Searching for Sub-images Using Sequence Alignment

Tomáš Homola, Vlastislav Dohnal, Pavel Zezula

1

Presentation Outline

- Motivation
- Current approaches to the sub-image retrieval
- Sequence alignment methods
- Conclusion

Motivation

Image (query)

- & Search engine (technology)
- Database of images =

Found images (response)

£

& Happy user

Motivation

Image (query) & Search engine
(technology)

£

Database of images =

Found images (response)

• Image characterization

Global descriptors

Local descriptors

Database Image(s)

Query Image

Extract local features

Suppose our features are scale- and rotation-invariant SIFT and its derivates, MSER, ...

Database Image(s)

Query Image

local features => visual wordsimage => bag-of-words

Query Image

Database Image(s)

Usually inspired by the

text retrieval (tf-idf,...)

Query Image

Database Image(s)

RANSAC, Least Medians of Squares, Generalized Hough Transformation,

. . .

Query Image

Database Image(s)

Query image Ranked answer

Sub-Image Retrieval – Our Approach

- Bag-of-words methods:
 - Rely on training data
 - Lost of information
- Local features (High-dimensional vectors) themselves create an alphabet in our approach

Sub-Image Retrieval – Our Approach

Sequence alignment methods used for the geometrical verification

Sequence alignment

- Local features are projected into x/y axis
 => ordered sequence
- Sequences are compared using sequencealignment methods

Sequence alignment methods

- Commonly used in bioinformatics (i.e. protein sequences alignment)
- User defined scoring scheme (match, mismatch and gap scores/penalties)
- Scoring matrix

Sequence-alignment methods - cont.

• Needleman-Wunsch (Global alignment)

-D	CE		_	Gap
-D × × × ADBH		××	×	Mismatch
ADBH	CE	FG	1	Match

 Smith-Watermann (Local alignment - deals better with starting/ending gaps -> sequences of the non-equal length)

Sliding windows

- Small query & large database image (and vice versa) leads to "noise" in projected sequences (letters B and H)
- => Split images (queries and database) into the fixed-size windows
- Run sequence alignment for each of the window separately

Evaluation

- BelgaLogos dataset
- Queries: 26 logos, database: 10 000 images
- Original method Joly&al Visual words + RANSAC Mean Average Precision: 25.67
- Our method: 30.95

(Smith-Waterman, Window size 128×128 px)

- Scale-change, shear invariant
- Flipping, rotation of 90° invariant (with projections re-ordering)
- Not fully rotation and camera viewpoint change (tilt) invariant
- Method handles with multiple occurrences of the queried sub-image in one DB image
- Sequence of letters ≈ time series => indexable (contrary to RANSAC,...)

Future work

- Performance
 - Indexing
 - Features quantization
- Quality
 - Rotation invariance
 - Lower precision (too many false positives)
 - Large windows (more than one window)

Conclusion

- Sub-Image Retrieval
 - Features forms an alphabet
 - Geometric consistency validation using sequence alignment methods
 - (Sliding) windows to avoid the noise