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Table 5.9 Performance measures for four numeric prediction models.

A B C D
root mean-squared error 67.8 91.7 63.3 57.4
mean absolute error 41.3 385 334 29.2
root relative squared error 42.2% 57.2% 39.4% 35.8%
relative absolute error 43.1% 40.1% 34.8% 30.4%
correlation coefficient 0.88 0.88 0.89 0.91

discrepancies much more heavily than small ones, whereas the absolute error
measures do not. Taking the square root (root mean-squared error) just reduces
the figure to have the same dimensionality as the quantity being predicted. The
relative error figures try to compensate for the basic predictability or unpre-
dictability of the output variable: if it tends to lie fairly close to its average value,
then you expect prediction to be good and the relative figure compensate for
this. Otherwise, if the error figure in one situation is far greater than that in
another situation, it may be because the quantity in the first situation is inher-
ently more variable and therefore harder to predict, not because the predictor
is any worse.
Fortunately, it turns out that in most practical situations the best numeric
prediction method is still the best no matter which error measure is used. For
_ example, Table 5.9 shows the result of four different numeric prediction tech-
niques on a given dataset, measured using cross-validation. Method D is the best
according to all five metrics: it has the smallest value for each error measure and
the largest correlation coefficient. Method C is the second best by all five metrics.
The performance of methods A and B is open to dispute: they have the same
correlation coefficient, method A is better than method B according to both
mean-squared and relative squared errors, and the reverse is true for both
absolute and relative absolute error. It is likely that the extra emphasis that the
squaring operation gives to outliers accounts for the differences in this case.
When comparing two different learning schemes that involve numeric pre-
diction, the methodology developed in Section 5.5 still applies. The only dif-
ference is that success rate is replaced by the appropriate performance measure
(e.g., root mean-squared error) when performing the significance test.

59 The minimum description length principle

What is learned by a machine learning method is a kind of “theory” of the
domain from which the examples are drawn, a theory that is predictive in that
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holdout method, and cross-validation—apply equally well to numeric predic-
tion. But the basic quality measure offered by the error rate is no longer appro-
priate: errors are not simply present or absent; they come in different sizes.

Several alternative measures, summarized in Table 5.8, can be used to evalu-
ate the success of numeric prediction. The predicted values on the test instances
are pi, Pa, . - - py; the actual values are a,, a,, . . ., a,. Notice that p; means some-
thing very different here from what it did in the last section: there it was the
probability that a particular prediction was in the ith class; here it refers to the
numeric value of the prediction for the ith test instance.

Mean-squared error is the principal and most commonly used measure;
sometimes the square root is taken to give it the same dimensions as the pre-
dicted value itself. Many mathematical techniques (such as linear regression,
explained in Chapter 4) use the mean-squared error because it tends to be the
easiest measure to manipulate mathematically: it is, as mathematicians say, “well
behaved.” However, here we are considering it as a performance measure: all the
performance measures are easy to calculate, so mean-squared error has no par-
ticular advantage. The question is, is it an appropriate measure for the task at
hand?

Mean absolute error is an alternative: just average the magnitude of the indi-
vidual errors without taking account of their sign. Mean-squared error tends to
exaggerate the effect of outliers—instances whose prediction error is larger than
the others—but absolute error does not have this effect: all sizes of error are
treated evenly according to their magnitude.

Sometimes it is the relative rather than absolute error values that are of impoz-
tance. For example, if a 10% error is equally important whether it is an error of
50 in a prediction of 500 or an error of 0.2 in a prediction of 2, then averages
of absolute error will be meaningless: relative errors are appropriate. This effect
would be taken into account by using the relative errors in the mean-squared
error calculation or the mean absolute error calculation.

Relative squared error in Table 5.8 refers to something quite different. The
error is made relative to what it would have been if a simple predictor had been
used. The simple predictor in question is just the average of the actual
values from the training data. Thus relative squared error takes the total squared
error and normalizes it by dividing by the total squared error of the default
predictor.

The next error measure goes by the glorious name of relative absolute error
and is just the total absolute error, with the same kind of normalization. In these
three relative error measures, the errors are normalized by the error of the
simple predictor that predicts average values.

The final measure in Table 5.8 is the correlation coefficient, which measures
the statistical correlation between the a’s and the p’s. The correlation coefficient
ranges from 1 for perfectly correlated results, through 0 when there is no cor-



