Two Decades of Typographic Research at URW:
a Retrospective

Peter Karow

Kreienhoopsberg 26, 22399 Hamburg, Germany

1 Background

In 1971, URW was founded as Unternehmensberatung Rubow Weber by Gerhard
Rubow and Jiirgen Weber. I joined as a third partner in early 1972 and didn’t ask for a
name like UKRW. I was engaged as president (CEO) together with the other two found-
ers until the sequestration of URW in January 1995. URW++ was founded in 1995 as a
follow-up company by former employees.

In 1972, we started to program the IKARUS system which became the world’s lead-
ing program for producing digital typefaces. In 1975 together with Hermann Zapf, first
results and achievements were presented to the participants of the annual ATypI-meet-
ing in Warsawa, Poland. The first buyers of IKARUS systems were the companies Hell
(1976) in Kiel, the former Compugraphic (1978) near Boston, and Autologic (1979)
near Los Angeles. Among 70 major installations world-wide, we sold three in the USSR
and two in the DDR. Today at URW++, the business with IKARUS systems is coming
from Japanese newspapers and publishing companies.

From 1974 to 1977, we programmed computer-controlled output for the embroidery
industry (company Gunold near Frankfurt). In a very early but simple approach, we
programmed automated kerning for text stitching.

During the years 1979 — 81, we developed the concept for improving the quality of
bitmap fonts produced from our outline format, mainly for Hell and Autologic. URW
programmed the first intelligent font scaling package.

In 1981 at Stempel/Linotype in Frankfurt/New York, we programmed the LINUS
system, the first auto-tracing system for scanned input. It had the task of automating
digital font production.

Since 1976, URW itself used the IKARUS system for offering services to its cus-
tomers and to build up the world’s largest font library (3500 fonts). Today, this IK-lib
consists of Latin (95%), Chinese, Korean, Japanese, Thai, Russian (Cyrillic), Greek,
Hebrew, Arabic, and Devanagari typefaces. In respect to Latin fonts, it comprises the
major part of ITC typefaces.

In 1983, we started the SIGNUS system for producing signs. SIGNUS was and is
used in the signmaking industry. URW achieved a market share of about 60% in Ger-
many around the year 1990. The SIGNUS system has been further developed to become
an advertisement layout system called Admaster which is used by newspaper compa-
nies. It uses masters to automate the layout of standard advertisements.

In 1984 and 1993 I had a private collaboration with Karl Gerstner. According to his
ideas, I had to program and plot many iterations and interpolations of astroids/hypercy-
cloids (yellow), diagons/rhombuses (red), circles (blue) and supercircles (green) in

order to get outlines helping to illustrate Karl’s color forn model in a two- and three-
dimensional manifold.

During the years 1985 until 1994, together with Margret Albrecht, we developed
programs for improving the quality of justified text. We were encouraged by Hermann
Zapf and received many good advises from him. Together, we programmed the fiz-pro-
gram for typesetting (named after him) in order to achieve advanced typography. We
developed tools for the following application programs:

— Jp for justification per paragraph,
— kf for kerning on the fly,
— ek for typographic expanding/condensing,
Kp for optical scaling,
In for interpolating the weight of typefaces, and
— ScreenMaster for the grayscaling of text on display screens.
What did we experience and learn? In the following two chapters I will first summa-
rize some key achievements and the lessons I learned as results, and then emphasize a
few front edge topics which deserve investing some energy.

l

2 Milestones at URW

2.1 Digital outlines

In 1972 we wanted to automate the font production for photo-typesetting equipment.
Usually, one took printouts of typeset characters, enlarged them, drew their outlines,
and hand-cut new “originals” (Fig. 1).

+ 7

Fig. 1. A: enlarged reproduction of printed character. B: partially redrawn with interpretation.
C: first digitization of the corrected outline. D: final drawing.

We decided to use a flat plotter for cutting outlines of fonts into vinyl (rubylith) in a
size of 15 cm (about six inches) per em in order to get an accuracy far beyond that of

hand-cutting. At that time, plotters could only draw lines and circles, Therefore, the
IKARUS-format had to be output as straight line and circular arc segments. When nec-
essary, they had to respect continuity conditions. Typically, the outer outline of the char-
acter O consists of 24 arcs. That kind of data was neither suited to be stored nor to be
digitized and hand-tuned (edited). We decided to take the input specification directly as
the storage format. We defined four kinds of points: start, edge (corner), curve and tan-
gent as in Fig. 2. We used absolute coordinates which facilitate the calculation of
Delete, Shift or Insertion of points (for more arguments, see [1], page 185 ff.).

curve

tangent

corner

Fig. 2. The IK- format has only four different kinds of points.

Results are the following:

1. The key to success was to define the in- and not the output as the standard format.

2. Companies are never really happy when you come and tell them that they can save
time and money, Perhaps, you are talking with people proud of having a big depart-
ment which may have to shrink as a result of automation!

3. You give them ideas which they try to implement themselves possibly in order to
climb up the company’s internal hierarchy.

4. Some of your clients are so clever that they use your system in the reverse manrer,
believe it or not.

5. IKARUS succeeded a little bit in cutting vinyl for a while, but became successful as
the first soft scanner by accident,

6. Idid not consider the format as an invention; therefore I never applied for a patent.
Later I learned the lesson. Please remember: Experience is a good teacher, but a
very expensive one.

2.2 Rasterizing

In 1976, most of the people in the field of typesetting equipment believed that only a
scanner could rasterize the image of a character. Mergenthaler (Linotype) bought flying
spot digitizers for § 0.5 million each, and their managers were reluctant to use software.
We sold IKARUS as a soft scanner to all those who didn’t have a real hard scanner. For-
lunately, a lot of companies wanted to make large laser printers, many of them invented
their own bitmap-formats — more or less by accident — which gave us a lot of pro-
gramming jobs.

Company Hell asked us what should be controlled (Fig. 3), and how to develop the
first intelligent scaling of characters. Because at university, we were previously active in
pattern recognition, we first solved the problem by automated stem-, curve-, and serif-
detection — this was the first auto-hinter — and then we modified the character ele-
ments according to the font guide-lines to get intelligently scaled bitmaps at the various
required point sizes (Fig. 4). With one program, called PA, the production took 0.5 char/
sec on a VAX computer. Hell was happy. Autologic wasn’t because one had to learn
how to set the parameters for a font. This could be only done by skilled people, but not
by their font people hired from the street. For several hours we gave them a course and
explained them for example the meaning and use of the %-notation, but without suc-

cess.
* stems l

* bar be]
oL
b i7{‘\
L how
.
* arch ’(‘F‘\‘\
L
TpTr
¢ (hall-lsetils ‘,[:
FE SN
AR
* exirema Q T‘ X
A
N
* inclination /'\\\
S
< ,\/y{_/ 7
= peaks))./\E S

Fig. 3. Overview of important character parts to be controlled for laser printing.

At Palo Alto in 1983, John Warnock showed us his PostScript output on a large
Canon laser printer. We pointed to the changing stem widths of a “m” within the 12 pt
output, asked them to buy IKARUS and PA, and said it could be demonstrated at Auto-
logic. In 1984, John told us at the Hannover fair that they are not going to use IKARUS
and any kind of stem control. But Adobe had hired Sumner Stone (Autologic’s manager

of digital font production). In 1985 they separated the rasterizing task into two parts:
hinting by hand, and execution of hints in a rasterizer (10 char/sec). Adobe bought their
first 250 outline fonts from us. After 1986, four patents were applied for an outline-for-
mat with hints and given to Adobe, Folio, Bitstream, and Compugraphic. It took very
long until “auto-hinting” was invented a second time,

y /\ serif start
/

serifend ———»

— Jabs.

-
el o o M e e -

rel.

bow

horizontal
curves

curve extreme
on relative
vertical straight

e

AN

absolute relative absolute relative

> X

vertical straights vertical curves

® @ ® @

Fig. 4. Tlustration of an outline with hints.

In 1988, several people from Apple Computers Inc. came to Hamburg to get a
course on intelligent font scaling. They didn’t want to buy our rasterizer, but to pay
good money for lessons. So, we helped them to develop TrueType. Believe it or not,
later it was programmed by one person, Sampo Kaasila, hired from Folio, who left
Apple after completion of the first version. The results are the following:

I. Hand-hinting succeeded because auto-hinting is too complicated. I still doubt it

2. Key technology could never be kept in one company, especially if the company
doesn’t see its importance.

3. Too many hints are made and executed daily. At 600 Ipi, it is enough to do just stem-
control for vertical stems and baseline-control. For displays, no hints are necessary,

see nexl section.
4. In any case, there is a resolution funnel for bitmapping (see Fig. 5). At coarse resolu-
tions only a few fonts can be represented distinguishably.

2x2

4 x4 stze of 300 Ipi presenttation
- S
S 28: 5 &
g 10 % 10 :3 S
< 12 %12] o
g 1 x 14 7R LY
§ [l e ﬁ s
Jonts for 4:5
S | E e s
S 20 x 20 28:11 S’
S 24 x 24 28:13 Ry
S 28 x 28 28:15 S
S 38 x 36 28:19 S
S ;%g;;fj 42 % 42 14:1 <
S 48 x 48 2825 S
S fonts for 54 % 54 I S

type setters
raster per em

Fig. 5. The resolution funnel shows that beyond 6 x 6 pixel per em there are no readable
characters to be made. At 9 X 9 there are about 6 distinguishable fonts, at 16 x 16 about 20,

2.3 Grayscaling

In 1986, URW ordered several grayscale screens from AEG in Ulin according to our
specifications in order to develop a text input terminal for prepress. We obtained the
best results with sub-pixel positioning for character form and position (8 x 4 subpixel
per screen pixel are optimal) and with unhinted fonts. Unfortunately, the direct-raster-
izer was to slow, about 10 char/sec. At that time, cache memory was not large enough to
store 8 (32) graymaps per point size instead of one bitmap, and Hell didn’t want to
invest into large memories and new bus structures.

In 1993, once again, we started grayscaling of fonts for color screens using sub-
pixel positioning, and no hints. This time, we were fast enough: 200 char/sec into cache,
one master character in memory for 32 graymaps per character, and 4000 char/sec out
of cache into video memory on a Macintosh at 32 MHz! We called it ScreenMaster.

Working at Adobe in 1995, I learned that hints were the major invention with respect to
digital typefaces and that they belong to them due to the typefaces’ digital nature.
Therefore, in general, (gray) scaling without using hints would be a sacrilege despite the
comparisons and tests made by their font people which showed that the best results
were obtained without hints,

I admit that one can do special bitmap fonts which are very readable, e.g. the 12pt-
versions of Geneva and New York as system fonts. These bitmap fonts however have
their individual spacing values. Therefore they can’t represent WYSIWYG text written
in Helvetica or Times Roman (Fig. 6).

4 z 4 2
E] sy Mo Sren e ey d, s, sesi
et e i o s

s

rhmvpeeny wie crdaretnl ronearEon o lemrtones
IR ~llaeths by sl 4 cTaeton pToor D TRy O
imryBon of srom psd roew e sovk s tTRCT

TR R andid et Dby lal A D o
£ E mes el ol DARTy Tmng aBROR 2 (et te
Gl PEIYRTR D T pmtated o tede andk

v 1y Bing abesd g vrndion
g povwrgeas of maric gal

Cuonpaer-widand padbaronsticsd comn-

nmpater-aided mattmmarioal me
sepski af kerber Fores will waifily

PER rsiun of lamer Form s il eifn

Lo psirer -sndad pnarhernarical Copspaer-aubed o hemamical

PR pversitan of emar frins wdll T conversen of bates Brms will

sy Computer-nided mathe- . Computer-zided mathe-
matieal converson of matical conversion of

= Computer-aided >+« Computer-aided
mathematical mathematical

Fig. 6. Left: Bitmapped characters are less readable at lower point sizes, the color of the text

sways through the “quantum jumps” between 16 and 18 pt. Right: Non-hinted grayscaling is

more readable, faster by a factor 1.8 at 9 x 9 pixel per em, and is able to represent more than
100 distinguishable fonts at coarse resolutions (6 — 12 pt at 72 dpi).

Regarding the grayscaling implementation in Windows’953, it is a progress com-
pared with bitmaps, but a mistake compared with that what could be achieved already.
Hint interpretation makes it too slow and no subpixel positioning is done for characters.
Therefore, word images are still aliased.

The results of the our studies are the following:

1. During reading, human beings focus just at 15% of all text, the rest is perceived as
gray image. Therefore we have experience with gray and are very tolerant.

2. Correct word images are more important for fast reading than correct character
forms.

3. Bitmaps could be used as system fonts,

Graymaps should be used for WYSIWYG in connection with subpixel-positioning.

5. Computer and TV people still believe to belong to a different world with respect to
their needs for the representation of typefaces on displays. I believe the TV people
are right when they use grayscaling with subpixel-positioning.

e

6. Reading is the point, not inspection of characters.
7. Bitmapping can’t reproduce script or black letter typefaces, see Fig. 7.

Sl s S J-Yf&r-s- it e &»"fmj. L.

ke s .'s:é&“‘.,n (A e yww
e .5‘3&%:% F s .Lm.%dfm P
e - SR
iy m%aﬁ n..:f;\s...!m{ mie
au..-x..e.v’w wa niiEs 4%,..*:;,.. ».«wm

P A—-\n,w«m{;k. D B G T th oo
e 2wl ik, T
’wi.f' mwﬁdrh i’ s s

s B opwmsheysees vaor e ‘&w«q g et

Aeze roadEyiine s Sae Mehivn for e

TEL TRy fie der (i tee gl Dote ke b
FRkos, Trniles medke dbe 2ol pl
TR, rAre B mn _Mm%aﬁ Famed
HEd et iag S o i ridonn b ot
ey euf ke Oy wipeEdtnt yboeboon
obes gigriades Frnaiyint g *&Tﬂn.m.i

m!’&wnm—vnm!&w ot e SReedt
sewches Brorws matirrhe Grare Hid ek g
meyhes pams Wy e Trvwe Wﬁfm&’k ¥ ¥
ik peepen e Shrit iy e prrboegt rerrbes
Wy opd e oy préoovhertrs ?:ivwlm b
o Swmbder »fmﬁowvtw el Bevrmpacki it

et s v Wit an ¥ e by, by
bk prieatioy Tehribwe bem o? deeboer Shia
g;m;mz" axfUamre o i L
M%r‘;‘%m 3 somantthy e A5gdeh, i
e et e oh oot oy Coxed A 3B O
Lﬁ frr Fugmrarggibos Sorixe) gl

el s Jroems Seprn sorbe dar st -‘?'%-r' #
Trla ey S bretuyes oo aeeTrre ke
greans ek apt Lrmrwttrerirrnctr o b
i Wi a0
v e e &warmn ek he» £lan
¥ FerPetrmberprihrs Treslbaen pornckal

La e

o -- PR

S e Bty T -Af-— Fmnee. el W

Fig. 7. Left: At 16 x 16 pixel per em bitmapping can’t reproduce script and black letter
typefaces as well as signatures. Right: Grayscaling does it at 16 x 16 quite well.

2.4 Auto-tracing

Between 1981 and 1987, we tried to improve our auto-tracing algorithms. It is a typical
case for pattern recognition and requires several hierarchical steps. Unfortunately, this
problem could not get enough scientific sex-appeal to attract somebody at a university
in order to study it in more depth.

In a first step, we followed all pixels along the contour which were transition points
from black to white in order to get the so-called “short-vectors™ of the scanned figure.
We took 3 x 3 matrices with the actual transition point as center in order to look up

1. where to go and which pixel Lo take as next coordinate of the short-vector contour,

2. how to improve the position of the actual center point in terms of quarters of the
length of the pixel area according to the pattern of the 3 x 3 matrix, and

3. used three consecutive matrices to decide whether an actual white or black contour
pixel should be regarded as noise and deleted.

The next step was edge detection. We used to fit either straight lines or parabolic arcs
piecewise to the edges. These simple geometric shapes can be quickly fitted onto about
5 to 20 pixels of a scanned black figure. The critical point is to distinguish narrow
curves from corners. It is also difficult, but less important, to separate flat curves from
straight lines.

In a last step, we were able to fit the IK-format, PostScript cubic splines, or Tru-
eType quadric splines to the chain of short straight line and parabolic arc segments, We
called our auto-tracing software LINUS. To my opinion, it is the best auto-tracer and
superior to Illustrator for example, but still not good enough. The results are the follow-
ing:

1. Too many auto-tracing programs are sold, and often they have a poor performance.

2. Perfect auto-tracing is very difficult, it belongs to the discipline of artificial intelli-
gence. Unfortunately, human beings are very, very good in this art; and therefore it
seems that scientists either are too fearful to compete or are just misled to look at it
with interest because it is “too easy for us”.

3. Probably, a fourth step is necessary which takes into account that the scanned figure
belongs to a certain class of objects like characters, animals, trees, buildings, clouds
ete.

4. In most of the cases, hand-digitizing is more efficient than today’s auto-tracing
methods (see Fig. 8).

N e
~ j - N/ _‘_/‘I }
A= A
O 7D
- }." “N \ __,/" ’J &
} A o ol e et N gt

Fig. 8. Above: Possible input for digitizing. Left: An auto-traced character has to be fine-tuned.
Right: A hand-digitized characters leaves less points for fine-tuning of the outline.

2.5 Auto-kerning

In typeset text, the space between the characters is used to form words. During the early
nineties, we could hear people saying — especially in the surrounding of Apple Compu-
ter Inc. during the period of TrueType GX — that the space between two characters is
depending on more than just these two characters. Statistically at URW, we could not
find any evidence for it. We tried several times to approach the problem. For example
we looked at triples and quadruples of characters in 19 languages. As a very interesting
side effect from statistics, we obtained the following fact. All European languages writ-
ten with Latin characters have one big point in common: about 1200 kerning pairs are
enough to set 98% or more of ordinary text in one of these languages. Traditional kern-
ing tables consist out of many useless pairs (about 30% from 200 — 300 pairs). They
were included by type people who found them “sexy” to be kerned, but they don’t occur
frequently and sometimes they do never occur in a text.

My personal view is that there are three levels to approximate the ideal spacing of
characters in order to form words:

1. traditional spacing (without any kerning),
2. pair-kerning depending on pairs and point size (Fig. 9), and
3. word-kerning depending on individual words.

Television Television

6 pt, enlarged

Television Television

12 pt, enlarged

Television Television

36 pt

Television Television

72 pt, reduced

TATYMRY TYraadg TATMATTY
T AT T AT *iveaw ,-\..
W AT IR T A o T AYMAY P

VO

Fig. 9. Left: Traditional spacing without kerning. Right: Spacing with auto-kerning is
dependent of point size,

The conclusion is the following: pair-kerning could be supplied with the font as general
data. Word-kerning requires hand-tuning at the client’s site because it depends very
much on his taste and on the specific font and its size.

URW concentrated on automated pair-kerning and the influence of point size. We
called it optical spacing. After a lot of trials, we were led to a model which assumes that
the white space between two characters behaves like a viscose liquid (Fig. 10) which
doesn’t like to spread easily into narrow areas, for example into the inner counter on the
right side of the character “c” [2]. We left aside the atom model where two characters
are attracted as long as they are too far from each other, and get repulsed if they are put
together too closely. We tried hard to make the viscose liquid model fast and achieved a
speed of about 1000 pair-kernings per second in 1994 (kf for kerning on the fly),

At Adobe, we made a comparison between the results of hand-tuned and automatic
pair-kerning and found that deficiencies could be observed with both methods. The defi-
ciencies were 120% more frequent with hand-tuned kerning pairs. The comparison
showed also that test persons are influenced by specific words which contain a certain
pair of characters, due to word-kerning. The results are the following:

1. Kemning tables should have a length of about 1200 — 1500 pairs. The selection of
pairs should be made according to their frequencies in the desired language, not by
type designers.

2. Pair-kerning should and can be automated. It belongs into the computer’s operating
system. It must also be made dependent of point size.

3. Spacing of characters is not only dependent of point size, but also of the normal
reading distance for given target objects (books, screen displays, posters, windows,
signs/directories etc.), see [3], pages 193ff.

4. Kerned typesetting with mixed fonts can only be achieved by automated pair-kern-
ng.

5. Also, Kanji could be kerned automatically both for vertical and for horizontal set-
ting.

Fig. 10. Left: The Atomic model could not describe a “molecule” consisting out of two
characters. Right: The white space between characters behaves like a viscose liquid.

2.6 Micro typography

We should be aware that computer publishing did nothing else than copying photo type-
setting, and that photo-typesetting itself was a copy of hot metal printing.

We know that nearly everybody excuses himself for his ordinary and sometimes
ugly handwriting. Therefore, we as consumers are very tolerant against bad writing. We
did not punish the publishing companies when they escaped from Gutenberg’s stand-
ards in order to make hot metal printing faster.

Photo-typesetting tried to replace hot metal printing. Typesetting was as good as
previously; characters could even touch and overlap each other. This new technology
enabled a linear scaling based only on one font for all the many possible point sizes.
This became the dominant feature of photo-typesetting compared with hot metal.

‘While this happened and made people excited about it, they forgot the advantages of
specially cut point sizes, which integrated optical scaling. Optical scaling vanished
before most of us became aware of it and had a chance of sharing its reading comfort.

Desktop publishing reproduced involuntarily historical typesetting constraints. Cop-
ying and stepping into the boots of the predecessor technology reminds the beginning of
the automobile industry. The first mobiles were coaches! The idea was to replace the
horses. Only later, people recognized that they were able lo do mobiles independently
from former models.

Typographically, we have the fine tuning of fonts which was achieved by Multiple
Masters, but also have more in our hands: the automated fine tuning of other ingredients
such as point size, expanding/condensing, leading, spacing, kerning, and hyphenation.
We can do a ot of virtual trials of typesetting which let us choose from the best and
most convenient solutions for a given page of text.

We can apply subtle changes which the readers can’t see; meaning thal they are not
disturbed during reading. There are two examples: justified text with optical margins as
achieved by the siz-engine (see Fig. 11), and the procedure of chapter-fit.

His Secret

What makes the Gurtenberg Bible
the unattainable masterpiece of the
art of printing? The printing on a
handpress? Not really, because of
nowadays standards, the inking was not
of extraordinary quality. We could order
hand made rag paper also in our day.
Maybe the secret of his beautiful pages
is in the proportions of the columns on
the paper. But this we are also able to
copy. Therefore only the composition
is to be considered.

How could Gutenberg get those even
gray areas of his columns without
disturbing or unsightly holes between
words? His secret: the master achieved
this perfection by using several
characters of different width combined
with many ligatures and abbreviations
in his type case. He finally created
290 characters for the composition of
the 42-line Bible. An enormous time
consuming job to realize his idea of
good typographic lines; the justified
lines of even length, compared to the
flush-left lines of the works of the
famous mediaeval scribes.

But with Johannes Gutenberg’s
unusual ligatures and abbreviations,
today we can't use this principie for
contemporary composition, Now we
can get help through the versatility of
modern electronic software and formats
like the Multiple Masters to receive a
perfect type area in our production, to
get closer to Gutenberg’s standards of
quality: The hzzprogram, named after
Hermann Zapf.

What makes the Gutenberg Bible the
unattainable masterpiece of the art
of printing? The printing on a
handpress? Not really, because of
nowadays standards, the inking was
not of extraordinary quality. We could
order hand made rag paper also in our
day. Maybe the secret of his beautiful
pages is in the proportions of the
columns on the paper. But this we are
also able to copy. Therefore only the
composition is to be considered.
How could Gutenberg get those even
gray areas of his columns without
disturbing or unsightly holes between
words? His secret: the master achieved
this perfection by using several
characters of different width
combined with many ligatures and
abbreviations in his type case. He
finally created 290 characters for the
composition of the 42-line Bible. An
enormous time consuming job to
realize his idea of good typographic
lines: the justified lines of even length,
compared to the flush-left lines of
the works of the famous mediaeval
scribes.

But with Johannes Gutenberg's
unusual ligatures and abbreviations,
today we can’t use this principle for
contemporary composition. Now we
can get help through the versatility
of modern electronic software and
formats like the Multiple Masters
to receive a perfect type area in
our production, to get closer to
Gutenberg's standards of quality: The
hzzprogram, named after Hermann
Zapf.

Fig. 11. Left: hz-program, hyphenation tumed-off, 38 lines, last lines OK. Right: Today’s
software, hyphenation turned-off, 40 lines, last lines of paragraphs either too long or too short.

The basic feature of the Az-engine is to regard all lines of a given paragraph at once
- realizing the “justification per paragraph”. At first, all words or syllables are distrib-
uted to the lines altogether in a manner that each line gets a line length nearest to its
given individually parametrized width (the default column width) [4, 5]. This optimiza-
tion is controlled by minimizing the typographical demerits which are obtained from a
function of the actual deviations from the given line widths and tolerances of the layout
parameters [6].

The initial idea of the chapter-fit is to apply the same kind of automation of typogra-
phy to chapters of text as is available for paragraphs. Whereas, the hiz-engine handles
and optimizes the layout of paragraphs/lines/words/characters, the justification per
chapter handles the layout of chapters/columns/paragraphs/lines in order to optimize the
presentation of text at a higher level. This is obtained by a procedure which scans all
lengths of paragraphs and lengths of columns and balances them altogether in a manner
that each individual column gets an optimal amount of paragraphs which could be man-
aged and fitted with a minimum of demerits into ils given layout. Here are the results:

1. It is not our ignorance, but our tolerance against our bad writing which is the great-
est enemy of typography. Nevertheless, we enjoy reading comfort and consume
typography like any other luxury.

2. Changes to sizes of the magnitude of 2 — 3% are invisible to an unbiased reader.

3. There is a need for the European languages to get digital dictionaries providing
hyphenation with increasing demerits, preferably at least the following three:

— easy like “type-face”,
— normal like “para-graph”, and
— hard like “eas-y”.

4. The Internet needs typography, at the time being it is ignoring it.

5. We have an enormous computing power available. We can calculate the size of
books, pages, and paragraphs in advance and make decisions on the results, e.g.
whether to shorten or to lengthen them in order to achieve better fits. Nobody could
do this before. Even, after having done a composition, we can renew it without los-
ing money or much time in order to optimize our messages.

3 Front edge

Don't replace horse carriages, build new mobiles.

3.1 Kerning, expanding/condensing and scaling on demand

The methods for kerning, expanding/condensing and scaling should be installed in a
way that they give information on demand. With respect to kerning, storage and access
should be provided as a matrix (i, j) where 1 is the preceding and j the following charac-
ter. Both are used to address and call the kerning value. Most of the applications of
today look up a kerning value from a list which makes them very slow when they
should handle kerning tables of lengths larger then 1000.

3.2 Friendly Fonts

At first, one should provide a bundle of helpful statistics [7] and new typeface utilities
because most of the end users are angry about having the possibility of using many
fonts, but no help of the foundries on how to apply them.

There are nine possible utilities:

FontSetting (large sets of helpful pre-produced layouts)

FontInfo (helpful info about a font like setwidth, stemwidth, class...)

FontSearcher (find a font via geometric info)

FontDirector (find alternatives via a data base)

FontUser (statistical information about the use of fonts

FonlSuitor (find fonts via attributes like male, hot, fashioned)

FontMixer ({find fonts which work together)

FontInspector (compare and check fonts with own user-library)

FontFinder (auto-trace a word and compare the result with a library to find the best
match with loaded user fonts)

00 O sheter b

Secondly, friendly fonts should have

— new kerning tables of about 1200 values
— data from above nine utilities
— East European layouts for all fonts

Could the wavelet transform give the characteristic data which one needs to distinguish
them automatically?

3.3 GrayDraw

GrayDraw is thought to be an enlargement of QuickDraw. Instead of displaying bit-
mapped lines and curves, it would represent them grayscaled. This could be a signifi-
cant improvement of the look & feel of drawing programs like CorelDraw, Illustrator
and the professional CAD-applications.

Basically, it needs a video refresh memory having a resolution which is four times
higher (16 times larger memory space). Possibly, a video refresh memory could be used
such as the graphic board proposed in the next section.

3.4 New graphic board

Graphic boards for color screens are wasting memory whenever they have to display
black & white pixels for the representation of texts, especially, if graphic boards have
16 bit or more per pixel.

For such kinds of graphic boards (having more than 16 bit per pixel) we propose the
following improvement which could be designed and constructed easily and which
would not increase production costs.

One adds a flag bit per pixel which could be sel to text-mode or to color-mode. All
areas of the screen which show color will be supplied by 16 bit-pixels as nowadays,

triggered by the color-mode flag. But all areas of the screen which show text in black &
white, are refreshed by 16 bit-pixels which are set in text-mode. These pixels are filled
with the 4 x 4 black & white resolution of a 300 Ipi-device (like color-laser printers or
other color printers). It is assumed that the screen has 75 Ipi, and therefore 4 X 4 bits are
sent to a LUT (look-up table) in order to get on the fly the appropriate gray-valued pixel
for the screen.

3.5 MultiType

MultiType contains also the methods for expanding/condensing according to estab-
lished typographic rules. MultiType should also include optical scaling and auto-kern-
ing.

Regarding the immense efforts for the production of MultipleMasters (0.5 — 1.0
Man year per MM) (8], I propose either an automated production of MMs or the addi-
tion of an extension to the MM-interpreting software.

Automated production would mean using IK or another program for digitizing and
interpolating typeface weight. In any case, the production of two weights is
unavoidable. Automated production would also mean automated production of
expanded and condensed versions, automated production of three masters for optical
scaling (6pt, 12pt, 72pt), and using F for the automatic generation of on demand
kerning.

Extension to a type manager. The methods for expanding and condensing as well as the
methods for optical scaling can be implemented into an Type Manager. It would then be
possible to load a MM-font consisting of two weights only, and still be able to make the
typical three dimensional interpolation. It would also be possible to make two
dimensional interpolations on the basis of just one font (width and point size).

3.6 Page description

Why shouldn’t we carry x-coordinates and some layout parameters in front of each
character? Think about the problems which arise on the receiver’s side if a specially
requested font is not available. Basically, all receivers have some sort of core fonts,
Using one of them according to a general information like regular/italic, Roman/Gro-
tesque or Script could achieve at least a proper resemblance with the original layout.

3.7 Masters

Masters are layouts for diverse documents or document parts like templates or forms. At
the same time, they actively guide the user’s actions and enable them to focus on the
few additional needed steps and parameters. Below a few examples:

LetterMaster is a program which can be used in order to write letters at home. It uses hz
and grayscaling for display. It has a master-driven GUI, except for the editing process. It

takes a Master out of a large set in order to layout and “individualize” the letter. The
user just selects the following three features: Master, number of pages, typeface.

AddressMaster is an application which fits an address of given text and number of lines
in an optimal manner into a given rectangle. Automated features for expanding/
condensing, optical scaling and plus/minus kerning could be used without destroying
some possible general rules of typography within a customer’s layout.

LineMaster could be a stand-alone product and provide headlines of text with geometric
distortions (circle, cylinder, globe, ellipse), contouring, shadowing, rounding, and inter-
section (hidden-line technology, also called set-theory for characters).

AdMaster comprises LineMaster. The objects are positioned in a hierarchical order rela-
tively to each other. This gives a production orientated, very practical application.

VideoMaster works on master layouts for various kinds of titles (e.g. closing sequences
with title and credits for clips/movies), it provides a preview in real-time. The fast
grayscaling enables to generate a title of a length of 10 TV-frames in 20 seconds using
subpixel positioning in order to avoid flickering on interlaced 50 Ipi screens.

References

1. Peter Karow: Digital Typefaces; Springer-Verlag, Berlin Heidelberg New York London Paris
Tokyo, 1994, ISBN 3-540-56509-4

2. URW: IKARUS brochure, Hamburg, 1983

3. Peter Karow: Font technology; Springer-Verlag, Berlin Heidelberg New York London Paris
Tokyo, 1994, ISBN 3-540-57223-6

4, Donald E. Knuth, Michael F. Plass, “Breaking paragraphs into lines”, Software-Pratice &
Experience, 11/11), Nov. 1982, 1119-1184.

5. Donald E. Knuth, The TEX Book, Addison-Wesley Publishing Company, Reading, Massa-
chusetts, 1984, reprinted as Vol. A of Computers & Typesetting, 1986

6. URW: hz-program brochure, Hamburg, 1993
7. Peter Karow: Typeface Statistics; URW Verlag, Hamburg, 1993, ISBN 3-926515-08-2

8. MultipleMasters are a product of Adobe Systems Inc., San Jose, California.

