark: If we want to, we can easily modify advance() so that the intersections along each segment arereported in sorted order by executing each inner and outer while loop in \reverse" order.Excluding the two calls to search(), which take O(logn) time, the cost of advance() is proportional to thenumber of intersections that it reports.5 The AlgorithmNow, the algorithm works by sweeping the endpoints from left to right. When we encounter a red endpoint ora blue left endpoint, we have hit the right wall of one blue trapezoid, so we have one trapezoid to add to thesweep front F . When we encounter a blue right endpoint, we have hit the right wall of two blue trapezoids,so we have two trapezoids to add to F . To add a blue trapezoid to F , we call the advance() procedure fromSection 4 on the blue segments on its top and bottom sides.Algorithm:for i = 1; : : : ; 2n doxsweep x[i]if c[i] = red or type[i] = left thenadvance(search(Lblue; s[i];+1))advance(search(Lblue; s[i];�1))else advance(next(Lblue ; s[i];+1))advance(s[i])advance(next(Lblue ; s[i];�1))if type[i] = left theninsert(Lc[i]; s[i])else delete(Lc[i]; s[i])

The i-th step of the for loop takes O(logn+ ki) time, where ki is the number of intersections reported atthat step. Thus, the total time of the algorithm, including the pre-sorting of endpoints, is O(n logn+Pi ki) =O(n logn+ k) (since each intersection is reported once). The space requirement is clearly O(n).6 Modi�cations for Curve SegmentsOur algorithm can be extended to handle curve segments which satisfy the following conditions:� Segments are continuous.� Segments are single-valued (or monotone), i.e. a segment can intersect a vertical line in at most onepoint.� The intersection of a segment and a vertical line can be computed in O(1) time and space.� The rightmost intersection of two segments to the left of a given vertical line can be computed in O(1)time and space.Since two segments may now intersect more than once, we �rst have to add an extra argument to report()and meet():� report(sred; sblue; x) reports the intersection of red segment sred and blue segment sblue at x-coordinatex.� meet(sred; sblue; x0) returns the largest x such that x < x0 and x is the x-coordinate of an intersectionof sred and sblue; it returns �1 if no such x exists.The only major modi�cation to the algorithm is then the inner while loop of advance(), where we reportthe intersections of s�red with all s�blue's to the left of the intersection of s�red with s�. As we enumerate thes�blue's, we may now have to move in both the \upward" and \downward" directions in Lblue.Procedure advance(s), where s is a blue segment:for dir 2 f+1;�1g dosred search(Lred; s; dir)while x0[sred] < meet(sred; s; xsweep) dosblue s, x xsweep, dir0 �dirwhile x0[sred] < meet(sred; sblue; x) dox meet(sred; sblue; x)report(sred; sblue; x)s0blue next(Lblue; sblue; dir0)if meet(sred; sblue; x) < meet(sred; s0blue; x) thensblue s0blueelse dir0 �dir0x0[sred] meet(sred; s; xsweep)sred next(Lred; sred; dir)Remark: If we want to, we can easily modify advance() so that the intersections along each red (but notblue) segment are reported in sorted order by executing each inner while loop in \reverse" order.The time and space bound of the algorithm are as before.7 ConclusionsOur algorithm has been implemented and tested on data from GIS map overlay applications. On these data,it outperforms the algorithms in [2, 8]. Furthermore, it is competitive with heuristic methods such as quadtreeand binary space partition, especially if the endpoints are pre-sorted. [1] contains the experimental results.

AcknowledgementsI would like to express my thanks to Jack Snoeyink for suggesting this investigation and for reading thedraft of this paper.References[1] D. S. Andrews, J. Snoeyink, J. Boritz, T. M. Chan, G. Denham, J. Harrison, and C. Zhu. Further Com-parison of Algorithms for Geometric Intersection Problems. Accepted to 6th International Symposium onSpatial Data Handling, 1994.[2] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric interesections. IEEETransactions on Computers, C-28(9):643-647, 1979.[3] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Algorithms for bichromatic line segment problemsand polyhedral terrains. Technical Report UIUC DCS-R-90-1578, Dept. Comp. Sci., Univ. Ill. Urbana,1990.[4] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. JACM,39:1-54, 1992.[5] H. G. Mairson. Reporting line segment intersections. Manuscript, 1981.[6] H. G. Mairson and J. Stol�. Reporting and counting intersections between two sets of line segments. InR. Earnshaw (ed.), Theoretical Foundations of Computer Graphics and CAD, NATO ASI Series, Vol. F40,307-326, Springer-Verlag, 1988.[7] J. T. Mowchenko. Ph. D. Thesis. Department of Electrical Engineering, University of Waterloo, Ontario,Canada, 1983.[8] L. Palazzi and J. Snoeyink. Counting and Reporting Red/Blue Segment Intersections. In Algorithms andData Structures (WADS '93), number 709 in Lecture Notes in Computer Science, 530-540, Springer-Verlag,1993.

