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Introduction 
 

• Association  Rule Mining 
– Rule Ant(ecendent) => Con(sequent)  X  => Y 
– High Support                                    a/(a+b+c+d) 
– High Confidence                               a/(a+b) 
– Supp > minSupp => frequent itemsets 
– Conf > minConf => rules 
– Apriori algorithm – k-1 itemsets => k itemsets 

 
 

 

• Rare Association  Rule Minining 
– Low Support 
– High Confidence 
– Supp < minSupp => rare itemsets 
– Conf > minConf =>  “rare” rules 
– Apriori algorithm extension or modification 
– Seeking frequent patterns with occurrences before rare events  
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Multiple Support Apriori Algorithm 
MSApriori 

• Support depends on frequency of data items 
• Minimum item support MIS for data item i 
 MIS(i) = MI(i) if MI(i) > LS 
      = LS otherwise 
• MI(i) =  β * f(i) 
• 0 <= β <= 1 
• f(i)   data frequency  
• LS    least support 

 

 



Relative Support Apriori Algorithm 
RSAA 

• Significant rare data is one which its frequency in the database does not 
satisfy the minimum support but appears associated with the specific 
data in high proportion of its frequency. 
 

• 1st support – used in process of frequent items discovery 
• 2nd support / used in process of rare items discovery 
• 1st support > 2nd support 
   
• Relative support  
 Rsup(i1,…ik) =  max{ sup(i1,…ik)/sup(i1) ,…, sup(i1,…ik)/sup(ik) } 
  
• Group of itemsets satisfied 1st support  
• Group of itemsets not satisfied 1st but satisfied 2nd support  
• Iteration process to generate  “rare itemset” candidates 

 

 

 



Rare Association Rule Mining via Transaction 
Clustering 

• Pre-process by clustering transactions before performing association 
rule mining 

– Common set of large items – min support treshold 
– Seed Generation Phase  - based on relative support 
– Allocation Phase – based on Jaccard similarity 

 
• Apriori-Inverse on clusters generated 

 
• minsup < sup(i) < maxsup 

 

 

 



Temporal Sequence Associations for Rare Events 
Predicting Rare Events in Temporal Domains 

• Collection of entities εi  є E  (i=1,...,n)  
• Event sequence – si = { (ei1, ti1) ,…, (eij, tij),…, (eini,

 tini
) }, 

  (eij event type, ti1 timestamp) 

• Target events T – events of given type from E  
• Time window [ts,te], constant length 
• Windowed segment  { (eip, tip) ,…, (eiq, tiq) },  

ts <=tip <= tip+1 <= … <= tiq <=te  

• Target segment – window segment with first occurrence time of target 
event 

• Supp(p) in T  
• Risk ratio 
• Interesting patterns for target events 
• Seeking frequent patterns for occurences of rare events 

 
 
 

 
 

 

 
 



Mining Co-Location Patterns with Rare Events 
from Spatial Datasets 

• Co-Location Pattern C – group of spatial feature/events that are 
frequently co-located in the same region. 

• Spatial feature f is rare if its instances are substantially less than those 
of other features in a co-location. 
 

• Participation ratio - Wherever the feature f is observed, with 
probability pr(C,f), all other features in C are also observed in neighbor-
set.    

• Participation index  - Wherever any feature from C is observed, with 
probability of at least PI(C), all other features in C can be observed in 
neighbor-set. 

•   
• Seeking of Co-Location Patterns 
• Modification of Apriori algorithm 
• maxPrune algorithm  

 

 
 
 

 
 

 

 



 
Questions ? 
 
 
Thank you for your attention. 
 

 

 

 

 


