Shortest paths in graphs

Remarks from previous lectures:

- Path length in unweighted graph equals to edge count on the path
- Oriented distance $(\delta(u, v))$ between vertices u, v equals to the length of the shortest path from u tov
- In an oriented graph, distance between two vertices need not to be symmetrical $(\delta(u, v) \neq \delta(v, u)$ in general)

Figure: In this case $\delta(u, v) \neq \delta(v, u)$.

Distance in weighted graph

In real-world applications, graph edges are weighted - e.g., distances between cities, latency of network links.

Definition

Path length in weighted graph equals to sum of edge weights along the path.

- Distance between vertices is defined as the length of the shortest path between them.
- Negative-weight cycle potentially allows some or all distances in the graph to be any negative number.

By definition, the shortest paths do not contain any nonnegative-weight cycle.

Triangle inequality

The triangle inequality holds for a graph if and only if

$$
\delta(u, w) \leq \delta(u, v)+\delta(v, w)
$$

 shortest (not direct) distances between cities is the real-world example in which the inequality holds.

Dijkstra's algorithm

- Well-known algorithm for finding single-source shortest paths.
- Solves the problem for both directed and undirected graphs.
- Computes shortest paths from single source vertex to all others.
- Requires non-negative weights of all edges (not only cycles).
- Linear space complexity.
- Time complexity depends on chosen data structure.

Dijkstra's algorithm

- Denote source vertex as s.
- For each vertex v in a graph, $\mathrm{d}[\mathrm{v}]$ equals to length the shortest path from s to v found so far.
- Initially, $\mathrm{d}[\mathrm{s}]=0$ for source vertex and $\mathrm{d}[\mathrm{v}]=\infty$ for the others.
- Upon completion, $\mathrm{d}[\mathrm{v}]$ equals to length of the shortest path in the graph if it exists, or ∞ otherwise.
- $\mathrm{p}[\mathrm{v}]$ stores the direct predecessor of vertex v on the shortest path from s found so far.
- Initially, p[v] is undefined for all vertices except s.
- Upon completion, the shortest path to v is the sequence

$$
\mathrm{s}, \mathrm{p}[\ldots \mathrm{p}[\mathrm{v}] \ldots], \ldots \mathrm{p}[\mathrm{p}[\mathrm{v}]], \mathrm{p}[\mathrm{v}], \mathrm{v} .
$$

Dijkstra's algorithm

- Vertices are split into two disjoint sets:
- S contains exactly those vertices, for which the shortest paths has already been computed and stored in $\mathrm{d}[\mathrm{v}]$.
- Q contains all other vertices.
- The vertices of set Q are stored in a priority queue.
- The vertex with the lowest value of $d[u]$ has the highest priority. The $\mathrm{d}[u]$ already stores length of the shortest path to u.
- Following steps are taken in each iteration:
- Remove the vertex u from the queue head.
- Move the vertex u from Q to S.
- Relax all edges (u, v) going out from u to any v in Q :
- If $\mathrm{d}[\mathrm{v}]>\mathrm{d}[u]+w(u, v)$, update $\mathrm{d}[\mathrm{v}]$.
- $w(u, v)$ denotes weight of the edge (u, v).

Dijkstra's algorithm - example

Figure: Vertices in the set S are marked blue. Content of the priority queue is depicted to the right of the graph (head on top).

Dijkstra's algorithm - animations \& illustrations

- Animation on an example graph
- http://www.unf.edu/~wkloster/foundations/ DijkstraApplet/DijkstraApplet.htm
- commented computation
- http://www.youtube.com/watch?v=8Ls1RqHCOPw
- computation allowing to input your own graph
- http:
//www.cse.yorku.ca/~aaw/HFHuang/DijkstraStart.html
- illustration of a computation
- http://www.animal.ahrgr.de/showAnimationDetails. php3?lang=en\&anim=16

Dijkstra's algorithm - time complexity

Let's denote $n=|V|, m=|E|$.

- Initialization is linear w.r.t. number of vertices.
- Each edge is traversed exactly once or twice (in case of oriented graph).
- Main loop is run n-times, hence
- there are n delete operations on the priority queue.
- Complexity of the delete operations depends on chosen data structure:
- Array, vertex list - deletion can be done in linear time, complexity of the whole algorithm is therefore in $\mathcal{O}\left(n^{2}+m\right)$.
- Binary heap - deletion requires $\mathcal{O}(\log (n))$ time. Moreover, each edge relaxation may require heap update $(\mathcal{O}(\log (n))$, overall complexity is in $\mathcal{O}((n+m) \log (n))$.
- Fibonacci's heap - complexity of the deletion is the same as in the case of binary heap, however update on relaxation runs in constant time - overall complexity is in $\mathcal{O}(m+n \log (n))$. http://en.wikipedia.org/wiki/Fibonacci_heap

Dijkstra's algorithm - application in networks

Link-state routing protocols make use of the Dijkstra's algorithm.

- Each active elements broadcasts its neighbors list periodically
- Neighbors list are forwarded through the network to all active elements
- Each active element calculates a shortest paths tree to all other AEs independently
- Risk of loops in routing tables

OSPF and IS-IS are the most widespread link-state protocols.
They both use the Dijkstra's algorithm.

Floyd-Warshall's algorithm

- Computes shortest paths between each pair of vertices.
- The algorithm works with negative-weight edges correctly, however, negative-weight cycles may lead to incorrect solution.
- The shortest (so far) known distance between any two vertices is being improved gradually.
- In each step, a set of vertices which may lie on the shortest paths is defined.
- Each iteration introduces a new vertex into this set.
- In each one of n iterations, shortest paths between all n^{2} pairs of vertices are updated. The time complexity therefore equals to $\mathcal{O}\left(n^{3}\right)$.
- The space complexity is $\mathcal{O}\left(n^{2}\right)$.

Floyd-Warshall's algorithm

- Let the vertices be numbered as $1 \ldots n$.
- At first, only single-edge paths are considered. Afterwards, the algorithm searches for paths traversing through vertex 1 . Subsequently, paths using vertices 1 and 2, etc.
- Between any pair of vertices u, v, a shortest path using vertices $1 \ldots k$ is known in $(k+1) i^{\text {th }}$ iteration.
- There are two possibilities for the shortest path (which uses vertices $1 \ldots k+1$) between these two vertices:
- It uses only the $1 \ldots k$ vertices.
- It traverses vertices $1 \ldots k$ from u to vertex $k+1$ and then ends in v.
- Upon completion, shortest paths using all vertices in the graph are computed.

Floyd-Warshall's algorithm - an example

Figure: Vertices which may be used for shortest paths are highlighted. Shortest paths computed so far are stored in the matrix.

$\begin{array}{rrrrrr} & 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 18 & 4 & 12 & ? \\ 2 & 18 & 0 & 22 & 5 & ? \\ 3 & 4 & 22 & 0 & 7 & 3 \\ 4 & 12 & 5 & 7 & 0 & 2 \\ 5 & ? & ? & 3 & 2 & 0\end{array}$

Distributed Floyd-Warshall's algorithm

Floyd-Warshall's algorithm can be easily applied in distributed environment - among autonomous units, which communicate only through message sending

- Each vertex computes shortest paths to all other graph vertices
- Initially, only path to neighbours is known
- Similarly to the sequential case, each iteration adds single vertex which can be included in the paths
- Added vertex broadcasts its distances table to all other vertices in each iteration
- The other vertices update their distances and shortest paths according to the received table

Distributed Floyd-Warshall's algorithm

- It is crucial for correctness of the algorithm that all vertices choose the same vertex in each iteration.
- Algorithm is inefficient in terms of transferred data amount. If $\mathrm{d}[\mathrm{v}]=\infty$ holds for selected vertex v in any vertex, its paths are not updated at all, hence it does not need to receive any distance tables in the current iteration.
- Before broadcasting distance table, vertices may signal to each other, which of them should receive the table \Rightarrow Toueg's algorithm.
- Further information:
- Ajay D. Kshemkalyani, Mukesh Singhal. Distributed Computing: Principles, Algorithms, and Systems. Cambridge University Press, 2008. Pp. 151-155

Excercises

(1) Calculate shortest paths in the graph below using Dijkstra's and Floyd-Warshall's algorithm.

(2) Propose an implementation of the Floyd-Warshall's algorithm (Toueg's algorithm). Consider, that vertices can transmit messages only along graph edges (broadcasting is implemented by forwarding).

Excercises

(3) Why doesn't Dijkstra's algorithm work correctly on graphs with negative-weight edges? What are the possible outcomes when it is run on such graph?

