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1 Introduction

This document provides recommendations for the implementation of public-key
cryptography based on the RSA agorithm [42], covering the following aspects:

* Cryptographic primitives

» Encryption schemes

» Signature schemes with appendix

* ASN.1 syntax for representing keys and for identifying the schemes

The recommendations are intended for general application within computer and
communications systems, and as such include a fair amount of flexibility. It is expected
that application standards based on these specifications may include additional
constraints. The recommendations are intended to be compatible with the standard |IEEE-
1363-2000 [26] and draft standards currently being developed by the ANSI X9F1 [1] and
|EEE P1363 [27] working groups.
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This document supersedes PKCS #1 version 2.0 [44] but includes compatibl e techniques.

The organization of this document is as follows:

2

d

Section 1 is an introduction.

Section 2 defines some notation used in this document.

Section 3 defines the RSA public and private key types.

Sections 4 and 5 define several primitives, or basic mathematical operations. Data
conversion primitives are in Section 4, and cryptographic primitives (encryption-
decryption, signature-verification) are in Section 5.

Sections 6, 7, and 8 deal with the encryption and signature schemes in this document.
Section 6 gives an overview. Along with the methods found in PKCS #1 v1.5, Section

7 defines an OAEP-based [3] encryption scheme and Section 8 defines a PSS-based
[4][5] signature scheme with appendix.

Section 9 defines the encoding methods for the signature schemes in Section 8.

Appendix A defines the ASN.1 syntax for the keys defined in Section 3 and the
schemesin Sections 7 and 8.

Appendix B defines the hash functions and the mask generation function used in this
document, including ASN.1 syntax for the techniques.

Appendix C gives an ASN.1 module.
Appendices D, E, F and G cover intellectual property issues, outline the revision

history of PKCS #1, give references to other publications and standards, and provide
general information about the Public-Key Cryptography Standards.

Notation
ciphertext representative, an integer between O and n— 1
ciphertext an octet string
RSA private exponent
additional factor;'s CRT exponent, a positive integer such that

e-d=1(mod(ri—1)),i=3,...,u

Copyright © 2002 RSA Security Inc.
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dP

dQ

EM

emBits
emLen
GCD (., .)
Hash

hLen

maskLen
MGF
mgfSeed

mLen

p's CRT exponent, a positive integer such that
e-dP=1 (mod(p-1))

g's CRT exponent, a positive integer such that
e-dQ=1 (mod(q- 1))

RSA public exponent

encoded message, an octet string

(intended) length in bits of an encoded mes&ide

(intended) length in octets of an encoded mesEbye

greatest common divisor of two nonnegative integers

hash function

output length in octets of hash function Hash

length in octets of the RSA modulnos

RSA private key

optional RSAES-OAEP label, an octet string

least common multiple of a list of nonnegative integers

message representative, an integer between 0 -arid

message, an octet string

MGF output, an octet string

(intended) length of the octet stringask

mask generation function

seed from whichmask is generated, an octet string

length in octets of a messalge

RSA modulusn=ry -rp .. -r,,u=2

RSA public key

first two prime factors of the RSA modulns

Copyright © 2002 RSA Security Inc.
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ginv CRT coefficient, a positive integer less than p such that
g-qglnv=1 (modp)

ri prime factors of the RSA modulus includingr; = p, r, =g, and
additional factors if any

S signature representative, an integer between antl

S signature, an octet string

sLen length in octets of the EMSA-PSS salt

t; additional prime factor;’'s CRT coefficient, a positive integer less

thanr; such that

ri-rp- ... rip-t;=1(modr),i=3,...,u
u number of prime factors of the RSA modulug; 2
X a nonnegative integer
X an octet string correspondingxo
xLen (intended) length of the octet striXg
0x indicator of hexadecimal representation of an octet or an octet

string; “Ox48” denotes the octet with hexadecimal value 48;
“(0x)48 09 0Oe” denotes the string of three consecutive octets with
hexadecimal value 48, 09, and Oe, respectively

A(n) LCM (r1—21,r,—-1, ... r,—1)
O bit-wise exclusive-or of two octet strings
00 ceiling function;XUis the smallest integer larger than or equal to

the real numbex

I concatenation operator

congruence symbod = b (modn) means that the integardivides
the integema—b

Note. The CRT can be applied in a non-recursive as well as a recursive way. In this document a recursive
approach following Garner’s algorithm [22] is used. See also Note 1 in Section 3.2.

Copyright © 2002 RSA Security Inc.
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3 Keytypes

Two key types are employed in the primitives and schemes defined in this document: RSA
public key and RSA private key. Together, an RSA public key and an RSA private key
form an RSA key pair.

This specification supports so-called “multi-prime” RSA where the modulus may have
more than two prime factors. The benefit of multi-prime RSA is lower computational cost
for the decryption and signature primitives, provided that the CRT (Chinese Remainder
Theorem) is used. Better performance can be achieved on single processor platforms, but
to a greater extent on multiprocessor platforms, where the modular exponentiations
involved can be done in parallel.

For a discussion on how multi-prime affects the security of the RSA cryptosystem, the
reader is referred to [49].
3.1 RSA publickey
For the purposes of this document, an RSA public key consists of two components:
n the RSA modulus, a positive integer
e the RSA public exponent, a positive integer

In avalid RSA public key, the RSA modulus is a product oti distinct odd primes;, i =
1,2, ...,u, whereu = 2, and the RSA public exponeais an integer between 3 and- 1
satisfying GCD ¢, A(n)) = 1, whereA(n) = LCM (r, — 1, ...,r, — 1). By convention, the
first two primesr; andr, may also be denotgrandq respectively.

A recommended syntax for interchanging RSA public keys between implementations is
given in Appendix A.1.1; an implementation’s internal representation may differ.
3.2 RSA privatekey

For the purposes of this document, an RSA private key may have either of two
representations.

1. The first representation consists of the pajrd), where the components have the
following meanings:

n the RSA modulus, a positive integer

d the RSA private exponent, a positive integer

Copyright © 2002 RSA Security Inc.
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2. The second representation consists of a quintuple (p, q, dP, dQ, ginv) and a (possibly
empty) sequence of triplets (r;, di, t), i =3, ...,u, one for each prime not in the quintuple,
where the components have the following meanings:

p the first factor, a positive integer

q the second factor, a positive integer

dpP the first factor's CRT exponent, a positive integer

dQ the second factor's CRT exponent, a positive integer

ginv the (first) CRT coefficient, a positive integer

ri thei™ factor, a positive integer
di thei™ factor's CRT exponent, a positive integer
t; thei™ factor's CRT coefficient, a positive integer

In avalid RSA private key with the first representation, the RSA modutus the same as
in the corresponding RSA public key and is the productditinct odd primes;, i = 1,
2, ..., U, whereu > 2. The RSA private exponeutis a positive integer less tham
satisfying

e-d=1 (modA(n)),

wheree is the corresponding RSA public exponent () is defined as in Section 3.1.

In a valid RSA private key with the second representation, the two facéordq are the
first two prime factors of the RSA moduluas(i.e.,r; andry), the CRT exponentdP and
dQ are positive integers less thaandq respectively satisfying

e-dP=1 (mod(p —-1))
e-dQ=1(mod(q-1)),

and the CRT coefficient glnvis a positive integer less than p satisfying
g-qglnv=1 (modp) .

If u> 2, the representation will include one or more tripletsd{, t), i = 3, ...,u. The
factorsr; are the additional prime factors of the RSA moduluSsach CRT exponeidk (i
=3, ...,U) satisfies

e-di=1(mod(-1)).

Each CRT coefficient (i = 3, ...,u) is a positive integer less thgrsatisfying

Copyright © 2002 RSA Security Inc.
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R -ti=1 (modr)),
whereR =r1-r>- ... ri_1.

A recommended syntax for interchanging RSA private keys between implementations,
which includes components from both representations, is given in Appendix A.1.2; an
implementation’s internal representation may differ.

Notes.

1. The definition of the CRT coefficients here and the formulas that use them in the primitives in Section
5 generally follow Garner's algorithm [22] (see also Algorithm 14.71 in [37]). However, for
compatibility with the representations of RSA private keys in PKCS #1 v2.0 and previous versions, the
roles ofp andq are reversed compared to the rest of the primes. Thus, the first CRT coefiicieris
defined as the inverse qfmodp, rather than as the inverseRjfmodr,, i.e., ofp modag.

2. Quisquater and Couvreur [40] observed the benefit of applying the Chinese Remainder Theorem to
RSA operations.

4 Dataconversion primitives

Two data conversion primitives are employed in the schemes defined in this document:
* [20SP - Integer-to-Octet-String primitive

* OS2IP — Octet-String-to-Integer primitive

For the purposes of this document, and consistent with ASN.1 syntax, an octet string is an
ordered sequence of octets (eight-bit bytes). The sequence is indexed from first
(conventionally, leftmost) to last (rightmost). For purposes of conversion to and from
integers, the first octet is considered the most significant in the following conversion
primitives.
41 120SP
I20SP converts a honnegative integer to an octet string of a specified length.
I20SP &, xLen)
Input: X nonnegative integer to be converted

xLen intended length of the resulting octet string

Output: X corresponding octet string of lengthen

Error: “integer too large”

Copyright © 2002 RSA Security Inc.
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Seps.
1. If x=256“", output “integer too large” and stop.
2. Write the integek in its uniquexLen-digit representation in base 256:
X = X en-1 256 + Xy en 2 2562 + L. +xq 256 +xg

where 0< x < 256 (note that one or more leading digits will be zeroif less
than 256-"1).

3. Let the octet X; have the integer value Xy eni for 1 < i < xLen. Output the octet
string

X= Xl Xz XxLen-
42 0OS2P

OS2IP converts an octet string to a nonnegative integer.

0S2IP )

Input: X octet string to be converted

Output: X corresponding nonnegative integer
Seps.

1. Let Xy X2 ... Xy en be the octets of from first to last, and lety en_i be the integer
value of the octet X; for 1 <i < xLen.

2. Let X = Xgren1 256 + Xy en 0 2562 4+ . +X; 256 +Xo.

3. Outputx.

5 Cryptographic primitives

Cryptographic primitives are basic mathematical operations on which cryptographic
schemes can be built. They are intended for implementation in hardware or as software
modules, and are not intended to provide security apart from a scheme.

Four types of primitive are specified in this document, organized in pairs: encryption and
decryption; and signature and verification.

The specifications of the primitives assume that certain conditions are met by the inputs,
in particular that RSA public and private keys are valid.

Copyright © 2002 RSA Security Inc.
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5.1 Encryption and decryption primitives

An encryption primitive produces a ciphertext representative from a message
representative under the control of a public key, and a decryption primitive recovers the
message representative from the ciphertext representative under the control of the
corresponding private key.

One pair of encryption and decryption primitives is employed in the encryption schemes
defined in this document and is specified here: RSAEP/RSADP. RSAEP and RSADP
involve the same mathematical operation, with different keys asinput.

The primitives defined here are the same as IFEP-RSA/IFDP-RSA in IEEE Std 1363-
2000 [26] (except that support for multi-prime RSA has been added) and are compatible
with PKCS#1 v1.5.

The main mathematical operation in each primitive is exponentiation.

511 RSAEP

RSAEP ((n, €), m)

Input: (n, ) RSA public key

m message representative, an integer betweenOandn— 1
Output: C ciphertext representative, an integer between handl
Error: “message representative out of range”

Assumption: RSA public key K, €) is valid
Seps.

1. If the message representatineis not between 0 and — 1, output “message
representative out of range” and stop.

2. Letc=m"modn.

3. Outputc.

512 RSADP
RSADP K, ¢)

Input: K RSA private key, wherK has one of the following forms:

Copyright © 2002 RSA Security Inc.



PKCS#1 v2.1: RSA CRYPTOGRAPHY STANDARD (June 14, 2002) 11

O apair (n,d)

O aquintuple (p, g, dP, dQ, glnv) and a possibly empty sequence
of triplets (rj, di, t),i =3, ...,u

C ciphertext representative, an integer between handl
Output: m message representative, an integer between 0 -arid
Error: “ciphertext representative out of range”

Assumption: RSA private ke is valid
Seps.

1. If the ciphertext representativeis not between 0 and — 1, output “ciphertext
representative out of range” and stop.

2. The message representatimés computed as follows.
a. If the first form @, d) of K is used, let = c modn.

b. If the second formg, g, dP, dQ, glnv) and (;, d;, tj) of K is used, proceed
as follows:

i. Letm =c® modp andm, =c® modg.
i. Ifu>2,letm = ¢l modri, 1 =3, ...,u.
lii. Leth = (m —my) - glnv modp.

Iv. Letm=m+q-h.

v. If u>2,letR=ryand fori = 3 tou do
1. LetR=R-ri_1.
2. Leth=(m —m) -t (modr;).
3. Letm=m+R-h.

3. Outputm.

Note. Step 2.a can be rewritten as a single loop, provided that one reverses the order of p and qg. For
consistency with PKCS #1 v2.0, however, the first two primes p and q are treated separately from the
additional primes.

Copyright © 2002 RSA Security Inc.
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5.2 Signatureand verification primitives

A signature primitive produces a signature representative from a message representative
under the control of a private key, and a verification primitive recovers the message
representative from the signature representative under the control of the corresponding
public key. One pair of signature and verification primitives is employed in the signature
schemes defined in this document and is specified here: RSASP1I/RSAVPL.

The primitives defined here are the same as IFSP-RSA1/IFVP-RSAL in IEEE 1363-2000
[26] (except that support for multi-prime RSA has been added) and are compatible with
PKCS#1v1b5.

The main mathematical operation in each primitive is exponentiation, as in the encryption
and decryption primitives of Section 5.1. RSASP1 and RSAVPL1 are the same as RSADP
and RSAEP except for the names of their input and output arguments; they are
distinguished as they are intended for different purposes.

521 RSASP1
RSASP1 (K, m)
Input: K RSA private key, where K has one of the following forms:

0 apair (n,d)

O a quintuple (p, g, dP, dQ, ginv) and a (possibly empty)

sequence of triplets (ri, d;, i), i =3, ...,u
m message representative, an integer between 0 -arid

Output: S signature representative, an integer between antl
Error: “message representative out of range”

Assumption: RSA private ke is valid
Seps.

1. If the message representatineis not between 0 and — 1, output “message
representative out of range” and stop.

2. The signature representatises computed as follows.
a. If the first form @, d) of K is used, les =m modn.

b. If the second formg, g, dP, dQ, glnv) and (;, d;, tj) of K is used, proceed
as follows:

Copyright © 2002 RSA Security Inc.
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i. Lets,=m™ modpands,=m"?mod q.
i. Ifu>2lees=mdmodr,i=3,...u
lii. Leth=(s1—%) - glnv modp.
iv. Lets=s,+q-h.
v. Ifu >2,letR=r; and fori = 3 tou do
1. LetR=R-ri_1.
2. Leth=(s—9) -t (modr;).
3. Lets=s+R-h.
3. Outputs.

Note. Step 2.a can be rewritten as a single loop, provided that one reverses the order of p and qg. For
consistency with PKCS #1 v2.0, however, the first two primes p and q are treated separately from the
additional primes.

522 RSAVP1

RSAVP1 (0, e),9)

Input: (n, &) RSA public key

S signature representative, an integer between antl
Output: m message representative, an integer between 6 arid
Error: “signature representative out of range”

Assumption:  RSA public key g, €) is valid
Seps:

1. If the signature representatigeis not between O and — 1, output “signature
representative out of range” and stop.

2. Letm=s"modn.

3. Outputm.

Copyright © 2002 RSA Security Inc.
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6 Overview of schemes

A scheme combines cryptographic primitives and other techniques to achieve a particular
security goal. Two types of scheme are specified in this document: encryption schemes
and signature schemes with appendix.

The schemes specified in this document are limited in scope in that their operations
consist only of steps to process data with an RSA public or private key, and do not
include steps for obtaining or validating the key. Thus, in addition to the scheme
operations, an application will typically include key management operations by which
parties may select RSA public and private keys for a scheme operation. The specific
additional operations and other details are outside the scope of this document.

As was the case for the cryptographic primitives (Section 5), the specifications of scheme
operations assume that certain conditions are met by the inputs, in particular that RSA
public and private keys are valid. The behavior of an implementation is thus unspecified
when a key is invalid. The impact of such unspecified behavior depends on the
application. Possible means of addressing key validation include explicit key validation
by the application; key validation within the public-key infrastructure; and assignment of
liability for operations performed with an invalid key to the party who generated the key.

A generally good cryptographic practice is to employ a given RSA key pair in only one
scheme. This avoids the risk that vulnerability in one scheme may compromise the
security of the other, and may be essential to maintain provable security. While RSAES-
PKCS1-vl 5 (Section 7.2) and RSASSA-PKCS1-v1 5 (Section 8.2) have traditionally
been employed together without any known bad interactions (indeed, this is the model
introduced by PKCS #1 v1.5), such a combined use of an RSA key pair is not
recommended for new applications.

To illustrate the risks related to the employment of an RSA key pair in more than one
scheme, suppose an RSA key pair is employed in both RSAES-OAEP (Section 7.1) and
RSAES-PKCS1-v1 5. Although RSAES-OAEP by itself would resist attack, an opponent
might be able to exploit a weakness in the implementation of RSAES-PKCS1-v1 5 to
recover messages encrypted with either scheme. As another example, suppose an RSA
key pair is employed in both RSASSA-PSS (Section 8.1) and RSASSA-PKCS1-v1 5.
Then the security proof for RSASSA-PSS would no longer be sufficient since the proof
does not account for the possibility that signatures might be generated with a second
scheme. Similar considerations may apply if an RSA key pair is employed in one of the
schemes defined here and in a variant defined el sewhere.

7 Encryption schemes

For the purposes of this document, an encryption scheme consists of an encryption
operation and a decryption operation, where the encryption operation produces a
ciphertext from a message with a recipient's RSA public key, and the decryption

Copyright © 2002 RSA Security Inc.
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operation recovers the message from the ciphertext with the recipient’s corresponding
RSA private key.

An encryption scheme can be employed in a variety of applications. A typical application
is a key establishment protocol, where the message contains key material to be delivered
confidentially from one party to another. For instance, PKCS #7 [45] employs such a
protocol to deliver a content-encryption key from a sender to a recipient; the encryption
schemes defined here would be suitable key-encryption algorithms in that context.

Two encryption schemes are specified in this document: RSAES-OAEP and RSAES-
PKCS1-vl 5. RSAES-OAEP is recommended for new applications; RSAES-PKCS1-
vl 5 is included only for compatibility with existing applications, and is not
recommended for new applications.

The encryption schemes given here follow a general model similar to that employed in
IEEE Std 1363-2000 [26], combining encryption and decryption primitives with an
encoding method for encryption. The encryption operations apply a message encoding
operation to a message to produce an encoded message, which is then converted to an
integer message representative. An encryption primitive is applied to the message
representative to produce the ciphertext. Reversing this, the decryption operations apply a
decryption primitive to the ciphertext to recover a message representative, which is then
converted to an octet string encoded message. A message decoding operation is applied to
the encoded message to recover the message and verify the correctness of the decryption.

To avoid implementation weaknesses related to the way errors are handled within the
decoding operation (see [6] and [36]), the encoding and decoding operations for RSAES-
OAEP and RSAES-PKCS1-vl 5 are embedded in the specifications of the respective
encryption schemes rather than defined in separate specifications. Both encryption
schemes are compatible with the corresponding schemes in PKCS #1 v2.0.

7.1 RSAES-OAEP

RSAES-OAEP combines the RSAEP and RSADP primitives (Sections 5.1.1 and 5.1.2)
with the EME-OAEP encoding method (step 1.b in Section 7.1.1 and step 3 in Section
7.1.2). EME-OAEP is based on Bellare and Rogaway’s Optimal Asymmetric Encryption
scheme [3]. (OAEP stands for “Optimal Asymmetric Encryption Padding.”). It is
compatible with the IFES scheme defined in IEEE Std 1363-2000 [26], where the
encryption and decryption primitives are IFEP-RSA and IFDP-RSA and the message
encoding method is EME-OAEP. RSAES-OAEP can operate on messages of length up to
k — ZhLen — 2 octets, wherbélLen is the length of the output from the underlying hash
function andk is the length in octets of the recipient's RSA modulus.

Assuming that computing™ roots modulon is infeasible and the mask generation
function in RSAES-OAEP has appropriate properties, RSAES-OAEP is semantically
secure against adaptive chosen-ciphertext attacks. This assurance is provable in the sense
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that the difficulty of breaking RSAES-OAEP can be directly related to the difficulty of
inverting the RSA function, provided that the mask generation function is viewed as a
black box or random oracle; see [21] and the note below for further discussion.

Both the encryption and the decryption operations of RSAES-OAEP take the value of a
label L as input. In this version of PKCS #1, L is the empty string; other uses
of the label are outside the scope of this document. See Appendix A.2.1 for the relevant
ASN.1 syntax.

RSAES-OAEP is parameterized by the choice of hash function and mask generation
function. This choice should be fixed for a given RSA key. Suggested hash and mask
generation functions are given in Appendix B.

Note. Recent results have helpfully clarified the security properties of the OAEP encoding method [3]

(roughly the procedure described in step 1.b in Section 7.1.1). The background is as follows. In 1994,

Bellare and Rogaway [3] introduced a security concept that they denoted plaintext awareness (PA94). They

proved that if a deterministic public-key encryption primitive (e.g., RSAEP) is hard to invert without the

private key, then the corresponding OAEP-based encryption scheme is plaintext-aware (in the random

oracle model), meaning roughly that an adversary cannot produce a valid ciphertext without actually
“knowing” the underlying plaintext. Plaintext awareness of an encryption scheme is closely related to the
resistance of the scheme agaiokbsen-ciphertext attacks. In such attacks, an adversary is given the
opportunity to send queries to an oracle simulating the decryption primitive. Using the results of these
gueries, the adversary attempts to decrypt a challenge ciphertext.

However, there arwo flavors of chosen-ciphertext attacks, and PA94 implies security against only one of
them. The difference relies on what the adversary is allowed to do after she is given the challenge
ciphertext. Theindifferent attack scenario (denoted CCA1) does not admit any queries to the decryption
oracle after the adversary is given the challenge ciphertext, whereadapiee scenario (denoted CCA2)

does (except that the decryption oracle refuses to decrypt the challenge ciphertext once it is published). In
1998, Bellare and Rogaway, together with Desai and Pointcheval [2], came up with a new, stronger notion
of plaintext awareness (PA98) that does imply security against CCA2.

To summarize, there have been two potential sources for misconception: that PA94 and PA98 are equivalent
concepts; or that CCA1 and CCA2 are equivalent concepts. Either assumption leads to the conclusion that
the Bellare-Rogaway paper implies security of OAEP against CCA2, which it doe©A&P has never

been proven secure against CCA2; in fact, Victor Shoup [48] has demonstrated that such a proof does not
exist in the general case. Put briefly, Shoup showed that an adversary in the CCA2 scenario who knows how
to partially invert the encryption primitive but does not know how to invetoibpletely may well be able

to break the scheme. For example, one may imagine an attacker who is able to break RSAES-OAEP if she
knows how to recover all but the first 20 bytes of a random integer encrypted with RSAEP. Such an attacker
does not need to be able to fully invert RSAEP, because she does not use the first 20 octets in her attack.

Still, RSAES-OAEPIs secure against CCA2, which was proved by Fujisaki, Okamoto, Pointcheval, and
Stern [21] shortly after the announcement of Shoup’s result. Using clever lattice reduction techniques, they
managed to show how to invert RSAEP completely given a sufficiently large part of the pre-image. This

Y It might be fair to mention that PKCS #1 v2.0 cites [3] and claims that& chosen ciphertext attack is
ineffective against a plaintext-aware encryption scheme such as RSAES-OAEP” without specifying the kind
of plaintext awareness or chosen ciphertext attack considered.
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observation, combined with a proof that OAEP is secure against CCA2 if the underlying encryption
primitive is hard to partially invert, fills the gap between what Bellare and Rogaway proved about RSAES-
OAEP and what some may have believed that they proved. Somewhat paradoxically, we are hence saved by
an ostensible weakness in RSAEP (i.e., the whole inverse can be deduced from parts of it).

Unfortunately however, the security reduction is not efficient for concrete parameters. While the proof
successfully relates an adversary A against the CCA2 security of RSAES-OAEP to an algorithm | inverting
RSA, the probability of success for | is only approximately €” / 2'°, where € is the probability of success for
A In addition, the running time for | is approximately t’, where t is the running time of the adversary. The
conseguence is that we cannot exclude the possibility that attacking RSAES-OAEP is considerably easier
than inverting RSA for concrete parameters. Still, the existence of a security proof provides some assurance
that the RSAES-OAEP construction is sounder than ad hoc constructions such as RSAES-PKCS1-v1 5.

Hybrid encryption schemes based on the RSA-KEM key encapsulation paradigm offer tight proofs of

security directly applicable to concrete parameters; see [30] for discussion. Future versions of PKCS#1 may
specify schemes based on this paradigm.

7.1.1 Encryption operation
RSAES-OAEP-ENCRYPT ((n, €), M, L)

Options: Hash hash function (hLen denotes the length in octets of the hash
function output)

MGF mask generation function

Input: (n, e) recipient’'s RSA public keyk(denotes the length in octets of the
RSA modulus)

M message to be encrypted, an octet string of lemiten, where
mLen <k —2hLen -2

L optional label to be associated with the message; the default value
for L, if L isnot provided, isthe empty string

Output: C ciphertext, an octet string of length k
Errors: “message too long”; “label too long”
Assumption: RSA public key K, €) is valid

Seps.

Y In[21] the probability of success for the inverter was €? / 4. The additional factor 1/ 2'° is due to the eight
fixed zero bits at the beginning of the encoded message EM, which are not present in the variant of OAEP
considered in [21] (I must apply A twice to invert RSA, and each application corresponds to afactor 1/ 2).
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1. Length checking:

a. If the length of L is greater than the input limitation for the hash function
(2°* — 1 octets for SHA-1), output “label too long” and stop.

b. If mLen >k —2hLen —2, output “message too long” and stop.
2. EME-OAEP encoding (see Figure 1 below):

a. If the labelL is not provided, leL be the empty string. LéHash = Hash
(L), an octet string of lengthi_en (see the note below).

b. Generate an octet strifp consisting ok —mLen —2hLen -2 zero octets.
The length of PSmay be zero.

c. Concatenate IHash PS a single octet with hexadecimal value 0x01, and
the message M to form adata block DB of length k —hLen — 1 octets as

DB =IHash ||PS|| Ox01 |[M .
d. Generate a random octet strisagd of lengthhLen.
e. LetdbMask = MGF (seed, k—hLen — 1)
f. LetmaskedDB = DB [ dbMask.
g. LetseedMask = MGF (maskedDB, hLen).
h. Let maskedSeed = seed [0 seedMask.

i. Concatenate a single octet with hexadecimal value Ox@gkedSeed, and
maskedDB to form an encoded messdg of lengthk octets as

EM = 0x00 |maskedSeed || maskedDB.
3. RSA encryption:

a. Convert the encoded messded to an integer message representative
(see Section 4.2):

m= OS2IP EM) .

b. Apply the RSAEP encryption primitive (Section 5.1.1) to the RSA public
key (h, € and the message representativeto produce an integer
ciphertext representative
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c=RSAEP ((n, €), m) .

c. Convert the ciphertext representative c to a ciphertext C of length k octets

(see Section 4.1):
C=120SP (c, k) .
4. Output the ciphertext C.
DB = [Hash PS M
seed
v
00 MGF P

EM =| 0o maskedSeed maskedDB

Figure 1. EME-OAEP encoding operation. IHash is the hash of the optional label L.
Decoding operation follows reverse steps to recover M and verify IHash and PS.

Note. If L is the empty string, the corresponding hash value |IHash has the following hexadecimal
representation for different choices of Hash:

SHA-1: (0x) da39a3ee 5e6b4b0d 3255bfef 95601890 af d80709
SHA-256: (0x) e3b0c442 98fclcl4 9af bf 4c8 996f b924 27aedled 649b934c a495991b 7852b855
SHA-384: (0x) 38b060a7 51ac9638 4cd9327e blble36a 21fdb711 14be0743 4cOcc7bf 63f 6elda

274edebf e76f65fb d5lad2f1 4898b95b
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SHA-512: (0x) cf 83e135 7eef b8bd f1542850 d66d8007 d620e405 0b5715dc 83f 4a921 d36ce9ce
47d0d13c 5d85f 2b0 ff8318d2 877eec2f 63b931bd 47417a81 a538327a f927dale

7.1.2 Decryption operation
RSAES-OAEP-DEcrYPT (K, C, L)

Options: Hash hash function (hLen denotes the length in octets of the hash function
output)

MGF mask generation function

Input: K recipient’'s RSA private keyk(denotes the length in octets of the
RSA modulus)

C ciphertext to be decrypted, an octet string of lergthvherek >
2hLen + 2

L optional label whose association with the message is to be verified,
the default value fok, if L is not provided, is the empty string

Output: M message, an octet string of lengthen, wheremLen< k — 2hLen — 2
Error: “decryption error”
Seps:

1. Length checking:

a. If the length ofL is greater than the input limitation for the hash function
(2°* — 1 octets for SHA-1), output “decryption error” and stop.

b. If the length of the ciphertexX@ is notk octets, output “decryption error”
and stop.

c. If k<2hLen+ 2, output “decryption error” and stop.
2. RSA decryption:

a. Convert the ciphertex€ to an integer ciphertext representatvésee
Section 4.2):

c=0S2IP Q).

b. Apply the RSADP decryption primitive (Section 5.1.2) to the RSA private
key K and the ciphertext representativéo produce an integer message
representativen:

m= RSADP K, C) .
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If RSADP outputs “ciphertext representative out of range” (meaning that
> n), output “decryption error” and stop.

c. Convert the message representatimeto an encoded messa@§ of
lengthk octets (see Section 4.1):

EM = 120SP n, K) .
3. EME-OAEP decoding:

a. If the labelL is not provided, leL be the empty string. LéHash = Hash
(L), an octet string of lengthi_en (see the note in Section 7.1.1).

b. Separate the encoded messafyk into a single octel!, an octet string
maskedSeed of lengthhLen, and an octet stringnaskedDB of lengthk —
hLen—1 as

EM =Y ||maskedSeed || maskedDB .
c. LetseedMask = MGF (maskedDB, hLen).
d. Letseed = maskedSeed [J seedMask.
e. LetdbMask = MGF (seed, k —hLen — 1).
f. LetDB =maskedDB [ dbMask.

g. Separat®B into an octet stringHash’ of length hLen a (possibly empty)
padding string PSconsisting of octets with hexadecimal value 0x00, and a
message M as

DB = IHash’ || PS|| 0x01 || M .

If there is no octet with hexadecimal value 0x01 to separate PSfrom M, if
IHash does not equal IHash’, or if Y is nonzero, output “decryption error
and stop. (See the note below.)

4. Output the messagdd.

Note. Care must be taken to ensure that an opponent cannot distinguish the different error conditionsin Step
3.f, whether by error message or timing, or, more generally, learn partial information about the encoded
message EM. Otherwise an opponent may be able to obtain useful information about the decryption of the
ciphertext C, leading to a chosen-ciphertext attack such as the one observed by Manger [36].
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7.2 RSAESPKCSI1-vl_5

RSAES-PKCS1-v1 5 combines the RSAEP and RSADP primitives (Sections 5.1.1 and

5.1.2) with the EME-PKCS1-v1 5 encoding method (step 1 in Section 7.2.1 and step 3 in

Section 7.2.2). It is mathematically equivalent to the encryption scheme in PKCS #1 v1.5.
RSAES-PKCS1-v1 5 can operate on messages of length up to k — 11 octetsk is the octet

length of the RSA modulus), although care should be taken to avoid certain attacks on
low-exponent RSA due to Coppersmith, Franklin, Patarin, and Reiter when long
messages are encrypted (see the third bullet in the notes below and [10]; [14] contains an
improved attack). As a general rule, the use of this scheme for encrypting an arbitrary
message, as opposed to a randomly generated key, is not recommended.

It is possible to generate valid RSAES-PKCS1-vl 5 ciphertexts without knowing the
corresponding plaintexts, with a reasonable probability of success. This ability can be
exploited in a chosen-ciphertext attack as shown in [6]. Therefore, if RSAES-PKCS1-
vl 5is to be used, certain easily implemented countermeasures should be taken to thwart
the attack found in [6]. Typical examples include the addition of structure to the data to
be encoded, rigorous checking of PKCS #1 v1.5 conformance (and other redundancy) in
decrypted messages, and the consolidation of error messages in a client-server protocol
based on PKCS #1 v1.5. These can all be effective countermeasures and do not involve
changes to a PKCS #1 v1.5-based protocol. See [7] for a further discussion of these and
other countermeasures. It has recently been shown that the security of the SSL/TLS
handshake protocol [17], which uses RSAES-PKCS1-vl 5 and certain countermeasures,
can be related to a variant of the RSA problem; see [32] for discussion.

Note. The following passages describe some security recommendations pertaining to the use of RSAES-
PKCS1-vl 5. Recommendations from version 1.5 of this document are included as well as new
recommendations motivated by cryptanalytic advances made in the intervening years.

e Itisrecommended that the pseudorandom octets in step 2 in Section 7.2.1 be generated independently
for each encryption process, especidly if the same data is input to more than one encryption process.
Hastad's results [24] are one motivation for this recommendation.

e The padding strind®S in step 2 in Section 7.2.1 is at least eight octets long, which is a security
condition for public-key operations that makes it difficult for an attacker to recover data by trying all
possible encryption blocks.

* The pseudorandom octets can also help thwart an attack due to Coppersmith et al. [10] (see [14] for an
improvement of the attack) when the size of the message to be encrypted is kept small. The attack
works on low-exponent RSA when similar messages are encrypted with the same RSA public key.
More specifically, in one flavor of the attack, when two inputs to RSAEP agree on a large fraction of
bits (8/9) and low-exponent RSA& £ 3) is used to encrypt both of them, it may be possible to recover
both inputs with the attack. Another flavor of the attack is successful in decrypting a single ciphertext
when a large fraction (2/3) of the input to RSAEP is already known. For typical applications, the
message to be encrypted is short (e.g., a 128-bit symmetric key) so not enough information will be
known or common between two messages to enable the attack. However, if a long message is
encrypted, or if part of a message is known, then the attack may be a concern. In any case, the RSAES-
OAEP scheme overcomes the attack.
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7.2.1 Encryption operation

RSAES-PKCS1-v1 5-ENCRYPT ((n, €), M)

Input: (n, e) recipient’'s RSA public keyk(denotes the length in octets of the
modulusn)
M message to be encrypted, an octet string of lemiten, where
mLen<k-11
Output: C ciphertext, an octet string of length
Error: “message too long”
Seps.

1. Length checking: If mLen >k —11, output “message too long” and stop.
2. EME-PKCSI-v1 5 encoding:

a. Generate an octet striRfs of lengthk —mLen —3 consisting of pseudo-
randomly generated nonzero octets. The length of PSwill be at least eight
octets.

b. Concatenate PS the message M, and other padding to form an encoded
message EM of length k octets as

EM = 0x00 || 0x02 || PS|| Ox00 | M .
3. RSA encryption

a. Convert the encoded message EM to an integer message representative m
(see Section 4.2):

m= OS2IP (EM) .

b. Apply the RSAEP encryption primitive (Section 5.1.1) to the RSA public
key (n, € and the message representative m to produce an integer
ciphertext representative c:

c=RSAEP ((n,e), m).

c. Convert the ciphertext representative c to a ciphertext C of length k octets
(see Section 4.1):
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C=120SP (c, k) .
4. Output the ciphertext C.
7.2.2 Decryption operation
RSAES-PKCS1-v1 5-DecrypT (K, C)
Input: K recipient’'s RSA private key

C ciphertext to be decrypted, an octet string of lerdgttvherek is
the length in octets of the RSA modulus

Output: M message, an octet string of length at rkesil
Error: “decryption error”
Seps.

1. Length checking: If the length of the cipherteX@ is notk octets (or ifk < 11),
output “decryption error” and stop.

2. RSA decryption:

a. Convert the ciphertex€ to an integer ciphertext representativésee
Section 4.2):

c=0S2IP ().

b. Apply the RSADP decryption primitive (Section 5.1.2) to the RSA private
key (h, d) and the ciphertext representaticeto produce an integer
message representative

m= RSADP (f,d),c).

If RSADP outputs “ciphertext representative out of range” (meaning that
> n), output “decryption error” and stop.

c. Convert the message representatimeto an encoded messa@§ of
lengthk octets (see Section 4.1):

EM = 120SP (n, K) .

3. EME-PKCS1-v1 5 decoding: Separate the encoded messéfy# into an octet
string PS consisting of nonzero octets and a mes$ages

EM = 0x00 || 0x02 S || 0x00 |M .
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If the first octet of EM does not have hexadecimal value 0xQ0, if the second octet
of EM does not have hexadecimal value 0x02, if there is no octet with
hexadecimal value 0x00 to separate PSfrom M, or if the length of PSis less than
8 octets, output “decryption error” and stop. (See the note below.)

4. OutputM.

Note. Care shall be taken to ensure that an opponent cannot distinguish the different error conditionsin Step

3, whether by error message or timing. Otherwise an opponent may be able to obtain useful information
about the decryption of the ciphertext C, leading to a strengthened version of Bleichenbacher’s attack [6];
compare to Manger’s attack [36].

8 Signature schemeswith appendix

For the purposes of this document, a signature scheme with appendix consists of a
signature generation operation and a signature verification operation, where the
signature generation operation produces a signature from a message with a signer's RSA
private key, and the signature verification operation verifies the signature on the message
with the signer’s corresponding RSA public key. To verify a signature constructed with
this type of scheme it is necessary to have the message itself. In this way, signature
schemes with appendix are distinguished from signature schemes with message recovery,
which are not supported in this document.

A signature scheme with appendix can be employed in a variety of applications. For
instance, the signature schemes with appendix defined here would be suitable signature
algorithms for X.509 certificates [28]. Related signature schemes could be employed in
PKCS #7 [45], although for technical reasons the current version of PKCS #7 separates a
hash function from a signature scheme, which is different than what is done here; see the
note in Appendix A.2.3 for more discussion.

Two signature schemes with appendix are specified in this document: RSASSA-PSS and
RSASSA-PKCSI1-v1 5. Although no attacks are known against RSASSA-PKCS1-v1 5,
in the interest of increased robustness, RSASSA-PSS is recommended for eventual
adoption in new applications. RSASSA-PKCS1-v1 5 isincluded for compatibility with
existing applications, and while still appropriate for new applications, a gradual transition
to RSASSA-PSS is encouraged.

The signature schemes with appendix given here follow a general model similar to that
employed in IEEE Std 1363-2000 [26], combining signature and verification primitives
with an encoding method for signatures. The signature generation operations apply a
message encoding operation to a message to produce an encoded message, which is then
converted to an integer message representative. A signature primitive is applied to the
message representative to produce the signature. Reversing this, the signature verification
operations apply a signature verification primitive to the signature to recover a message
representative, which is then converted to an octet string encoded message. A verification
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operation is applied to the message and the encoded message to determine whether they
are consistent.

If the encoding method is deterministic (e.g., EMSA-PKCS1-vl 5), the verification
operation may apply the message encoding operation to the message and compare the
resulting encoded message to the previously derived encoded message. If there is a match,
the signature is considered valid. If the method is randomized (e.g., EMSA-PSS), the
verification operation is typically more complicated. For example, the verification
operation in EMSA-PSS extracts the random salt and a hash output from the encoded
message and checks whether the hash output, the salt, and the message are consistent; the
hash output is a deterministic function in terms of the message and the salt.

For both signature schemes with appendix defined in this document, the signature
generation and signature verification operations are readily implemented as “single-pass”
operations if the signature is placed after the message. See PKCS #7 [45] for an example
format in the case of RSASSA-PKCS1-vl 5.

8.1 RSASSA-PSS

RSASSA-PSS combines the RSASP1 and RSAVP1 primitives with the EMSA-PSS
encoding method. It is compatible with the IFSSA scheme as amended in the IEEE
P1363a draft [27], where the signature and verification primitives are IFSP-RSA1 and
IFVP-RSAL as defined in IEEE Std 1363-2000 [26] and the message encoding method is
EMSA4. EMSAA4 is slightly more general than EMSA-PSS as it acts on bit strings rather
than on octet strings. EMSA-PSS is equivalent to EMSA4 restricted to the case that the
operands as well as the hash and salt values are octet strings.

The length of messages on which RSASSA-PSS can operate is either unrestricted or
constrained by a very large number, depending on the hash function underlying the
EMSA-PSS encoding method.

Assuming that computing™ roots modulon is infeasible and the hash and mask
generation functions in EMSA-PSS have appropriate properties, RSASSA-PSS provides
secure signatures. This assurance is provable in the sense that the difficulty of forging
signatures can be directly related to the difficulty of inverting the RSA function, provided
that the hash and mask generation functions are viewed as black boxes or random oracles.
The bounds in the security proof are essentially “tight”, meaning that the success
probability and running time for the best forger against RSASSA-PSS are very close to
the corresponding parameters for the best RSA inversion algorithm; see [4][13][31] for
further discussion.

In contrast to the RSASSA-PKCS1-vl 5 signature scheme, a hash function identifier is
not embedded in the EMSA-PSS encoded message, so in theory it is possible for an
adversary to substitute a different (and potentially weaker) hash function than the one
selected by the signer. Therefore, it is recommended that the EMSA-PSS mask generation
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function be based on the same hash function. In this manner the entire encoded message
will be dependent on the hash function and it will be difficult for an opponent to
substitute a different hash function than the one intended by the signer. This matching of
hash functions is only for the purpose of preventing hash function substitution, and is not
necessary if hash function substitution is addressed by other means (e.g., the verifier
accepts only a designated hash function). See [34] for further discussion of these points.
The provable security of RSASSA-PSS does not rely on the hash function in the mask
generation function being the same as the hash function applied to the message.

RSASSA-PSS is different from other RSA-based signature schemes in that it is
probabilistic rather than deterministic, incorporating a randomly generated salt value. The

salt value enhances the security of the scheme by affording a “tighter” security proof than
deterministic alternatives such as Full Domain Hashing (FDH); see [4] for discussion.
However, the randomness is not critical to security. In situations where random
generation is not possible, a fixed value or a sequence number could be employed instead,
with the resulting provable security similar to that of FDH [12].

8.1.1 Signature generation operation

RSASSA-PSS-8N (K, M)

Input: K signer’s RSA private key
M message to be signed, an octet string
Output: S signature, an octet string of lendthwherek is the length in octets

of the RSA modulus
Errors: “message too long;” “encoding error”
Seps.

1. EMSA-PSS encoding: Apply the EMSA-PSS encoding operation (Section 9.1.1)
to the messagk! to produce an encoded messidk of length{modBits — 1)/8]
octets such that the bit length of the integer OSEMR)((see Section 4.2) is at
mostmodBits — 1, wheremodBits is the length in bits of the RSA modulas

EM = EMSA-PSS-EcobE (M, modBits— 1) .

Note that the octet length &M will be one less thak if modBits -1 is divisible

by 8 and equal to k otherwise. If the encoding operation outputs “message too
long,” output “message too long” and stop. If the encoding operation outputs
“encoding error,” output “encoding error” and stop.

2. RSA signature:
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a. Convert the encoded message EM to an integer message representative m
(see Section 4.2):

m= OS2IP (EM) .
b. Apply the RSASP1 signature primitive (Section 5.2.1) to the RSA private
key K and the message representative m to produce an integer signature
representative s.

s=RSASPL (K, M) .

c. Convert the signature representative s to a signature S of length k octets

(see Section 4.1):
S=120SP (s, K) .
3. Output the signature S.
8.1.2 Signature verification operation
RSASSA-PSS-VERIFY ((n,€),M, 9
Input: (n, e) signer's RSA public key
M message whose signature is to be verified, an octet string
S signature to be verified, an octet string of lenktvherek is the

length in octets of the RSA modulnos
Output: “valid signature” or “invalid signature”
Seps.

1. Length checking: If the length of the signatur® is notk octets, output “invalid
signature” and stop.

2. RSA verification:

a. Convert the signaturé& to an integer signature representatvgsee
Section 4.2):

s=0S2IP§ .
b. Apply the RSAVP1 verification primitive (Section 5.2.2) to the RSA

public key @, €) and the signature representats/eo produce an integer
message representative
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m=RSAVP1 ((n, e),9) .

If RSAVPL1 output “signature representative out of range,” output “invalid
signature” and stop.

c. Convert the message representatimeto an encoded messa@§ of
lengthemLen = [{modBits — 1)/8loctets, wherenodBits is the length in
bits of the RSA modulus (see Section 4.1):

EM = I20SP {n, emLen) .

Note thatemLen will be one less thakif modBits — 1 is divisible by 8 and
equal tok otherwise. If I20SP outputs “integer too large,” output “invalid
signature” and stop.

3. EMSA-PSS verification: Apply the EMSA-PSS verification operation (Section
9.1.2) to the messadé and the encoded messdg)d to determine whether they
are consistent:

Result = EMSA-PSS-\ERIFY (M, EM, modBits— 1) .

4. If Result = “consistent,” output “valid signature.” Otherwise, output “invalid
signature.”

8.2 RSASSA-PKCSI1-vl 5

RSASSA-PKCS1-vl 5 combines the RSASP1 and RSAVPL1 primitives with the EMSA-
PKCS1-vl 5 encoding method. It is compatible with the IFSSA scheme defined in IEEE
Std 1363-2000 [26], where the signature and verification primitives are IFSP-RSA1 and
IFVP-RSA1 and the message encoding method is EMSA-PKCS1-vl 5 (which is not
defined in IEEE Std 1363-2000, but is in the IEEE P1363a draft [27]).

The length of messages on which RSASSA-PKCS1-vl 5 can operate is either
unrestricted or constrained by a very large number, depending on the hash function
underlying the EMSA-PKCS1-v1l 5 method.

Assuming that computing™ roots modulon is infeasible and the hash function in
EMSA-PKCS1-vl_5 has appropriate properties, RSASSA-PKCS1-v1l 5 is conjectured to
provide secure signatures. More precisely, forging signatures without knowing the RSA
private key is conjectured to be computationally infeasible. Also, in the encoding method
EMSA-PKCS1-vl 5, a hash function identifier is embedded in the encoding. Because of
this feature, an adversary trying to find a message with the same signature as a previously
signed message must find collisions of the particular hash function being used; attacking
a different hash function than the one selected by the signer is not useful to the adversary.
See [34] for further discussion.
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Note. As noted in PKCS #1 v1.5, the EMSA-PKCS1-v1 5 encoding method has the property that the

encoded message, converted to an integer message representative, is guaranteed to be large and at least
somewhat “random”. This prevents attacks of the kind proposed by Desmedt and Odlyzko [16] where
multiplicative relationships between message representatives are developed by factoring the message
representatives into a set of small values (e.g., a set of small primes). Coron, Naccache, and Stern [15]
showed that a stronger form of this type of attack could be quite effective against some instances of the
ISO/IEC 9796-2 signature scheme. They also analyzed the complexity of this type of attack against the
EMSA-PKCS1-vl_5 encoding method and concluded that an attack would be impractical, requiring more
operations than a collision search on the underlying hash function (i.e., more *thapertions).
Coppersmith, Halevi, and Jutla [11] subsequently extended @babrs attack to break the ISO/IEC 9796-

1 signature scheme with message recovery. The various attacks illustrate the importance of carefully
constructing the input to the RSA signature primitive, particularly in a signature scheme with message
recovery. Accordingly, the EMSA-PKCS-v1_5 encoding method explicitly includes a hash operation and is
not intended for signature schemes with message recovery. Moreover, while no attack is known against the
EMSA-PKCS-v1_5 encoding method, a gradual transition to EMSA-PSS is recommended as a precaution
against future developments.

8.2.1 Signature generation operation

RSASSA-PKCS1-v1 5-SiGN (K, M)

Input: K signer’s RSA private key
M message to be signed, an octet string
Output: S signature, an octet string of lendthwherek is the length in octets

of the RSA modulus
Errors. “message too long”; “RSA modulus too short”
Seps.

1. EMSA-PKCS1-vl1 5 encoding: Apply the EMSA-PKCS1-vl 5 encoding
operation (Section 9.2) to the messdfje¢o produce an encoded messédyk of
lengthk octets:

EM = EMSA-PKCS1v1_5-ENCODE (M, K) .

If the encoding operation outputs “message too long,” output “message too long”
and stop. If the encoding operation outputs “intended encoded message length too
short,” output “RSA modulus too short” and stop.

2. RSA signature:

a. Convert the encoded messdfd to an integer message representative
(see Section 4.2):

m= OS2IP EM) .
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b. Apply the RSASP1 signature primitive (Section 5.2.1) to the RSA private
key K and the message representative m to produce an integer signature
representative s.

s=RSASPL (K, M) .

c. Convert the signature representative s to a signature S of length k octets
(see Section 4.1):

S=120SP (s, K) .

3. Output the signature S.

8.2.2 Signature verification operation

RSASSA-PKCS1-v1 5-VERIFY ((n, €), M, S

Input: (n, e) signer's RSA public key
M message whose signature is to be verified, an octet string
S signature to be verified, an octet string of lenktvherek is the

length in octets of the RSA modulnos

Output: “valid signature” or “invalid signature”
Errors: “message too long”; “RSA modulus too short”
Seps.

1. Length checking: If the length of the signatur®is notk octets, output “invalid
signature” and stop.

2. RSA verification:

a. Convert the signaturé& to an integer signature representatvgsee
Section 4.2):

s=0S2IP§).

b. Apply the RSAVP1 verification primitive (Section 5.2.2) to the RSA
public key @, €) and the signature representats/éo produce an integer
message representative

m= RSAVP1 ((, €),s) .
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If RSAVP1 outputs “signature representative out of range,” output
“invalid signature” and stop.

c. Convert the message representatimeto an encoded messa@§ of
lengthk octets (see Section 4.1):

EM’ =120SP (m, k) .
If 20SP outputs “integer too large,” output “invalid signature” and stop.

3. EMSA-PKCSI-vl 5 encoding: Apply the EMSA-PKCS1-vl 5 encoding
operation (Section 9.2) to the messa@¢o produce a second encoded message
EM’ of length k octets:

EM’ = EMSA-PKCS1-v1 5-ENcODE (M, K) .

If the encoding operation outputs “message too long,” output “message too long”
and stop. If the encoding operation outputs “intended encoded message length too
short,” output “RSA modulus too short” and stop.

4. Compare the encoded messéaf# and the second encoded mesdaik. If they
are the same, output “valid signature”; otherwise, output “invalid signature.”

Note. Another way to implement the signature verification operation is to apply a “decoding” operation (not
specified in this document) to the encoded message to recover the underlying hash value, and then to
compare it to a newly computed hash value. This has the advantage that it requires less intermediate storage
(two hash values rather than two encoded messages), but the disadvantage that it requires additional code.

9 Encoding methodsfor signatureswith appendix

Encoding methods consist of operations that map between octet string messages and octet
string encoded messages, which are converted to and from integer message
representatives in the schemes. The integer message representatives are processed via the
primitives. The encoding methods thus provide the connection between the schemes,
which process messages, and the primitives.

An encoding method for signatures with appendix, for the purposes of this document,
consists of an encoding operation and optionally a verification operation. An encoding
operation maps a message M to an encoded message EM of a specified length. A
verification operation determines whether a message M and an encoded message EM are
consistent, i.e., whether the encoded message EM is avalid encoding of the message M.

The encoding operation may introduce some randomness, so that different applications of
the encoding operation to the same message will produce different encoded messages,
which has benefits for provable security. For such an encoding method, both an encoding
and a verification operation are needed unless the verifier can reproduce the randomness
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(e.g., by obtaining the salt value from the signer). For a deterministic encoding method
only an encoding operation is needed.

Two encoding methods for signatures with appendix are employed in the signature
schemes and are specified here: EM SA-PSS and EMSA-PKCS1-v1 5.

9.1 EMSA-PSS

This encoding method is parameterized by the choice of hash function, mask generation
function, and salt length. These options should be fixed for a given RSA key, except that

the salt length can be variable (see [31] for discussion). Suggested hash and mask
generation functions are given in Appendix B. The encoding method is based on Bellare

and Rogaway'’s Probabilistic Signature Scheme (PSS) [4][5]. It is randomized and has an
encoding operation and a verification operation.

Figure 2 illustrates the encoding operation.

M
Hash
| —
M’ = padding; mHash salt
DB = padding, salt Hash
E‘V
. .
EM = maskedDB H bc
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Figure 2: EM SA-PSS encoding oper ation. Verification operation follows reverse steps
to recover salt, then forward steps to recompute and compare H.

Notes.

1. The encoding method defined here differs from the one in Bellare and Rogaway’s submission to IEEE
P1363a [5] in three respects:

« It applies a hash function rather than a mask generation function to the message. Even though the
mask generation function is based on a hash function, it seems more natural to apply a hash
function directly.

e The value that is hashed together with the salt value is the string (0x)00 00 00 00 00 00 00 00 ||
mHash rather than the messalgkitself. Here mHash is the hash ofl. Note that the hash function
is the same in both steps. See Note 3 below for further discussion. (Also, the name “salt” is used
instead of “seed”, as it is more reflective of the value’s role.)

e« The encoded message in EMSA-PSS has nine fixed bits; the first bit is 0 and the last eight bits
form a “trailer field”, the octet Oxbc. In the original scheme, only the first bit is fixed. The rationale
for the trailer field is for compatibility with the Rabin-Williams IFSP-RW signature primitive in
IEEE Std 1363-2000 [26] and the corresponding primitive in the draft ISO/IEC 9796-2 [29].

2. Assuming that the mask generation function is based on a hash function, it is recommended that the
hash function be the same as the one that is applied to the message; see Section 8.1 for further
discussion.

3. Without compromising the security proof for RSASSA-PSS, one may perform steps 1 abbl3Af
PSS-mIcoDE and EMSA-PSS-RRIFY (the application of the hash function to the message) outside the
module that computes the rest of the signature operation, sofash rather than the messale
itself is input to the module. In other words, the security proof for RSASSA-PSS still holds even if an
opponent can control the valuermHash. This is convenient if the module has limited 1/O bandwidth,

e.g., a smart card. Note that previous versions of PSS [4][5] did not have this property. Of course, it
may be desirable for other security reasons to have the module process the full message. For instance,
the module may need to “see” what it is signing if it does not trust the component that computes the
hash value.

4. Typical salt lengths in octets ahken (the length of the output of the hash function Hash) and 0. In
both cases the security of RSASSA-PSS can be closely related to the hardness of inverting RSAVP1.
Bellare and Rogaway [4] give a tight lower bound for the security of the original RSA-PSS scheme,
which corresponds roughly to the former case, while Coron [12] gives a lower bound for the related
Full Domain Hashing scheme, which corresponds roughly to the latter case. In [13] Coron provides a
general treatment with various salt lengths ranging from liLén; see [27] for discussion. See also
[31], which adapts the security proofs in [4][13] to address the differences between the original and the
present version of RSA-PSS as listed in Note 1 above.

5. As noted in IEEE P1363a [27], the use of randomization in signature schemes — such as the salt value

in EMSA-PSS — may provide a “covert channel” for transmitting information other than the message
being signed. For more on covert channels, see [50].
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9.1.1 Encoding operation
EM SA-PSS-ENCODE (M, emBits)

Options: Hash  hash function (hLen denotes the length in octets of the hash
function output)

MGF  mask generation function

sLen intended length in octets of the salt

Input: M message to be encoded, an octet string
emBits maximal bit length of the integer OS2IP (EM) (see Section 4.2), at
least 8hLen + 8sLen + 9
Output: EM encoded message, an octet string of length emLen = [émBits/8[]
Errors. “encoding error”; “message too long”

Seps.

1. If the length ofM is greater than the input limitation for the hash functidh {21
octets for SHA-1), output “message too long” and stop.

2. LetmHash = Hash i), an octet string of lengthi_en.
3. If emLen <hLen +sLen + 2, output “encoding error” and stop.

4. Generate a random octet strisagjt of lengthsLen; if sLen = 0, thensalt is the
empty string.

5. Let
M’ = (0x)00 00 00 00 00 00 00 00 || mHash|| salt;
M’ isan octet string of length 8 + hLen+ sLenwith eight initial zero octets.
6. Let H=Hash(M’), an octet string of length hLen

7. Generate an octet string PS consisting of emLen— sLen — hLen — 2 zero octets.
The length oPSmay be 0.

8. LetDB=PS|| 0x01 |kalt; DB is an octet string of lengamLen —hLen — 1.
9. LetdbMask = MGF H, emLen —hLen —1).

10. Let maskedDB = DB [ dbMask.
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11. Set the leftmost 8emLen —emBits bits of the leftmost octet imaskedDB to zero.
12.Let EM = maskedDB ||H || Oxbc.

13. OutputEM.

9.1.2 Verification operation
EMSA-PSS-\£RIFY (M, EM, emBits)

Options: Hash hash functionh{en denotes the length in octets of the hash
function output)

MGF mask generation function
sLen intended length in octets of the salt
Input: M message to be verified, an octet string
EM encoded message, an octet string of leegiben = [émBits/8[]

emBits maximal bit length of the integer OS2IP\) (see Section 4.2), at
least &iLen + 8sLen + 9

Output: “consistent” or “inconsistent”
Seps.

1. If the length ofM is greater than the input limitation for the hash functidh €21
octets for SHA-1), output “inconsistent” and stop.

2. LetmHash = Hash i), an octet string of lengthi_en.
3. If emLen <hLen +sLen + 2, output “inconsistent” and stop.

4. If the rightmost octet oEM does not have hexadecimal value Oxbc, output
“inconsistent” and stop.

5. Let maskedDB be the leftmosemLen — hLen — 1 octets oEM, and letH be the
nexthLen octets.

6. If the leftmost @mlLen — emBits bits of the leftmost octet imaskedDB are not all
equal to zero, output “inconsistent” and stop.

7. LetdbMask = MGF H, emLen —hLen — 1).

8. Let DB = maskedDB [0 dbMask.
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9. Set theleftmost 8emLen —emBits bits of the leftmost octet iDB to zero.

10.If the emLen —hLen —sLen — 2 leftmost octets dDB are not zero or if the octet at
positionemLen —hLen —sLen — 1 (the leftmost position is “position 1”) does not
have hexadecimal value 0x01, output “inconsistent” and stop.

11.Let salt be the lassLen octets oiDB.
12. Let
M’ = (Ox)00 00 00 00 00 00 00 00 || mHash|| salt;
M’ isan octet string of length 8 + hLen+ sLenwith eight initial zero octets.
13. Let H' = Hash (M’), an octet string of length hLen

14. 1f H = H’, output “consistent.” Otherwise, output “inconsistent.”

9.2 EMSA-PKCSI1-vl 5
This encoding method is deterministic and only has an encoding operation.
EMSA-PKCS1-vl_5-KEcobe (M, emLen)

Option: Hash hash functionh{en denotes the length in octets of the hash
function output)

Input: M message to be encoded

emLen intended length in octets of the encoded message, attlleast
11, wheretLen is the octet length of the DER encodimgof a
certain value computed during the encoding operation

Output: EM encoded message, an octet string of leegiben
Errors: “message too long”; “intended encoded message length too short”
Seps.

1. Apply the hash function to the message¢o produce a hash valtt
H = Hash ().

If the hash function outputs “message too long,” output “message too long” and
stop.
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2. Encode the algorithm ID for the hash function and the hash value into an ASN.1
value of type Digestinfo (See Appendix A.2.4) with the Distinguished Encoding

Rules (DER), where the type Digestinfo has the syntax

Di gestinfo ::
di gest Al gorithm Al gorithm dentifier,
di gest OCTET STRI NG

}

= SEQUENCE {

The first field identifies the hash function and the second contains the hash value.
Let T be the DER encoding of the Digestinfo value (see the notes below) and let

tLen be the length in octets of T.

3. If emLen < tLen + 11, output “intended encoded message length too short” and

stop.

4. Generate an octet stringS consisting ofemLen — tLen — 3 octets with
hexadecimal value Oxff. The lengthR® will be at least 8 octets.

5. Concatenatd’S the DER encoding, and other padding to form the encoded
messag&M as

6. OutputEM.

Notes.

EM = 0x00 || 0x01 pS|| 000 [T .

1. For the six hash functions mentioned in Appendix B.1, the DER encoding T of the Digestinfo value is
equal to the following:

MD2:
MDS:
SHA-1:

SHA-256:
SHA-384:
SHA-512:

(0x) 30
(0x) 30
(0x) 30
(0x) 30
(0x) 30
(0x) 30

20
20
21
31
41
51

30
30
30
30
30
30

Oc
Oc
09
od
od
od

06
06
06
06
06
06

08
08
05
09
09
09

2a
2a
2b
60
60
60

86
86
Oe
86
86
86

48
48
03
48
48
48

86
86
02
01
01
01

f7
f7
la
65
65
65

od
od
05
03
03
03

02
02
00
04
04
04

02
05
04
02
02
02

05 00 04 10 || H.
05 00 04 10 || H.

14 || H.

01 05 00 04 20 || H.
02 05 00 04 30 || H.
03 05 00 04 40 || H.

2. Inversion 1.5 of this document, T was defined as the BER encoding, rather than the DER encoding, of

the Digestinfo value. In particular, it is possible — at least in theory — that the verification operation
defined in this document (as well as in version 2.0) rejects a signature that is valid with respect to the
specification given in PKCS #1 v1.5. This occurs if other rules than DER are apmigdstifo (e.g.,

an indefinite length encoding of the underlyBEQUENCE type). While this is unlikely to be a concern
in practice, a cautious implementer may choose to employ a verification operation based on a BER
decoding operation as specified in PKCS #1 v1.5. In this manner, compatibility with any valid
implementation based on PKCS #1 v1.5 is obtained. Such a verification operation should indicate
whether the underlying BER encoding is a DER encoding and hence whether the signature is valid with
respect to the specification given in this document.
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A. ASN.1 syntax

A.1l RSA key representation

This section defines ASN.1 object identifiers for RSA public and private keys, and
defines the types RsAPublickey and RSAPrivatekey. The intended application of these
definitionsincludes X.509 certificates, PK CS #8 [46], and PKCS #12 [47].

The object identifier rsaencryption identifies RSA public and private keys as defined in
Appendices A.1.1 and A.1.2. The parameters field associated with this OID in a value of
type Algorithmidentifier shall have a value of type NuULL.

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

The definitions in this section have been extended to support multi-prime RSA, but are
backward compatible with previous versions.

A.1.1 RSA public key syntax

An RSA public key should be represented with the ASN.1 type RSAPublicKey:

RSAPubl i cKey ::= SEQUENCE {
nodul us I NTEGER, -- n
publ i cExponent INTEGER -- e

}
The fields of type RsaPublickey have the following meanings:
* modulus isthe RSA modulus n.

* publicExponent iSthe RSA public exponent e.

A.1.2 RSA privatekey syntax

An RSA private key should be represented with the ASN.1 type RSAPrivateKey:

RSAPri vat eKey ::= SEQUENCE {
ver si on Ver si on,
nmodul us | NTECER, n
publ i cExponent | NTECGER, e
pri vat eExponent | NTEGER, d
prinel | NTEGER, p
pri ne2 | NTEGER, q
exponent 1 I NTEGER, -- d nod (p-1)
exponent 2 INTEGER, -- d nod (g-1)
coefficient I NTEGER, -- (inverse of q) nod p

ot her Pri nel nf os O her Pri nel nf os OPTI ONAL
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The fields of type RsAPrivatekey have the following meanings:
* version IS the version number, for compatibility with future revisions of this

document. It shall be O for this version of the document, unless multi-prime isused, in
which caseit shall be 1.

Version ::= I NTECER { two-prinme(0), multi(1l) }
( CONSTRAI NED BY {-- version nust be nulti if otherPrinelnfos present --})

* modulus isthe RSA modulus n.

* publicExponent iSthe RSA public exponent e.

* privateExponent iSthe RSA private exponent d.

* prime1 isthe prime factor p of n.

* prime2 isthe prime factor g of n.

* exponentiisdmod (p —1).

* exponent2isdmod (q —1).

» coefficient iSthe CRT coefficient g1 mod p.

* otherPrimelnfos contains the information for the additional primesrs, ..., r,, in order. It

shall be omitted ifersion is 0 and shall contain at least one instanceti@fPrimelnfo
if version is 1.

O herPrinmelnfos ::= SEQUENCE S| ZE(1.. MAX) OF OtherPrinmelnfo
O herPrinelnfo ::= SEQUENCE {

prime I NTEGER, -- ri

exponent | NTEGER, -- di

coefficient | NTEGER  -- ti

}

The fields of typedtherPrimeinfo have the following meanings:
* prime is a prime factor; of n, wherei > 3.
e exponentisdi=d mod ¢ —1).

e coefficient is the CRT coefficient = (r1-r»- ...-ri_)™* modri.

Note. It is important to protect the RSA private key against both disclosure and modification. Techniques
for such protection are outside the scope of this document. Methods for storing and distributing private keys
and other cryptographic data are described in PKCS #12 and #15.
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A.2 Schemeidentification

This section defines object identifiers for the encryption and signature schemes. The
schemes compatible with PKCS #1 v1.5 have the same definitions as in PKCS #1 v1.5.
The intended application of these definitions includes X.509 certificates and PKCS #7.

Here are type identifier definitions for the PKCS #1 OIDs.

PKCS1Al gori t hns ALGORI THM | DENTI FI ER : : = {
{ O D rsaEncryption PARAVETERS NULL } |
{ O D nd2W t hRSAEncrypti on PARAMETERS NULL } |
{ O D nmd5W t hRSAEncrypti on PARAMETERS NULL } |
{ O D shalWthRSAEncryption PARAMETERS NULL } |
{ O D sha256W t hRSAEncrypti on PARAVETERS NULL } |
{ O D sha384W t hRSAEncrypti on PARAMETERS NULL } |
{ O D sha512W t hRSAEncrypti on PARAVETERS NULL } |
{ O D id-RSAES- CAEP PARAMETERS RSAES- QAEP- parans } |
PKCS1PSour ceAl gorit hirs |
{ O D id-RSASSA- PSS PARAMETERS RSASSA- PSS- parans } ,

-- Allows for future expansion --

}
A.21 RSAES-OAEP

The object identifier id-RSAES-OAEP identifies the RSAES-OAEP encryption scheme.

i d- RSAES- CAEP OBJECT IDENTIFIER ::= { pkcs-1 7}

The parameters field associated with this OID in a value of type Algorithmidentifier shall
have a value of type RSAES-OAEP-params:

RSAES- QAEP- par ans :: = SEQUENCE {
hashAl gorithm [0] HashAl gorithm DEFAULT shal,
maskGenAl gorithm [1] MaskGenAl gorithm DEFAULT ngf 1SHA1,
pSourceAl gorithm [2] PSourceAl gorithm DEFAULT pSpecifiedEnpty
}

The fields of type RSAES-OAEP-params have the following meanings:

* hashAlgorithm identifies the hash function. It shall be an algorithm ID with an OID in
the set OAEP-PSSDigestAlgorithms. For a discussion of supported hash functions, see
Appendix B.1.

HashAl gorithm::= Al gorithm dentifier { {OAEP-PSSDi gestAl gorithns} }

QAEP- PSSDi gest Al gori t hirs ALGORI THM | DENTI FI ER :: = {
{ ODid-shal PARAMETERS NULL }|
{ ODid-sha256 PARAMETERS NULL }|
{ ODid-sha384 PARAMETERS NULL 1} |
{ ODid-sha512 PARAMETERS NULL },
. -- Allows for future expansion --

The default hash function is SHA-1;
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shal HashAl gorithm :: = {

algorithm id-shal,

paranmeters SHAlParaneters : NULL
}

SHAl1Paraneters ::= NULL

* maskGenAlgorithm identifies the mask generation function. It shall be an algorithm ID
with an OID in the set PkCcS1MGFAIgorithms, which for this version shall consist of id-
mgf1, identifying the MGF1 mask generation function (see Appendix B.2.1). The
parameters field associated with id-mgf1 shall be an algorithm ID with an OID in the set
OAEP-PSSDigestAlgorithms, identifying the hash function on which MGFL1 is based.

MaskGenAl gorithm::= Algorithmdentifier { {PKCSIMGAl gorithns} }

PKCS1MGFAI gori t hns ALGORI THMW | DENTI FI ER : : = {
{ O D id-myf1 PARAMETERS HashAl gorlthm}
.. - Allows for future expansion --

}
The default mask generation function is MGF1 with SHA-1:

mgf 1SHAL MaskGenAl gorithm ::= {
algorithm id-ngfl,
paraneters HashAl gorithm: shal

}

* pSourceAlgorithm identifies the source (and possibly the value) of the label L. It shall
be an algorithm ID with an OID in the set PkCS1PSourceAlgorithms, Which for this
version shall consist of id-pspecified, indicating that the label is specified explicitly.
The parameters field associated with id-pSpecified shall have a value of type ocTeT
STRING, containing the label. In previous versions of this specification, the term
“encoding parameters” was used rather than “label”, hence the name of the type
below.

PSourceAl gorithm::= Algorithmdentifier { {PKCS1PSourceAl gorithns} }

PKCS1PSour ceAl gori t hns ALGORI THMH | DENTI FIER :: = {
{ O D id-pSpeci fi ed PARAMETERS Encodi ngPar arret ers },
. -- Allows for future expansion --

}
i d- pSpeci fi ed OBJECT I DENTIFIER ::= { pkcs-1 9 }

Encodi ngParaneters ::= OCTET STRI N Sl ZE(O. . MAX))

The default label is an empty string (so thédish will contain the hash of the empty
string):
pSpeci fi edEnpty PSourceAl gorithm::= {

algorithm id-pSpecified,

paraneters Encodi ngParaneters : enptyString

}

enptyString Encodi ngParanmeters ::=""H

Copyright © 2002 RSA Security Inc.



PKCS#1 v2.1: RSA CRYPTOGRAPHY STANDARD (June 14, 2002) 43

If al of the default values of the fields in RSAES-OAEP-params are used, then the algorithm

identifier will have the following value:
r SAES- QAEP- Def aul t -l denti fier RSAES- Al gorithmdentifier ::= {
al gorithm i d- RSAES- OAEP,
paranmeters RSAES- OAEP- paranms : {
hashAl gorithm shal,
maskGenAl gorit hm ngf 1SHAL,
pSour ceAl gorithm pSpeci fi edEnpt y

}
RSAES- Al gorithm dentifier ::= Algorithmdentifier { {PKCS1lAl gorithms} }

A.22 RSAESPKCS1-vl_5

The object identifier rsaencryption (See Appendix A.l) identifies the RSAES-PKCS1-
v1 5 encryption scheme. The parameters field associated with this OID in a value of type
Algorithmlidentifier shall have avalue of type NuLL. Thisisthe same asin PKCS#1 v1.5.

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

A.2.3 RSASSA-PSS

The object identifier id-RsAssA-Pss identifies the RSASSA-PSS encryption scheme.
i d- RSASSA- PSS~ OBJECT I DENTIFIER ::= { pkcs-1 10 }

The parameters field associated with this OID in a value of type Algorithmidentifier shall
have a value of type RSASSA-PSS-params:

RSASSA- PSS- parans :: = SEQUENCE {
hashAl gorithm [0] HashAl gorithm DEFAULT shal,
maskCGenAl gorithm [1] MaskGenAl gorithm  DEFAULT ngf 1SHAL,
saltLength [2] I NTEGER DEFAULT 20,
trailerField [3] TrailerField DEFAULT trail erFiel dBC

}

The fields of type RsAsSA-PSS-params have the following meanings:

* hashAlgorithm identifies the hash function. It shall be an algorithm ID with an OID in
the set OAEP-PSSDigestAlgorithms (See Appendix A.2.1). The default hash function is
SHA-1.

* maskGenAlgorithm identifies the mask generation function. It shall be an algorithm ID
with an OID in the set PKCS1MGFAIgorithms (See Appendix A.2.1). The default mask
generation function is MGF1 with SHA-1. For MGF1 (and more generally, for other
mask generation functions based on a hash function), it is recommended that the
underlying hash function be the same as the one identified by hashAlgorithm; see Note
2 in Section 9.1 for further comments.
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* saltLength iS the octet length of the salt. It shal be an integer. For a given
hashAlgorithm, the default value of saltLength is the octet length of the hash value.
Unlike the other fields of type RSASSA-PSS-params, saltLength does not need to be
fixed for agiven RSA key pair.

* trailerField is the trailer field number, for compatibility with the draft IEEE P1363a
[27]. It shall be 1 for this version of the document, which represents the trailer field
with hexadecimal value Oxbc. Other trailer fields (including the trailer field HashiD ||
Oxcc in |IEEE P13634) are not supported in this document.

TrailerField ::= INTEGER { trailerFieldBC(1) }

If the default values of the hashAlgorithm, maskGenAlgorithm, and trailerField fields of
RSASSA-PSS-params are used, then the algorithm identifier will have the following value:

r SASSA- PSS- Def aul t - I dent i fi er RSASSA- Al gorithmi dentifier ::= {
al gorithm i d- RSASSA- PSS,
parameters RSASSA- PSS-parans : {

hashAl gorithm shal,
maskGenAl gorithm nmgf 1SHAL,
saltLength 20,
trailerField trail erFiel dBC
}
}
RSASSA- Al gorithm dentifier ::= Algorithm dentifier { {PKCS1Al gorithns} }

Note. In some applications, the hash function underlying a signature scheme is identified separately from

the rest of the operations in the signature scheme. For instance, in PKCS #7 [45], a hash function identifier

is placed before the message and a “digest encryption” algorithm identifier (indicating the rest of the
operations) is carried with the signature. In order for PKCS #7 to support the RSASSA-PSS signature
scheme, an object identifier would need to be defined for the operations in RSASSA-PSS after the hash
function (analogous to thesAEncryption OID for the RSASSA-PKCS1-v1l_5 scheme). SIMIME CMS [25]
takes a different approach. Although a hash function identifier is placed before the message, an algorithm
identifier for the full signature scheme may be carried with a CMS signature (this is done for DSA
signatures). Following this convention, theRSASSA-PSS OID can be used to identify RSASSA-PSS
signatures in CMS. Since CMS is considered the successor to PKCS #7 and new developments such as the
addition of support for RSASSA-PSS will be pursued with respect to CMS rather than PKCS #7, an OID for
the “rest of” RSASSA-PSS is not defined in this version of PKCS #1.

A.24 RSASSA-PKCSI1-vl1 5

The object identifier for RSASSA-PKCS1-v1 5 shall be one of the following. The choice
of OID depends on the choice of hash algorithm: MD2, MD5, SHA-1, SHA-256, SHA-
384, or SHA-512. Note that if either MD2 or MD5 is used, then the OID is just as in
PKCS #1 v1.5. For each OID, the parameters field associated with this OID in a value of
type Algorithmidentifier shall have a value of type NuLL. The OID should be chosen in
accordance with the following table:
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Hash algorithm | OID

MD2 nmd2W t hRSAENncr ypti on ::= {pkcs-1 2}
MD5 nmd5W t hRSAENncr ypt i on ::= {pkcs-1 4}
SHA-1 shalW t hRSAEncrypti on .= {pkcs-1 5}
SHA-256 sha256W t hRSAEncryption ::= {pkcs-1 11}
SHA-384 sha384W t hRSAEncryption ::= {pkcs-1 12}
SHA-512 shab512W t hRSAEncryption ::= {pkcs-1 13}

The EMSA-PKCS1-v1 5 encoding method includes an ASN.1 value of type Digestinfo,
where the type Digestinfo has the syntax

Di gestInfo ::= SEQUENCE {
di gest Al gorithm Di gest Al gorithm
di gest OCTET STRI NG

}

digestAlgorithm identifies the hash function and shall be an agorithm ID with an OID in
the set PKcsi1-vi-5DigestAlgorithms. For a discussion of supported hash functions, see
Appendix B.1.

DigestAlgorithm::= Algorithmdentifier { {PKCS1l-v1-5Di gestAl gorithns} }

PKCS1- v1-5Di gest Al gori t hns ALGORI THMH I DENTI FIER :: = {
O D id-mi2 PARAMETERS NULL H
i d- nd5 PARAMETERS NULL H
i d-shal PARAMETERS NULL H
i d-sha256 PARAMETERS NULL 1}|
i d-sha384 PARAMETERS NULL }|
i d-sha512 PARAMETERS NULL }

00000
lvAviviviw)
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B. Supporting techniques

This section gives several examples of underlying functions supporting the encryption
schemes in Section 7 and the encoding methods in Section 9. A range of techniques is
given here to alow compatibility with existing applications as well as migration to new
techniques. While these supporting techniques are appropriate for applications to
implement, none of them is required to be implemented. It is expected that profiles for
PKCS#1 v2.1 will be developed that specify particular supporting techniques.

This section also gives object identifiers for the supporting techniques.

B.1  Hash functions

Hash functions are used in the operations contained in Sections 7 and 9. Hash functions
are deterministic, meaning that the output is completely determined by the input. Hash
functions take octet strings of variable length, and generate fixed length octet strings. The
hash functions used in the operations contained in Sections 7 and 9 should generaly be
collision-resistant. This means that it is infeasible to find two distinct inputs to the hash
function that produce the same output. A collision-resistant hash function also has the
desirable property of being one-way; this means that given an output, it is infeasible to
find an input whose hash is the specified output. In addition to the requirements, the hash
function should yield a mask generation function (Appendix B.2) with pseudorandom
output.

Six hash functions are given as examples for the encoding methods in this document:
MD2 [33], MD5 [41], SHA-1 [38], and the proposed algorithms SHA-256, SHA-384,
and SHA-512 [39]. For the RSAES-OAEP encryption scheme and EM SA-PSS encoding
method, only SHA-1 and SHA-256/384/512 are recommended. For the EMSA-PKCS1-
vl 5 encoding method, SHA-1 and SHA-256/384/512 are recommended for new
applications. MD2 and MD5 are recommended only for compatibility with existing
applications based on PKCS #1 v1.5.

The object identifiers id-md2, id-mds, id-shail, id-sha256, id-sha384, and id-shas12, identify
the respective hash functions:

i d-nd2 OBJECT IDENTIFIER ::= {
iso (1) menber-body (2) us (840) rsadsi (113549) digestAl gorithm (2) 2

i d- nd5 OBJECT IDENTIFIER ::= {
iso (1) menber-body (2) us (840) rsadsi (113549) digestAlgorithm (2) 5

i d-shal OBJECT | DENTI FIER :: = {
i so(1) identified-organization(3) oiw1l4) secsig(3) algorithnms(2) 26
}

i d- sha256 OBJECT | DENTI FIER :: = {
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joint-iso-itu-t (2) country (16) us (840) organization (1) gov (101)
csor (3) nistalgorithm (4) hashalgs (2) 1

i d-sha384 OBJECT | DENTI FIER :: = {
joint-iso-itu-t (2) country (16) us (840) organization (1) gov (101)
csor (3) nistalgorithm (4) hashalgs (2) 2

i d-sha512 OBJECT IDENTIFIER ::= {
joint-iso-itu-t (2) country (16) us (840) organization (1) gov (101)
csor (3) nistalgorithm (4) hashalgs (2) 3

The parameters field associated with these OIDs in a value of type Algorithmidentifier shall
have a value of type NULL.

Note. Version 1.5 of PKCS #1 aso allowed for the use of MD4 in signature schemes. The cryptanalysis of
MD4 has progressed significantly in the intervening years. For example, Dobbertin [18] demonstrated how
to find collisions for MD4 and that the first two rounds of MD4 are not one-way [20]. Because of these
results and others (e.g. [8]), MD4 is no longer recommended. There have also been advances in the
cryptanalysis of MD2 and M D5, although not enough to warrant removal from existing applications. Rogier
and Chauvaud [43] demonstrated how to find collisions in a modified version of MD2. No one has
demonstrated how to find collisions for the full MD5 agorithm, although partial results have been found

(e.g. [9][19)).

To address these concerns, SHA-1, SHA-256, SHA-384, or SHA-512 are recommended for new
applications. As of today, the best (known) collision attacks against these hash functions are generic attacks

with complexity 2%, where L is the bit length of the hash output. For the signature schemes in this

document, a collision attack is easily trandated into a signature forgery. Therefore, the value L / 2 should be
at least equal to the desired security level in bits of the signature scheme (a security level of B bits means
that the best attack has complexity 2°). The same rule of thumb can be applied to RSAES-OAEP; it is
recommended that the bit length of the seed (which is equal to the bit length of the hash output) be twice the
desired security level in bits.

B.2 Mask generation functions

A mask generation function takes an octet string of variable length and a desired output
length as input, and outputs an octet string of the desired length. There may be restrictions
on the length of the input and output octet strings, but such bounds are generally very
large. Mask generation functions are deterministic; the octet string output is completely
determined by the input octet string. The output of a mask generation function should be
pseudorandom: Given one part of the output but not the input, it should be infeasible to
predict another part of the output. The provable security of RSAES-OAEP and RSASSA-
PSS relies on the random nature of the output of the mask generation function, which in
turn relies on the random nature of the underlying hash.

One mask generation function is given here: MGF1, which is based on a hash function.
MGF1 coincides with the mask generation functions defined in IEEE Std 1363-2000 [ 26]
and the draft ANSI X9.44 [1]. Future versions of this document may define other mask
generation functions.
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B.2.1 MGF1
MGF1 isaMask Generation Function based on a hash function.
MGF1 (mgfSeed, maskLen)

Options: Hash hash function (hLen denotes the length in octets of the hash
function output)

Input: mgfSeed seed from which mask is generated, an octet string

maskLen intended length in octets of the mask, at most 2°% hLen

Output: mask mask, an octet string of length maskLen
Error: “mask too long”
Seps.

1. If maskLen > 2*% hLen, output “mask too long” and stop.
2. LetT be the empty octet string.
3. Forcounter from O tomaskLen / hLen [}~ 1, do the following:
a. Convertcounter to an octet strin@ of length 4 octets (see Section 4.1):
C = 120SP c¢ounter, 4) .
b. Concatenate the hash of the segfiSeed andC to the octet string:
T=T|| HashimgfSeed ||C) .
4. Output the leadingnaskLen octets ofT as the octet stringask.

The object identifierd-mgf1 identifies the MGF1 mask generation function:

i d-mgf 1 OBJECT I DENTIFIER ::= { pkcs-1 8 }

The parameters field associated with this OID in a value of typgorithmidentifier shall
have a value of typeashAlgorithm, identifying the hash function on which MGFL1 is
based.
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C. ASN.1 module

PKCS-1 {
i so(1l) menber-body(2) us(840) rsadsi (113549) pkcs(1l) pkcs-1(1) nodul es(0)
pkcs-1(1)

}

-- $ Revision: 2.1 %

-- This nodul e has been checked for conformance with the ASN. 1 standard by
-- the 0SS ASN. 1 Tool s

DEFI NI TIONS EXPLICI T TAGS :: =
BEG N

-- EXPORTS ALL
-- Al types and values defined in this nodule are exported for use in other
-- ASN. 1 nodul es

| MPORTS

i d-sha256, id-sha384, id-sha512
FROM NI ST- SHA2 {
joint-iso-itu-t(2) country(16) us(840) organization(1l) gov(101)
csor(3) nistalgorithn(4) nodul es(0) sha2(1)

-- Basic object identifiers

-- The DER encoding of this in hexadecimal is:
-- (0x)06 08
-- 2A 86 48 86 F7 0D 01 01
pkcs-1 OBJECT | DENTIFIER :: = {
i so(1) nenber-body(2) us(840) rsadsi(113549) pkecs(1l) 1

-- When rsaEncryption is used in an Algorithm dentifier the paraneters
-- MJST be present and MJST be NULL.

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}

-- When id-RSAES-OAEP is used in an Algorithm dentifier the parameters MJST
-- be present and MJUST be RSAES- OAEP- par ans.

i d- RSAES- CAEP OBJECT | DENTIFIER ::= { pkcs-1 7}

-- When id-pSpecified is used in an Algorithm dentifier the parameters MJST
-- be an OCTET STRI NG

i d- pSpeci fi ed OBJECT I DENTIFIER ::= { pkcs-1 9 }

-- When id-RSASSA-PSS is used in an Algorithm dentifier the parameters MJST
-- be present and MJUST be RSASSA- PSS- par ans.

i d- RSASSA- PSS~ OBJECT I DENTIFIER ::= { pkcs-1 10 }
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-- When the following ODs are used in an Algorithmdentifier the paraneters
-- MJST be present and MUST be NULL.

nd2W t hRSAEncr ypti on OBJECT IDENTIFIER ::= { pkcs-1 2}
nd5W t hRSAEncr ypti on OBJECT IDENTIFIER ::= { pkcs-1 4}
shalW t hRSAEncrypti on OBJECT IDENTIFIER ::= { pkcs-1 5}
sha256W t hRSAEncr ypti on OBJECT IDENTIFIER ::={ pkcs-1 11 }
sha384W t hRSAENncr ypti on OBJECT IDENTIFIER ::= { pkcs-1 12 }
sha512W t hRSAEncr ypti on OBJECT IDENTIFIER ::= { pkcs-1 13}

-- This ODreally belongs in a nodule with the secsig O Ds.
i d-shal OBJECT | DENTI FIER :: = {
i so(1) identified-organization(3) oiw14) secsig(3) algorithns(2) 26

-- ODs for M2 and MD5, allowed only in EMSA- PKCS1-v1_5.
i d-nd2 OBJECT I DENTIFIER ::= {
i so(1) nmenber-body(2) us(840) rsadsi (113549) digestAl gorithnm(2) 2

i d-nmd5 OBJECT I DENTIFIER ::= {
i so(1) nmenber-body(2) us(840) rsadsi (113549) digestAl gorithn(2) 5
}

-- When id-ngfl is used in an Algorithm dentifier the paraneters MJST be
-- present and MJUST be a HashAl gorithm for exanple shal.

id-ngfl OBJECT IDENTIFIER ::= { pkcs-1 8}

-- Useful types

ALGORI THW | DENTI FI ER :: = CLASS {
&d OBJECT | DENTI FIER UNI QUE,
&Type OPTI ONAL

W TH SYNTAX { O D & d [ PARAMETERS &Type] }

-- Note: the parameter InfoObjectSet in the following definitions allows a
-- distinct information object set to be specified for sets of algorithns
-- such as:

-- DigestAl gorithns ALGORI THW | DENTI FI ER :: = {

-- { ODid-nd2 PARAMETERS NULL }|

-- { ODid-nmd5 PARAMETERS NULL }|

-- { O Did-shal PARAMETERS NULL }

Al gorithm dentifier { ALGORI THW | DENTI FI ER | nf oCbj ect Set } ::= SEQUENCE {
al gorithm
ALGORI THM | DENTI FI ER. & d({| nf oCbj ect Set}),
par anmeters
ALGORI THM | DENTI FI ER. &Type({| nf oObj ect Set}{ @al gorithn}) OPTI ONAL
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-- Al oned EME- CAEP and EMSA- PSS di gest al gorithns.
OAEP- PSSDi gest Al gori t hms ALGORI THM | DENTI FIER :: = {
{ O D id-shal PARAMETERS NULL H
{ ODid-sha256 PARAMETERS NULL 1} |
{ ODid-sha384 PARAMETERS NULL }|
{ ODid-sha512 PARAMETERS NULL },
. -- Allows for future expansion --

}

-- Al oned EMSA- PKCS1-v1_5 digest al gorithms.
PKCS1- v1-5Di gest Al gorithns ALGORI THM | DENTI FI ER :: = {
i d- nd2 PARAMETERS NULL H
i d- nd5 PARAMETERS NULL H
i d-shal PARAMETERS NULL 1}
i d-sha256 PARAMETERS NULL }|
i d- sha384 PARAMETERS NULL 1}|
}

a
a
a
a
a
O D id-sha512 PARAMETERS NULL

T e Late et L)
|vAvAvAvAvRW)

}

shal HashAl gorithm :: = {

algorithm id-shal,

paranmeters SHAlParaneters : NULL
}

HashAl gorithm ::= Algorithmdentifier { {QAEP-PSSD gestAl gorithns} }

SHAl1Paranmeters ::= NULL

-- Al owed mask generation function al gorithms.
-- If the identifier is id-ngfl, the paraneters are a HashAl gorithm

PKCS1MGFAI gori t hns ALGORI THM | DENTI FI ER : : = {
{ A D id-nmgf 1 PARAMETERS HashAlgorlthm}
.. =-- Allows for future expansion --

-- Default Algorithmdentifier for id-RSAES- OAEP. maskGenAl gorithm and
-- i d- RSASSA- PSS. maskGenAl gori t hm

ngf 1SHAL MaskGenAl gorithm :: = {
algorithm id-ngfl,
parameters HashAl gorithm: shal
}

MaskGenAl gorithm::= Algorithmdentifier { {PKCSIMGFAl gorithns} }

-- Allowed al gorithnms for pSourceAl gorithm

PKCS1PSour ceAl gori t hns ALGORI THMH | DENTI FIER :: = {
{ ODid-pSpecified PARAMETERS Encodi ngParaneters },
... =-- Allows for future expansion --
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Encodi ngPar aneters ::= OCTET STRI NG SI ZE( 0. . MAX))

-- This identifier neans that the label L is an enpty string, so the digest
-- of the enpty string appears in the RSA bl ock before nasking.

pSpeci fi edEnpty PSourceAl gorithm::= {
algorithm id-pSpecified,
parameters Encodi ngParaneters : enptyString

}
PSourceAl gorithm::= Algorithmdentifier { {PKCS1PSourceAl gorithns} }

enptyString Encodi ngParaneters ::=""H

-- Type identifier definitions for the PKCS #1 O Ds.

PKCS1Al gori t hns ALGORI THM | DENTI FI ER : : = {
{ O D rsaEncryption PARAVETERS NULL } |
{ O D nd2W t hRSAEncrypti on PARAMETERS NULL } |
{ O D nd5W t hRSAEncrypti on PARAMETERS NULL } |
{ O D shalWthRSAEncryption PARAMETERS NULL } |
{ O D sha256W t hRSAEncr ypti on PARAMETERS NULL } |
{ O D sha384W t hRSAEncrypti on PARAMETERS NULL } |
{ O D sha512W t hRSAEncr ypti on PARAMETERS NULL } |
{ O D id-RSAES- CAEP PARAMETERS RSAES- CAEP- parans } |
PKCS1PSour ceAl gori t hns |
{ O D id-RSASSA- PSS PARAMETERS RSASSA- PSS- parans } ,
.. -- Allows for future expansion --
}
-- Mai n structures
RSAPubl i cKey ::= SEQUENCE ({
nodul us INTEGER, -- n
publ i cExponent INTEGER -- e
}
-- Representation of RSA private key with infornation for the CRT al gorithm
RSAPri vat eKey :: = SEQUENCE {
ver si on Ver si on,
nodul us I NTEGER, -- n
publ i cExponent I NTEGER, -- e
pri vat eExponent I NTEGER, -- d
prinel I NTEGER, -- p
pri ne2 I NTEGER, -- (¢
exponent 1 INTEGER, -- d nod (p-1)
exponent 2 I NTEGER, -- d nod (g-1)
coefficient I NTEGER, -- (inverse of q) nod p
ot her Pri mel nf os O her Pri mel nfos OPTI ONAL
}
Version ::= INTEGER { two-prine(0), nulti(1) }
( CONSTRAI NED BY {-- version nust be nulti if otherPrinmelnfos present --})
O herPrinmelnfos ::= SEQUENCE S| ZE(1.. MAX) OF OtherPrinmelnfo
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O herPrinelnfo ::= SEQUENCE {
prinme | NTEGER, -- ri
exponent | NTEGER, -- di
coefficient | NTEGER  -- ti
}

-- Algorithm dentifier.paraneters for id-RSAES- CAEP.

-- Note that the tags in this Sequence are explicit.

RSAES- QAEP- par ans :: = SEQUENCE {
hashAl gorithm [0] HashAl gorithm DEFAULT shal,
maskGenAl gorithm [1] MaskGenAl gorithm DEFAULT ngf 1SHAL,
pSourceAl gorithm [2] PSourceAl gorithm DEFAULT pSpecifiedEnpty

}
-- ldentifier for default RSAES-QAEP algorithmidentifier.
-- The DER Encoding of this is in hexadecinal:
-- (0x)30 oD
-- 06 09
-- 2A 86 48 86 F7 0D 01 01 07
-- 30 00
-- Notice that the DER encodi ng of default values is "enpty".
r SAES- QAEP- Def aul t - I dent i fi er RSAES- Al gorithm dentifier ::= {
al gorithm i d- RSAES- QAEP,
parameters RSAES- QAEP- parans : {
hashAl gorithm shal,
maskGenAl gori t hm nmgf 1SHAL,
pSour ceAl gorithm pSpeci fi edEnpty
}
}
RSAES- Al gorithm dentifier ::= Algorithmdentifier { {PKCS1Al gorithns} }
-- Algorithm dentifier.paraneters for id-RSASSA-PSS.
-- Note that the tags in this Sequence are explicit.
RSASSA- PSS- par ans : : = SEQUENCE {
hashAl gorithm [0] HashAl gorithm DEFAULT shal,
maskGenAl gorithm [1] MaskGenAl gorithm  DEFAULT ngf 1SHAL,
sal tLength [2] I NTEGER DEFAULT 20,
trailerField [3] TrailerField DEFAULT trailerFiel dBC
}
TrailerField ::= INTEGER { trailerFieldBC(1l) }
-- ldentifier for default RSASSA-PSS algorithmidentifier
-- The DER Encoding of this is in hexadecinal:
-- (0x)30 0D
-- 06 09
-- 2A 86 48 86 F7 0D 01 01 OA
-- 30 00
-- Notice that the DER encodi ng of default values is "enpty".
r SASSA- PSS- Def aul t - I dent i fi er RSASSA- Al gorithm dentifier ::= {

al gorithm id- RSASSA- PSS,
parameters RSASSA- PSS-parans : {

hashAl gorithm shal,
maskGenAl gorit hm ngf 1SHAL,
sal tLength 20,
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trailerField trailerFiel dBC

}
}
RSASSA- Al gorithm dentifier ::= Algorithm dentifier { {PKCS1Al gorithns} }
-- Syntax for the EMSA-PKCS1-v1_5 hash identifier.
Di gestInfo ::= SEQUENCE {

di gest Al gorithm Di gest Al gorithm

di gest OCTET STRI NG
}

DigestAlgorithm::= Algorithmdentifier { {PKCSl-v1-5Di gestAl gorithns} }

END -- PKCS1Definitions
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D. Intellectual property considerations

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829, which expired
on September 20, 2000. RSA Security Inc. makes no other patent claims on the
constructions described in this document, although specific underlying techniques may be
covered.

Multi-prime RSA is described in U.S. Patent 5,848,1509.

The University of California has indicated that it has a patent pending on the PSS
signature scheme [5]. It has also provided a letter to the IEEE P1363 working group

stating that if the PSS signature scheme is included in an IEEE standard, “the University

of California will, when that standard is adopted, FREELY license any conforming
implementation of PSS as a technique for achieving a digital signature with agpendix
[23]. The PSS signature scheme is specified in the IEEE P1363a draft [27], which was in
ballot resolution when this document was published.

License to copy this document is granted provided that it is identified as “RSA Security
Inc. Public-Key Cryptography Standards (PKCS)” in all material mentioning or
referencing this document.

RSA Security Inc. makes no other representations regarding intellectual property claims
by other parties. Such determination is the responsibility of the user.
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E. Revision history
Versions 1.0-1.3

Versions 1.0 — 1.3 were distributed to participants in RSA Data Security, Inc.’s Public-
Key Cryptography Standards meetings in February and March 1991.

Version 1.4

Version 1.4 was part of the June 3, 1991 initial public release of PKCS. Version 1.4 was
published as NIST/OSI Implementors’ Workshop document SEC-SIG-91-18.

Version 1.5

Version 1.5 incorporated several editorial changes, including updates to the references
and the addition of a revision history. The following substantive changes were made:

0 Section 10: “MD4 with RSA” signature and verification processes were added.
[0 Section 11mdawithRSAEncryption Object identifier was added.

Version 1.5 was republished as IETF RFC 2313.

Version 2.0

Version 2.0 incorporated major editorial changes in terms of the document structure and
introduced the RSAES-OAEP encryption scheme. This version continued to support the
encryption and signature processes in version 1.5, although the hash algorithm MD4 was
no longer allowed due to cryptanalytic advances in the intervening years. Version 2.0 was
republished as IETF RFC 2437 [35].

Version 2.1

Version 2.1 introduces multi-prime RSA and the RSASSA-PSS signature scheme with
appendix along with several editorial improvements. This version continues to support
the schemes in version 2.0.
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G. About PKCS

The Public-Key Cryptography Standards are specifications produced by RSA
Laboratories in cooperation with secure systems devel opers worldwide for the purpose of
accelerating the deployment of public-key cryptography. First published in 1991 as a
result of meetings with a small group of early adopters of public-key technology, the
PKCS documents have become widely referenced and implemented. Contributions from
the PKCS series have become part of many forma and de facto standards, including
ANSI X9 and IEEE P1363 documents, PKIX, SET, S/MIME, SSL/TLS, and
WAP/WTLS.

Further development of PKCS occurs through mailing list discussions and occasional
workshops, and suggestions for improvement are welcome. For more information,
contact:

PK CS Editor

RSA Laboratories

174 Middlesex Turnpike

Bedford, MA 01730 USA

pkcs-editor @rsasecurity.com
http://www.rsasecurity.com/rsal abs/pkcs
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