
ASN.1:
Introduction

Zdeněk Říha

ASN.1

 Abstract Syntax Notation 1
 notation for describing abstract types and

values
 Defined in ITU-T X.680 … X.695
 Used in many file formats, including crypto
 Public keys, private keys
 Certificate requests, certificates
 Digital signatures, padding, encrypted files

ASN.1

 Allows format/storage/transmission of data
 Compatible among many applications
 Not dependent on HW platform
 E.g. little/big endian

 Not dependent on operating system

 Simple & Structured types
 Multiple encoding rules (methods)

ASN.1 – Types

ASN.1 – simple types
 Integer

 signed integer (there’s no unsigned integer)
 Bit string

 The number of bits does not have to be a multiple of 8
 Octet string

 an arbitrary string of octets
 NULL

 No data (used in parameters)
 PringtableString, IA5String, UTF8String, …

 Strings – the sets of characters are various
 UTCTime

 Time

ASN.1 – OID type

 Object identifier (OID)
 Sequence of integer components that identify an

object
 Assigned in a hierarchical way

 Example
 sha-1WithRSAEncryption = 1.2.840.113549.1.1.5
 iso(1) member-body(2)

us(840) rsadsi(113549)
pkcs(1) pkcs-1(1) 5

ASN.1 – structured types
 SEQUENCE

 an ordered collection of one or more types
 SEQUENCE OF

 an ordered collection of zero or more occurrences of a
given type

 SET
 an unordered collection of one or more types

 SET OF
 an unordered collection of zero or more occurrences of a

given type

ASN.1 Encoding Rules
 XML – oriented formats

 XER (XML Encoding Rules)
 Byte-oriented formats

 BER (Basic Encoding Rules)
 CER (Canonical Encoding Rules) – subset of BER
 DER (Distinguished Encoding Rules) – subset of BER

 Used for crypto files

 Bit-oriented formats
 PER (Packed Encoding Rules)

 Verbose, human readable formats
 GSER (Generic String Encoding Rules)

BER encoding
 TLV – Tag Length Value
 All the data is encoded using a simple TLV format
 Tag – what kind of data it is
 Length – the length of the data
 Value – the data itself

 Example
 02 01 05 [hexadecimal values]
 Tag – Integer
 Length of data – 1 byte
 Data: (positive integer) 5

Nested data

 SEQUENCE is similar to struct/record
 30 09 02 01 05 04 02 FF FF 05 00
 30 09 – sequence of length 9 bytes
 02 01 05 – integer 5
 04 02 FF FF – octet string FF FF
 05 00 – NULL (no data)

BER tags
 Tag encoding

 Class

 Tag number
 Bits 1-5
 If all bits are 1 then the tag continues in the following byte(s)

Constr
ucted?classclass

Tag #

BER length

 length >=0 && length <= 127
 The length is coded directly
 E.g. ’05’

 Otherwise the bit 8 is set, bits 1-7 code the
number of bytes that specify the length
 E.g. 255 -> ‘81’ ‘FF’
 E.g. 256 -> ’82’ ‘01’ ‘00’ or also ’83’ ‘00’ ‘01’ ‘00’
 BER x DER

 ‘80’ is “indefinite” length
 Not allowed in DER

BER value

 The data itself
 Dependent on data type
 Integer: signed – e.g. 128 -> ’00 80’
 Octet string: directly the data
 Bit string: number of unused bits + padded bit

string to a multiple of 8 bits (padding is at the end)
 UTCTime: string of one of the forms

First look at the binary DER file

 CSCA_CZE.crt

DER vs. PEM
 PEM
 Privacy Enhanced Mail

 PEM as such not used, but formats still used
 Textual formats
 Practical for transport channels where full 8bit data can

be damaged
 PEM is base64 coded DER enveloped with
 -----BEGIN SOMETHING-----
 -----END SOMETHING-----
 Where SOMETHING is CERTIFICATE/PKCS7/KEY…

Sample PEM file

 CSCA_CZE.pem

ASN.1 viewers

 Unber (part of asn1c)
 Openssl asn1parse
 ASN.1 Editor
 …

OpenSSL asn1parse

 CSCA_CZE.crt

unber  CSCA_CZE.crt

Manual viewing/processing
 30 82 04 f2

 SEQUENCE
 length 1266B

 30 82 03 26
 SEQUENCE
 length 806B

 A0 03
 CONTEXT

SPECIFIC 0
 Length 3B

 02 01 02
 INTEGER: 2

 CSCA_CZE.crt

ASN.1 Editor  CSCA_CZE.crt

ASN.1 Grammar

 To understand the structure (what is the
meaning of particular fields) we need ASN.1
grammar

