Chapter 6: Formal Relational Query Languages

Database System Concepts, $6^{\text {th }}$ Ed.
©Silberschatz, Korth and Sudarshan
See www.dlb-book.com for conditions on re-use

Chapter 6: Formal Relational Query Languages

- Relational Algebra
- Tuple Relational Calculus
- Domain Relational Calculus

Relational Algebra

- Procedural language
- Six basic operators
- select: σ
- project: Π
- union: \cup
- set difference: -
- Cartesian product: \times
- rename: ρ
- The operators take one or two relations as inputs and produce a new relation as a result.

Select Operation - Example

- Relation r

A	B	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- $\sigma_{\mathrm{A}=\mathrm{B} \wedge \mathrm{D}>5}(\mathrm{r})$

A	B	C	D
α	α	1	7
β	β	23	10

Select Operation

- Notation: $\sigma_{p}(r)$
- p is called the selection predicate
- Defined as:

$$
\sigma_{p}(\boldsymbol{r})=\{t \mid t \in r \text { and } p(t)\}
$$

Where p is a formula in propositional calculus consisting of terms connected by conjunctions: $\wedge($ and $), \vee($ or $), \neg($ not $)$

```
formula := term
        term <conjunction> term
        ( term )
term := expr
        expr <op> expr
        ( expr )
expr := attribute
        constant
<op> is one of: =, \not=,>, \geq, <, \leq
```

- Example of selection:

$$
\sigma_{\text {dept_name=‘Physics’ }} \text { (instructor) }
$$

Project Operation - Example

- Relation r :

A	B	C
α	10	1
α	20	1
β	30	1
β	40	2

- $\Pi_{\mathrm{A}, \mathrm{C}}(r)$

A	C			
α	1			
α	1			
β	1			
β	2	$=$	A	C
:---	:---			
α	1			
β	1			
β	2			

Project Operation

- Notation:

$$
\Pi_{A_{1}, A_{2}, \ldots, A_{k}}(r)
$$

where A_{1}, A_{2} are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the dept_name attribute of instructor
$\Pi_{I D, \text { name, salary }}$ (instructor)

Union Operation - Example

- Relations r, s :

A	B
α	1
α	2
β	1

A	B
α	2
β	3
s	

- $r \cup s:$

A	B
α	1
α	2
β	1
β	3

Union Operation

- Notation: $r \cup s$
- Defined as:

$$
r \cup s=\{t \mid t \in r \text { or } t \in s\}
$$

- For $r \cup s$ to be valid.

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (example: $2^{\text {nd }}$ column of r deals with the same type of values as does the $2^{\text {nd }}$ column of s)

- Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both

$$
\begin{aligned}
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester="Fall" }} \wedge \text { year=2009 }(\text { section })\right) \cup \\
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester="Spring" }} \wedge \text { year=2010 }(\text { section })\right)
\end{aligned}
$$

Set difference of two relations

- Relations r, s :

A	B
α	2
β	3
s	

- $r-s$:

A	B
α	1
β	1

Set Difference Operation

- Notation $r-s$
- Defined as:

$$
r-s=\{t \mid t \in r \text { and } \mathrm{t} \notin s\}
$$

- Set differences must be taken between compatible relations.
- $\quad r$ and s must have the same arity
- attribute domains of r and s must be compatible
- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

$$
\begin{aligned}
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester="Fall" }} \wedge \text { year=2009 }(\text { section })\right)- \\
& \Pi_{\text {course_id }}\left(\sigma_{\text {semester="Spring" }} \wedge \text { year=2010 }(\text { section })\right)
\end{aligned}
$$

Cartesian-Product Operation - Example

- Relations r, s :

A	B
α	1
β	2
r	

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b
s		

- $r \times s:$

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian-Product Operation

- Notation $r \times s$
- Defined as:

$$
r \times s=\{t q \mid t \in r \text { and } q \in s\}
$$

- Assume that attributes of $r(R)$ and $s(S)$ are disjoint.
- That is, $R \cap S=\varnothing$.
- If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{\mathrm{A}=\mathrm{C}}(r \times s)$
- $r \times s$

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

- $\sigma_{\mathrm{A}=\mathrm{C}}(r \times s)$

A	B	C	D	E
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Rename Operation

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
- Allows us to refer to a relation by more than one name.
- Example:

$$
\rho_{x}(E)
$$

returns the expression E under the name X

- If a relational-algebra expression E has arity n, then

$$
\rho_{x\left(A_{1}, A_{2}, \ldots, A_{n}\right)}(E)
$$

returns the result of expression E under the name X, and with the attributes renamed to $A_{1}, A_{2}, \ldots, A_{n}$.

Example Query

- Find the largest salary in the university
- Step 1: find instructor salaries that are less than some other instructor salary (i.e. not maximum)
- using a copy of instructor under a new name d
- $\Pi_{\text {instructor.salary }}$ ($\sigma_{\text {instructor.salary }}$ < d.salary (instructor $\times \rho_{d}$ (instructor)))
- Step 2: Find the largest salary
- $\Pi_{\text {salary }}$ (instructor) -

$$
\begin{array}{r}
\Pi_{\text {instructor.salary }}\left(\sigma_{\text {instructor.salary }}\right. \text { d.salary } \\
\\
\left(\text { instructor } \times \rho_{d}(\text { instructor })\right)
\end{array}
$$

Example Queries

- Find the names of all instructors in the Physics department, along with the course_id of all courses they have taught
- Query 1

$$
\begin{aligned}
& \prod_{\text {instructor.ID,course_id }}\left(\sigma_{\text {dept_name=‘Physics' }}(\right. \\
& \left.\left.\sigma_{\text {instructor.ID=teaches.ID }}(\text { instructor } \times \text { teaches })\right)\right)
\end{aligned}
$$

- Query 2
$\prod_{\text {instructor.ID,course_id }}$ ($\sigma_{\text {instructor.ID=teaches.ID }}$ (

$$
\left.\left.\sigma_{\text {dept_name='Physics' }}(\text { instructor }) \times \text { teaches }\right)\right)
$$

Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
- A relation in the database
- A constant relation
- Let E_{1} and E_{2} be relational-algebra expressions; the following are all relational-algebra expressions:
- $E_{1} \cup E_{2}$
- $E_{1}-E_{2}$
- $E_{1} \times E_{2}$
- $\sigma_{p}\left(E_{1}\right), P$ is a predicate on attributes in E_{1}
- $\Pi_{S}\left(E_{1}\right), S$ is a list consisting of some of the attributes in E_{1}
- $\rho_{x}\left(E_{1}\right), x$ is the new name for the result of E_{1}

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Outer join
- Assignment

Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:
- $r \cap s=\{t \mid t \in r$ and $t \in s\}$
- Assume:
- r, s have the same arity
- attributes of r and s are compatible
- Note: $r \cap s=r-(r-s)=s-(s-r)$

Set-Intersection Operation - Example

- Relation r, s :

A	B			
α	1			
α	2			
β	1			
r		\quad	A	B
:---:	:---:			
α	2			
β	3			
s				

$\square \quad r \cap s$

A	B
α	2

Natural-Join Operation

- Notation: $\mathrm{r} \bowtie \mathrm{s}$
- Let r and s be relations on schemas R and S respectively. Then, $\mathrm{r} \bowtie \mathrm{s}$ is a relation on schema $R \cup S$ obtained as follows:
- Consider each pair of tuples t_{r} from r and t_{s} from s.
- If t_{r} and t_{s} have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
, t has the same value as t_{r} on r
- t has the same value as t_{s} on s
- Example:

$$
\begin{aligned}
& R=(A, B, C, D) \\
& S=(E, B, D)
\end{aligned}
$$

- Result schema $=(A, B, C, D, E)$
- $r \bowtie s$ is defined as:

$$
\Pi_{r . A, r . B, r . C, r . D, s . E}\left(\sigma_{r . B=s . B \wedge r . D=s . D}(r \times s)\right)
$$

Natural Join Example

- Relations r, s :

A	B	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b
r			

B	D	E
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	ε
s		

- r』s

A	B	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Natural Join and Theta Join

- Find the names of all instructors in the Comp. Sci. department together with the course titles of all the courses that the instructors teach
- $\prod_{\text {name, title }}\left(\sigma\right.$ dept_name=‘Comp. Sci.' ${ }^{\prime}$ instructor \bowtie teaches \bowtie course))
- Natural join is associative
- (instructor \bowtie teaches) \bowtie course is equivalent to instructor \bowtie (teaches \bowtie course)
- Natural join is commutative
- instructor \bowtie teaches is equivalent to teaches \bowtie instructor
- The theta join operation $r \bowtie_{\theta} s$ is defined as
- $r \bowtie_{\theta} s=\sigma_{\theta}(r \times s)$

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses null values:
- null signifies that the value is unknown or does not exist
- All comparisons involving null are (roughly speaking) false by definition.
- We shall study precise meaning of comparisons with nulls later

Outer Join - Example

- Relation instructor1

ID	name	dept_name
10101	Srinivasan	Comp. Sci.
12121	Wu	Finance
15151	Mozart	Music

- Relation teaches1

ID	course_id
10101	CS-101
12121	FIN-201
76766	BIO-101

Outer Join - Example

- Join
instructor \bowtie teaches

$I D$	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201

■ Left Outer Join instructor \triangle teaches

$I D$	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
15151	Mozart	Music	null

Outer Join - Example

- Right Outer Join
instructor \bowtie^{-}teaches

ID	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
76766	null	null	BIO-101

■ Full Outer Join instructor_ \searrow _ teaches

$I D$	name	dept_name	course_id
10101	Srinivasan	Comp. Sci.	CS-101
12121	Wu	Finance	FIN-201
15151	Mozart	Music	null
76766	null	null	BIO-101

Outer Join using Joins

- Outer join can be expressed using basic operations
- e.g.r \triangle A s can be written as

$$
(r \bowtie s) \cup\left(r-\Pi_{R}(r \bowtie s)\right) \times\{(n u l l, \ldots, n u l)\}
$$

Null Values

- It is possible for tuples to have a null value, denoted by null, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving null is null.
- Aggregate functions simply ignore null values (as in SQL)
- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same (as in SQL)

Null Values

- Comparisons with null values return the special truth value: unknown
- If false was used instead of unknown, then not $(A<5)$ would not be equivalent to $\quad A>=5$
- Three-valued logic using the truth value unknown:
- OR: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown
- AND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
- NOT: (not unknown) = unknown
- In SQL there is a special operator "is null", so " P is null" evaluates to true if predicate P evaluates to unknown
- Result of select predicate is treated as false if it evaluates to unknown

Extended Relational-Algebra-Operations

- Generalized Projection
- Aggregate Functions

Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$
\prod_{F_{1}}, F_{2}, \ldots,{ }_{F_{n}}(E)
$$

- E is any relational-algebra expression
- Each of $F_{1}, F_{2}, \ldots, F_{n}$ are are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation instructor(ID, name, dept_name, salary) where salary is annual salary, get the same information but with monthly salary

$$
\Pi_{I D,} \text { name, dept_name, salary/12 (instructor) }
$$

Aggregate Functions and Operations

- Aggregation function takes a collection of values and returns a single value as a result.
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values
- Aggregate operation in relational algebra

$$
{ }_{G_{1}, G_{2}, \ldots, G_{n}} G_{F_{1}\left(A_{1}\right), F_{2}\left(A_{2}\right), \ldots, F_{m}\left(A_{m}\right)}(E)
$$

E is any relational-algebra expression

- $G_{1}, G_{2} \ldots, G_{n}$ is a list of attributes on which to group (can be empty)
- Each F_{i} is an aggregate function
- Each A_{i} is an attribute name
- Note: Some books/articles use γ instead of \mathcal{G} (Calligraphic \mathcal{G})

Aggregate Operation - Example

- Relation r.

A	B	C
α	α	7
α	β	7
β	β	3
β	β	10

$\square G_{\operatorname{sum}(c)}(\mathrm{r})$

sum(c)

27

Aggregate Operation - Example

- Find the average salary in each department
dept_name \mathcal{G} avg(salary) (instructor)

ID	name	dept_name	salary
76766	Crick	Biology	72000
45565	Katz	Comp. Sci.	75000
10101	Srinivasan	Comp. Sci.	65000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
12121	Wu	Finance	90000
76543	Singh	Finance	80000
32343	El Said	History	60000
58583	Califieri	History	62000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
22222	Einstein	Physics	95000

dept_name	avg
Biology	72000
Comp. Sci.	77333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

Aggregate Functions (Cont.)

- Result of aggregation does not have a name
- Can use rename operation to give it a name
- For convenience, we permit renaming as part of aggregate operation
dept_name \mathcal{G} avg(salary) as avg_sal (instructor)

Modification of the Database

- The content of the database may be modified using the following operations:
- Deletion
- Insertion
- Updating
- All these operations can be expressed using the assignment operator (\leftarrow)

Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$
r \leftarrow r-E
$$

where r is a relation and E is a relational algebra query.

- Example:
- Delete all account records in the Perryridge branch.

$$
\text { account } \leftarrow \text { account }-\sigma_{\text {branch_name }=\text { "Perryridge" (account }) ~}^{\text {a }}
$$

Insertion

- To insert data into a relation, we either:
- specify a tuple to be inserted
- write a query whose result is a set of tuples to be inserted
- in relational algebra, an insertion is expressed by:

$$
r \leftarrow r \cup E
$$

where r is a relation and E is a relational algebra expression.

- The insertion of a single tuple is expressed by letting E be a constant relation containing one tuple.
- Example:
- Insert information in the database specifying that Smith has $\$ 1200$ in account A-973 at the Perryridge branch.

```
account \leftarrow account \cup {("A-973","Perryridge", 1200)}
depositor }\leftarrow\mathrm{ depositor }\cup{("Smith", "A-973")
```


Updating

- A mechanism to change a value in a tuple without charging all values in the tuple
- Use the generalized projection operator to do this task

$$
r \leftarrow \prod_{F_{1}, F_{2}, \ldots, F_{i},}(r)
$$

- Each F_{i} is either
- the $l^{\text {th }}$ attribute of r, if the $l^{\text {th }}$ attribute is not updated, or,
- if the attribute is to be updated F_{i} is an expression, involving only constants and the attributes of r, which gives the new value for the attribute
- Example:
- Make interest payments by increasing all balances by 5 percent.
account $\leftarrow \Pi_{\text {account_number, branch_name, balance }}{ }^{\star} 1.05$ (account)

Multi-set Relational Algebra

- Pure relational algebra removes all duplicates
- e.g. after projection
- Multi-set relational algebra retains duplicates, to match SQL semantics
- SQL duplicate retention was initially for efficiency, but is now a feature
- Multi-set relational algebra defined as follows
- selection: has as many duplicates of a tuple as in the input, if the tuple satisfies the selection
- projection: one tuple per input tuple, even if it is a duplicate
- cross product: If there are m copies of $t 1$ in r, and n copies of $t 2$ in s, there are $m \times n$ copies of $t 1 . t 2$ in $r \times s$
- Other operators similarly defined
, E.g. union: $m+n$ copies, intersection: $\min (m, n)$ copies difference: $\max (0, m-n)$ copies

Relational Algebra and SQL

- Assume the following expressions in multi-set relational algebra:
- $\Pi_{A 1}, . ., A n\left(\sigma_{P}(r 1 \times r 2 \times \ldots \times r m)\right)$
is equivalent to the following expression in SQL
- select $A 1, A 2, . . A n$ from $r 1, r 2, \ldots, r m$ where \mathbf{P}
$\left.\mathrm{A}_{\mathrm{A}, \mathrm{A} 2} \mathcal{G}_{\operatorname{sum}(A 3)}\left(\sigma_{P}(r 1 \times r 2 \times \ldots \times r m)\right)\right)$
is equivalent to the following expression in SQL
- select $A 1, A 2, \operatorname{sum}(A 3)$ from $r 1, r 2, \ldots, r m$ where \mathbf{P} group by $A 1, A 2$

SQL and Relational Algebra

- More generally, the non-aggregated attributes in the select clause may be a subset of the group by attributes, in which case the equivalence is as follows:
select $A 1$, sum (A3)
from $r 1, r 2, \ldots, r m$
where \mathbf{P}
group by A1, A2
is equivalent to the following expression in multiset relational algebra

$$
\Pi_{A 1, \operatorname{sumA3}}\left(\mathrm{~A} 1, \mathrm{~A} 2 \mathcal{G} \operatorname{sum}(A 3) \text { as } \operatorname{sumA3}\left(\sigma_{P}(r 1 \times r 2 \times \ldots \times r m)\right)\right)
$$

Tuple Relational Calculus

Tuple Relational Calculus

- A nonprocedural query language, where each query is of the form

$$
\{t \mid P(t)\}
$$

- It is the set of all tuples t such that predicate P is true for t
- t is a tuple variable, $t[A$] denotes the value of tuple t on attribute A
- $t \in r$ denotes that tuple t is in relation r
- P is a formula similar to that of the predicate calculus

Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., $<, \leq,=, \neq,>, \geq$)
3. Set of connectives: and (\wedge), or (\vee), not (\neg)
4. Implication $(\Rightarrow): x \Rightarrow y$, if x if true, then y is true

$$
x \Rightarrow y \equiv \neg x \vee y
$$

5. Set of quantifiers:

- $\exists t \in r(Q(t)) \equiv$ "there exists" a tuple t in relation r such that predicate $Q(t)$ is true
- $\forall t \in r(Q(t)) \equiv Q$ is true "for all" tuples t in relation r

Example Queries

- Find the ID, name, dept_name, salary for instructors whose salary is greater than $\$ 80,000$

$$
\{t \mid t \in \text { instructor } \wedge t[\text { salary }]>80000\}
$$

■ As in the previous query, but output only the ID attribute value

$$
\{t \mid \exists s \in \text { instructor }(t[I D]=s[I D] \wedge s[\text { salary }]>80000)\}
$$

Notice that a relation on schema (ID) is implicitly defined by the query

Example Queries

- Find the names of all instructors whose department is in the Watson building

$$
\begin{gathered}
\{t \mid \exists s \in \text { instructor }(t[\text { name }]=s[\text { name }] \\
\wedge \exists u \in \text { department }(u[\text { dept_name }]=s[\text { dept_name }] \\
\wedge u[\text { building }]=\text { "Watson" }))\}
\end{gathered}
$$

- Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

$$
\begin{gathered}
\{t \mid \exists s \in \operatorname{section}(t[\text { course_id }]=s[\text { course_id }] \wedge \\
s[\text { semester }]=\text { "Fall" } \wedge s[\text { year }]=2009 \\
\mathrm{v} \exists u \in \operatorname{section~}(t[\text { course_id }]=u[\text { course_id }] \wedge \\
u[\text { semester }]=\text { "Spring" } \wedge u[\text { year }]=2010)\}
\end{gathered}
$$

Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, $\{\mathrm{t} \mid \neg t \in r\}$ results in an infinite relation if the domain of any attribute of relation r is infinite
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression $\{t \mid P(t)\}$ in the tuple relational calculus is safe if every component of t appears in one of the relations, tuples, or constants that appear in P
- NOTE: this is more than just a syntax condition.
- E.g. $\{t \mid t[A]=5 \vee$ true $\}$ is not safe --- it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in P.

Universal Quantification

- Find all students who have taken all courses offered in the Biology department
- $\{t \mid \exists r \in$ student $(t[I D]=r[I D]) \wedge$

$$
\begin{gathered}
(\forall u \in \text { course }(u[\text { dept_name }]=\text { "Biology" } \Rightarrow \\
\exists s \in \text { takes }(t[I D]=s[I D] \wedge \\
s[\text { course_id] }=u[\text { course_id }))\}
\end{gathered}
$$

- Note that without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.

Domain Relational Calculus

Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$
\left.\left\{<x_{1}, x_{2}, \ldots, x_{n}\right\rangle \mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

- $x_{1}, x_{2}, \ldots, x_{n}$ represent domain variables
- P represents a formula similar to that of the predicate calculus

Example Queries

- Find the ID, name, dept_name, salary for instructors whose salary is greater than $\$ 80,000$
- $\{<i, n, d, s>\mid<i, n, d, s>\in$ instructor $\wedge s>80000\}$
- As in the previous query, but output only the $I D$ attribute value
- $\{<i>\mid<i, n, d, s>\in$ instructor $\wedge s>80000\}$
- Find the names of all instructors whose department is in the Watson building

$$
\left.\left.\left.\left.\begin{array}{rl}
\{<n> & \mid \exists i, d, s(<i, n, d, s>\in \text { instructor } \\
& \wedge \exists b, a(<d, b, a>\in d e p a r t m e n t
\end{array}\right) b=\text { "Watson" }\right)\right)\right\}
$$

Example Queries

■ Find the set of all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or both

$$
\begin{gathered}
\{<c>\mid \exists a, s, y, b, r, t(<c, a, s, y, b, t>\in \text { section } \wedge \\
s=\text { "Fall" } \wedge y=2009) \\
\vee \exists a, s, y, b, r, t(<c, a, s, y, b, t>\in \operatorname{section}] \wedge \\
s=\text { "Spring" } \wedge y=2010)\}
\end{gathered}
$$

This case can also be written as

$$
\{<c>\mid \exists a, s, y, b, r, t(<c, a, s, y, b, t>\in \operatorname{section} \wedge
$$

$$
((s=\text { "Fall" } \wedge y=2009) \vee(s=\text { "Spring" } \wedge y=2010))\}
$$

■ Find the set of all courses taught in the Fall 2009 semester, and in the Spring 2010 semester

$$
\begin{gathered}
\{<c>\mid \exists a, s, y, b, r, t(<c, a, s, y, b, t>\in \text { section } \wedge \\
s=\text { "Fall" } \wedge y=2009) \\
\wedge \exists a, s, y, b, r, t(<c, a, s, y, b, t>\in \text { section }] \wedge \\
s=\text { "Spring" } \wedge y=2010)\}
\end{gathered}
$$

Safety of Expressions

The expression:

$$
\left\{<x_{1}, x_{2}, \ldots, x_{n}>\mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from dom (P) (that is, the values appear either in P or in a tuple of a relation mentioned in P).
2. For every "there exists" subformula of the form $\exists x\left(P_{1}(x)\right)$, the subformula is true if and only if there is a value of x in $\operatorname{dom}\left(P_{1}\right)$ such that $P_{1}(x)$ is true.
3. For every "for all" subformula of the form $\forall_{\mathrm{x}}\left(P_{1}(x)\right)$, the subformula is true if and only if $P_{1}(x)$ is true for all values x from $\operatorname{dom}\left(P_{1}\right)$.

Universal Quantification

- Find all students who have taken all courses offered in the Biology department
- $\{<i>\mid \exists n, d, t c(<i, n, d, t c>\in$ student \wedge
($\forall c i, t i, d n, c r(<c i, t i, d n, c r>\in$ course $\wedge d n=" B i o l o g y "$
$\Rightarrow \exists$ si, se, $y, g(<i, c i$, si, se, $y, g>\in$ takes $))\}$
- Note that without the existential quantification on student, the above query would be unsafe if the Biology department has not offered any courses.
* Above query fixes bug in page 246, last query

End of Chapter 6

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

