A Simple Trapezoid Sweep Algorithm for Reporting Red/Blue
Segment Intersections

Timothy M. Chan*
Department of Computer Science
University of British Columbia

Abstract

We present a new simple algorithm for computing all intersections between two collections of disjoint
line segments. The algorithm runs in O(nlogn + k) time and O(n) space, where n and k are the number
of segments and intersections respectively. We also show that the algorithm can be extended to handle
single-valued curve segments with the same time and space bound.

1 Introduction

In this paper, we consider the red/blue segment intersection problem: Given a disjoint set of red line segments
and a disjoint set of blue line segments in the plane, with a total of n segments, report all & intersections of
red segments with blue segments.

This is a special case of the general segment intersection problem of reporting all & pairwise intersections
of a given set of n line segments in the plane.

Although Chagzelle and Edelsbrunner[4] gave an asymptotically time-optimal algorithm for the general seg-
ment intersection problem which runs in O(nlogn+k) time and uses O(n+ k) space, simpler methods that use
O(n) space exist for the red/blue problem. Mairson and Stolfi[6], who also cited Mairson[5] and Mowchenko[7],
presented a plane-sweep algorithm for the red/blue intersection problem that runs in asympotically optimal
O(nlogn + k) time and O(n) space. Chazelle et al.[3] proposed another algorithm that can report red/blue
intersections with the same time and space bound, and can also count red/blue intersections in O(nlogn)
time; their algorithm is later simplified by Palazzi and Snoeyink][8].

Here, we give a new simple algorithm that reports all red/blue intersections in O(nlogn + k) time and
O(n) space, based on a variation of the plane sweep, which we call the trapezoid sweep, and we extend our
algorithm to deal with curve segments. Our algorithm has smaller constant factors than the ones in [3, 4, 8],
and is similar to Mairson and Stolfi’s, but Mairson and Stolfi’s requires a recursive cone-breaking procedure
and needs an additional O(k) space for curve segments.

The organization of the paper is as follows: Section 2 describes the basic idea of the algorithm, and Section 3,
4 and b gives the algorithm; in Section 6, we consider curve segments; and Section 7 is the conclusion.

2 The Trapezoid Sweep

The classic plane-sweep algorithm of Bentley and Ottmann[2] computes intersections of general line segments
in the order of increasing x-coordinate and requires O(nlogn+ klogn) time. In order to remove a logarithmic
factor from k, we shall compute intersections in a somewhat different order that does not result in sorting all
intersections.

Define the blue trapezoidation to be the decomposition of the plane into (closed) trapezoids obtained from
the blue segments and the vertical extensions of each endpoint (both red and blue) to the blue segments just
above and below it, as shown in Figure 1 (recall that the blue segments are disjoint). For each of these
blue trapezoids, the left and right walls are vertical line segments, the top and bottom sides are parts of blue
segments, and the interior contains no red or blue endpoints.

*Supported by a Killam Predoctoral Fellowship.



--._...
~
il
. ’
/'
\ q
\\
L4 ~
M ’ ~
L "
‘. .
é— L4
~
~

Figure 1: A blue trapezoidation. (Red segments are dashed.)

Our algorithm shall sweep through these blue trapezoids from left to right by a vertical sweep line, and
whenever we hit the right wall of a blue trapezoid T', we add T to our sweep front F' and maintain:

Invariant: For each red segment s,.q4, the intersections of s,.4 reported so far are exactly the intersections
of sp.q that are to the left of, or equal to, the rightmost point of s,.q4 in F'; furthermore, each such
intersection is reported only once.

F is initially empty. After we have swept through all blue trapezoids, F' shall become the entire plane; and
we shall have computed all intersections.

3 Data Structures

We now specify the data structure requirements of our algorithm. To simplify our presentation, we shall
ignore degeneracies, e.g. we assume that the endpoints and intersections have distinct x-coordinates. Standard
perturbation techniques can be used to deal with these degeneracies (for example, see [6]).

We first assume the following O(1) time operations:

o 7eport(Sped, Spiue) Teports the intersection of red segment s,.q and blue segment spye.

o meet(Sped, Shiye) returns —oo if speq and sprye don’t intersect (or speq OF Spye is nil); otherwise, it returns
the x-coordinate of the intersection of s,.4 and spjye.

The input to our algorithm is the sequence of endpoints sorted by x-coordinate, along with the following
information:

e z[i] is the x-coordinate of the i-th endpoint (in the sorted order).
o s[i] is the segment of the i-th endpoint.
o type[i] is the type (left or right) of the i-th endpoint.
e ¢[i] is the colour (red or blue) of s[i].
The global variables that our algorithm uses are:
® Tgyeep 18 the x-coordinate of the sweep line.

o 2g[speq] is the largest x-coordinate of the reported intersections of red segment s,..q4. Initially, @g[s,.q] is
set to the x-coordinate of the left endpoint of s,.4.

e L,.q and Ly, are the lists of red, and respectively, blue segments that intersect the sweep line. The
two lists are ordered by the y-values of their segments at x-coordinate ,ycep. Initially, Lyeq and Lpye
are empty.



\

sweep line

Figure 2: Adding a blue trapezoid T to the sweep front F'. (Marked points are the intersections reported by
the call advance(s,).)

We need the following operations on ordered lists of line segments:
o insert(L,s) adds s to list L.
o delete(L, s) deletes s from list L.
o search(L, s, dir) returns the element in list L that is just greater (or less) than s if dir = +1 (or —1).
o next(L, s, dir) returns the successor (or predecessor) of s in list L if dir = +1 (or —1).

search()/next() returns nil if its result is undefined. We can use balanced-tree structures, such as red-black
trees or splay trees, to implement these operations in O(logn) time (amortized, for splay trees), and with
extra pointers, next() in O(1) time.

By the disjointness of red segments and of blue segments, the ordered lists L,.q and L. can be maintained
as long as we do an insert() whenever the sweep line hits a left endpoint, and a delete() whenever the sweep
line hits a right endpoint.

4 Adding a Blue Trapezoid to the Sweep Front

Suppose the invariant currently holds, and the sweep line next hits the right wall of the blue trapezoid 7', i.e.
the right wall of 7" has the next smallest x-coordinate %y ecep.

Let S = {(z,y)| © < Zsweep} \ F. Then S is the part to the left of the sweep line of the union of all blue
trapezoids that intersects the sweep line. In particular, .S contains no red or blue endpoints.

For each spiue € Lijue, define sj,,. to be the part of sy that is in S. For each s,.q € Lyeq, define s,
to be the part of s,.4 that is to the right of the rightmost point of s,.4 in ¥ and is to the left of the sweep
line. Then, for every s € Lycq U Lpjye, s* is a line segment, the left endpoint of s* is on the left boundary of
S (i.e. the boundary of ), the right endpoint of s* is on the right boundary of S (i.e. the sweep line), and
s* 1s contained in S. We thus have Figure 2.

For every syeq € Lreq and Syiue € Limue, note the following observation from the invariant: s, and sj;,.
intersect iff s, ; and sy, intersect, iff s,.q and sy have an unreported intersection to the left of the sweep
line, iff s,.4 and spye intersect at a point with x-coordinate strictly between zo[syeq] and Tsweep-

We can define a procedure, advance(s), which does the following given s € Lpj.: for each s, that
intersects s*, report the intersection of sy, ; with s* and the intersections of s;,; with all other s3,;,, to left of



that intersection. (See Figure 2.) Then it is not hard to show that we can add T to the sweep front F' while
maintaining the invariant by calling advance(s,) and advance(sy), where s, and s; are the blue segments on
the top and bottom sides of 7.

To find all s,cq € Lycq such that s}, ; and s* intersect, we simply enumerate the s,.4’s in L,.4 in increasing
order of their y-values at the sweep line, starting with the one that is immediately above s at the sweep line,
until we encounter the first s,.4 such that s¥,; and s* don’t intersect (then all other s/ ;, above that s}, ; don’t
intersect with s* since the red segments are disjoint); we proceed in the other direction similarly.

Given one such sp.q (w.l.o.g. assume that s,.q is above s at the sweep line), to find all spye € Lpjye such
that sy, ; and sj;,. intersect at a point to the left of the intersection of s;,; and s*, we simply enumerate the
Spiue S 10 Lypye in decreasing order of their y-values at the sweep line, starting with s, until we encounter the

first spue such that s¥,,; and sf;,. don’t intersect (then all other s

tiue below that si, . don’t intersect with

s¥,4 since the blue segments are disjoint).
Hence, the procedure advance() can be written as follows:

PROCEDURE advance(s), where s is a blue segment:
for dir € {+1,—1} do
Sped — search(Lyeq, s, dir)
while zq[sreq] < meet(sred, s) < Tsweep do
Splue < 8
while zq[s,eq] < meet(speq, Spiue) < Lsweep do
Teport(sreda 5blue)
Splue < nezt(Lbluea Shlue, —di?“)
2o[Sred] — meet(Sred, S)
Sred — next(Lyeq, Sred, dir)

Remark: If we want to, we can easily modify advance() so that the intersections along each segment are
reported in sorted order by executing each inner and outer while loop in “reverse” order.

Excluding the two calls to search(), which take O(logn) time, the cost of advance() is proportional to the
number of intersections that it reports.

5 The Algorithm

Now, the algorithm works by sweeping the endpoints from left to right. When we encounter a red endpoint or
a blue left endpoint, we have hit the right wall of one blue trapezoid, so we have one trapezoid to add to the
sweep front F'. When we encounter a blue right endpoint, we have hit the right wall of two blue trapezoids,
so we have two trapezoids to add to F. To add a blue trapezoid to F', we call the advance() procedure from
Section 4 on the blue segments on its top and bottom sides.

ALGORITHM:
fori=1,...,2n do

Lsweep < l‘[l]

if ¢[i] = red or typeli] = left then
advance(search(Lypye, s[i], +1))
advance(search(Lypye, s[i], —1))

else
advance(next(Lywye, s[i], +1))
advance(s[i])
advance(next(Lywye, s[i], —1))

if typeli] = left then
insert(Lep, s[i])

else

delete(L.[;, s[i])




The i-th step of the for loop takes O(logn + k;) time, where k; is the number of intersections reported at
that step. Thus, the total time of the algorithm, including the pre-sorting of endpoints, is O(nlogn+>", k;) =
O(nlogn + k) (since each intersection is reported once). The space requirement is clearly O(n).

6 Modifications for Curve Segments

Our algorithm can be extended to handle curve segments which satisfy the following conditions:
e Segments are continuous.

o Segments are single-valued (or monotone), i.e. a segment can intersect a vertical line in at most one
point.

e The intersection of a segment and a vertical line can be computed in O(1) time and space.

e The rightmost intersection of two segments to the left of a given vertical line can be computed in O(1)
time and space.

Since two segments may now intersect more than once, we first have to add an extra argument to report()
and meet():

o 1eport(Sred, Shiue, ) Teports the intersection of red segment s,.4 and blue segment sp;y. at x-coordinate
x.

o meet(Sped, Shiue, o) returns the largest z such that # < zg and z is the x-coordinate of an intersection
of s,.q and sprye; 1t returns —oo if no such x exists.

The only major modification to the algorithm is then the inner while loop of advance(), where we report
the intersections of s, ; with all s};,.’s to the left of the intersection of s),; with s*. As we enumerate the
55 S, We may now have to move in both the “upward” and “downward” directions in Lpjye.

PROCEDURE advance(s), where s is a blue segment:
for dir € {+1,—1} do
Sped — search(Lyeq, s, dir)
while zg[sreq] < meet(sred, 5, Lsweep) do
Shlue — S, T — Tsweep, A1 — —dir
while zg[sreq] < meet(Sped, Spiue, ©) do
z — meet(Sped, Sbiue, ¥)
7eport(Sred, Shiue, )
Shine — ext(Lppye, Spiue, dir’)
if meet(sred, Spiue, ) < meet(speq, 4y, ) then
Splue < Szlue
else
dir’ — —dir’
xO[Sred] — meet(sreda S, xsweep)
Sred — next(Lyeq, Sred, dir)

Remark: If we want to, we can easily modify advance() so that the intersections along each red (but not
blue) segment are reported in sorted order by executing each inner while loop in “reverse” order.
The time and space bound of the algorithm are as before.

7 Conclusions

Our algorithm has been implemented and tested on data from GIS map overlay applications. On these data,
it outperforms the algorithms in [2, 8]. Furthermore, it is competitive with heuristic methods such as quadtree
and binary space partition, especially if the endpoints are pre-sorted. [1] contains the experimental results.



Acknowledgements

I would like to express my thanks to Jack Snoeyink for suggesting this investigation and for reading the

draft of this paper.

References

(1]

[7]

(8]

D. S. Andrews, J. Snoeyink, J. Boritz, T. M. Chan, G. Denham, J. Harrison, and C. Zhu. Further Com-
parison of Algorithms for Geometric Intersection Problems. Accepted to 6th International Symposium on
Spatial Data Handling, 1994.

J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric interesections. IEEE
Transactions on Computers, C-28(9):643-647, 1979.

B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Algorithms for bichromatic line segment problems
and polyhedral terrains. Technical Report UTUC DCS-R-90-1578, Dept. Comp. Sci., Univ. Ill. Urbana,
1990.

B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane. JACM,
39:1-54, 1992.

H. G. Mairson. Reporting line segment intersections. Manuscript, 1981.

H. G. Mairson and J. Stolfi. Reporting and counting intersections between two sets of line segments. In
R. Earnshaw (ed.), Theoretical Foundations of Computer Graphics and CAD, NATO ASI Series, Vol. F40,
307-326, Springer-Verlag, 1988.

J. T. Mowchenko. Ph. D. Thesis. Department of Electrical Engineering, University of Waterloo, Ontario,
Canada, 1983.

L. Palazzi and J. Snoeyink. Counting and Reporting Red/Blue Segment Intersections. In Algorithms and
Data Structures (WADS °93), number 709 in Lecture Notes in Computer Science, 530-540, Springer-Verlag,
1993.



