Theoretical Computer Science Cheat Sheet Definitions Series f(n) = O(g(n)) iff positive c, n0 such that 0 f(n) cg(n) n n0. n i=1 i = n(n + 1) 2 , n i=1 i2 = n(n + 1)(2n + 1) 6 , n i=1 i3 = n2 (n + 1)2 4 . In general: n i=1 im = 1 m + 1 (n + 1)m+1 - 1 - n i=1 (i + 1)m+1 - im+1 - (m + 1)im n-1 i=1 im = 1 m + 1 m k=0 m + 1 k Bknm+1-k . Geometric series: n i=0 ci = cn+1 - 1 c - 1 , c = 1, i=0 ci = 1 1 - c , i=1 ci = c 1 - c , |c| < 1, n i=0 ici = ncn+2 - (n + 1)cn+1 + c (c - 1)2 , c = 1, i=0 ici = c (1 - c)2 , |c| < 1. Harmonic series: Hn = n i=1 1 i , n i=1 iHi = n(n + 1) 2 Hn n(n - 1) 4 . n i=1 Hi = (n + 1)Hn - n, n i=1 i m Hi = n + 1 m + 1 Hn+1 - 1 m + 1 . f(n) = (g(n)) iff positive c, n0 such that f(n) cg(n) 0 n n0. f(n) = (g(n)) iff f(n) = O(g(n)) and f(n) = (g(n)). f(n) = o(g(n)) iff limn f(n)/g(n) = 0. lim n an = a iff > 0, n0 such that |an - a| < , n n0. sup S least b R such that b s, s S. inf S greatest b R such that b s, s S. lim inf n an lim n inf{ai | i n, i N}. lim sup n an lim n sup{ai | i n, i N}. n k Combinations: Size k subsets of a size n set. n k Stirling numbers (1st kind): Arrangements of an n element set into k cycles. 1. n k = n! (n - k)!k! , 2. n k=0 n k = 2n , 3. n k = n n - k , 4. n k = n k n - 1 k - 1 , 5. n k = n - 1 k + n - 1 k - 1 , 6. n m m k = n k n - k m - k , 7. n k=0 r + k k = r + n + 1 n , 8. n k=0 k m = n + 1 m + 1 , 9. n k=0 r k s n - k = r + s n , 10. n k = (-1)k k - n - 1 k , 11. n 1 = n n = 1, 12. n 2 = 2n-1 - 1, 13. n k = k n - 1 k + n - 1 k - 1 , n k Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets. n k 1st order Eulerian numbers: Permutations 12 . . . n on {1, 2, . . . , n} with k ascents. n k 2nd order Eulerian numbers. Cn Catalan Numbers: Binary trees with n + 1 vertices. 14. n 1 = (n - 1)!, 15. n 2 = (n - 1)!Hn-1, 16. n n = 1, 17. n k n k , 18. n k = (n - 1) n - 1 k + n - 1 k - 1 , 19. n n - 1 = n n - 1 = n 2 , 20. n k=0 n k = n!, 21. Cn = 1 n + 1 2n n , 22. n 0 = n n - 1 = 1, 23. n k = n n - 1 - k , 24. n k = (k + 1) n - 1 k + (n - k) n - 1 k - 1 , 25. 0 k = 1 if k = 0, 0 otherwise 26. n 1 = 2n - n - 1, 27. n 2 = 3n - (n + 1)2n + n + 1 2 , 28. xn = n k=0 n k x + k n , 29. n m = m k=0 n + 1 k (m + 1 - k)n (-1)k , 30. m! n m = n k=0 n k k n - m , 31. n m = n k=0 n k n - k m (-1)n-k-m k!, 32. n 0 = 1, 33. n n = 0 for n = 0, 34. n k = (k + 1) n - 1 k + (2n - 1 - k) n - 1 k - 1 , 35. n k=0 n k = (2n)n 2n , 36. x x - n = n k=0 n k x + n - 1 - k 2n , 37. n + 1 m + 1 = k n k k m = n k=0 k m (m + 1)n-k , Theoretical Computer Science Cheat Sheet Identities Cont. Trees 38. n + 1 m + 1 = k n k k m = n k=0 k m nn-k = n! n k=0 1 k! k m , 39. x x - n = n k=0 n k x + k 2n , 40. n m = k n k k + 1 m + 1 (-1)n-k , 41. n m = k n + 1 k + 1 k m (-1)m-k , 42. m + n + 1 m = m k=0 k n + k k , 43. m + n + 1 m = m k=0 k(n + k) n + k k , 44. n m = k n + 1 k + 1 k m (-1)m-k , 45. (n - m)! n m = k n + 1 k + 1 k m (-1)m-k , for n m, 46. n n - m = k m - n m + k m + n n + k m + k k , 47. n n - m = k m - n m + k m + n n + k m + k k , 48. n + m + m = k k n - k m n k , 49. n + m + m = k k n - k m n k . Every tree with n vertices has n - 1 edges. Kraft inequality: If the depths of the leaves of a binary tree are d1, . . . , dn: n i=1 2-di 1, and equality holds only if every internal node has 2 sons. Recurrences Master method: T(n) = aT(n/b) + f(n), a 1, b > 1 If > 0 such that f(n) = O(nlogb a- ) then T(n) = (nlogb a ). If f(n) = (nlogb a ) then T(n) = (nlogb a log2 n). If > 0 such that f(n) = (nlogb a+ ), and c < 1 such that af(n/b) cf(n) for large n, then T(n) = (f(n)). Substitution (example): Consider the following recurrence Ti+1 = 22i T2 i , T1 = 2. Note that Ti is always a power of two. Let ti = log2 Ti. Then we have ti+1 = 2i + 2ti, t1 = 1. Let ui = ti/2i . Dividing both sides of the previous equation by 2i+1 we get ti+1 2i+1 = 2i 2i+1 + ti 2i . Substituting we find ui+1 = 1 2 + ui, u1 = 1 2 , which is simply ui = i/2. So we find that Ti has the closed form Ti = 2i2i-1 . Summing factors (example): Consider the following recurrence T(n) = 3T(n/2) + n, T(1) = 1. Rewrite so that all terms involving T are on the left side T(n) - 3T(n/2) = n. Now expand the recurrence, and choose a factor which makes the left side "tele- scope" 1 T(n) - 3T(n/2) = n 3 T(n/2) - 3T(n/4) = n/2 ... ... ... 3log2 n-1 T(2) - 3T(1) = 2 Let m = log2 n. Summing the left side we get T(n) - 3m T(1) = T(n) - 3m = T(n) - nk where k = log2 3 1.58496. Summing the right side we get m-1 i=0 n 2i 3i = n m-1 i=0 3 2 i . Let c = 3 2 . Then we have n m-1 i=0 ci = n cm - 1 c - 1 = 2n(clog2 n - 1) = 2n(c(k-1) logc n - 1) = 2nk - 2n, and so T(n) = 3nk - 2n. Full history recurrences can often be changed to limited history ones (example): Consider Ti = 1 + i-1 j=0 Tj, T0 = 1. Note that Ti+1 = 1 + i j=0 Tj. Subtracting we find Ti+1 - Ti = 1 + i j=0 Tj - 1 - i-1 j=0 Tj = Ti. And so Ti+1 = 2Ti = 2i+1 . Generating functions: 1. Multiply both sides of the equation by xi . 2. Sum both sides over all i for which the equation is valid. 3. Choose a generating function G(x). Usually G(x) = i=0 xi gi. 3. Rewrite the equation in terms of the generating function G(x). 4. Solve for G(x). 5. The coefficient of xi in G(x) is gi. Example: gi+1 = 2gi + 1, g0 = 0. Multiply and sum: i0 gi+1xi = i0 2gixi + i0 xi . We choose G(x) = i0 xi gi. Rewrite in terms of G(x): G(x) - g0 x = 2G(x) + i0 xi . Simplify: G(x) x = 2G(x) + 1 1 - x . Solve for G(x): G(x) = x (1 - x)(1 - 2x) . Expand this using partial fractions: G(x) = x 2 1 - 2x - 1 1 - x = x 2 i0 2i xi - i0 xi = i0 (2i+1 - 1)xi+1 . So gi = 2i - 1. Theoretical Computer Science Cheat Sheet 3.14159, e 2.71828, 0.57721, = 1+ 5 2 1.61803, ^ = 1- 5 2 -.61803 i 2i pi General Probability 1 2 2 Bernoulli Numbers (Bi = 0, odd i = 1): B0 = 1, B1 = -1 2 , B2 = 1 6 , B4 = - 1 30 , B6 = 1 42 , B8 = - 1 30 , B10 = 5 66 . Change of base, quadratic formula: logb x = loga x loga b , -b b2 - 4ac 2a . Euler's number e: e = 1 + 1 2 + 1 6 + 1 24 + 1 120 + lim n 1 + x n n = ex . 1 + 1 n n < e < 1 + 1 n n+1 . 1 + 1 n n = e - e 2n + 11e 24n2 - O 1 n3 . Harmonic numbers: 1, 3 2 , 11 6 , 25 12 , 137 60 , 49 20 , 363 140 , 761 280 , 7129 2520 , . . . ln n < Hn < ln n + 1, Hn = ln n + + O 1 n . Factorial, Stirling's approximation: 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, . . . n! = 2n n e n 1 + 1 n . Ackermann's function and inverse: a(i, j) = 2j i = 1 a(i - 1, 2) j = 1 a(i - 1, a(i, j - 1)) i, j 2 (i) = min{j | a(j, j) i}. Continuous distributions: If Pr[a < X < b] = b a p(x) dx, then p is the probability density function of X. If Pr[X < a] = P(a), then P is the distribution function of X. If P and p both exist then P(a) = a p(x) dx. Expectation: If X is discrete E[g(X)] = x g(x) Pr[X = x]. If X continuous then E[g(X)] = g(x)p(x) dx = g(x) dP(x). Variance, standard deviation: VAR[X] = E[X2 ] - E[X]2 , = VAR[X]. For events A and B: Pr[A B] = Pr[A] + Pr[B] - Pr[A B] Pr[A B] = Pr[A] Pr[B], iff A and B are independent. Pr[A|B] = Pr[A B] Pr[B] For random variables X and Y : E[X Y ] = E[X] E[Y ], if X and Y are independent. E[X + Y ] = E[X] + E[Y ], E[cX] = c E[X]. Bayes' theorem: Pr[Ai|B] = Pr[B|Ai] Pr[Ai] n j=1 Pr[Aj] Pr[B|Aj] . Inclusion-exclusion: Pr n i=1 Xi = n i=1 Pr[Xi] + n k=2 (-1)k+1 ii< b are integers then gcd(a, b) = gcd(a mod b, b). If n i=1 pei i is the prime factorization of x then S(x) = d|x d = n i=1 pei+1 i - 1 pi - 1 . Perfect Numbers: x is an even perfect number iff x = 2n-1 (2n -1) and 2n -1 is prime. Wilson's theorem: n is a prime iff (n - 1)! -1 mod n. M¨obius inversion: (i) = 1 if i = 1. 0 if i is not square-free. (-1)r if i is the product of r distinct primes. If G(a) = d|a F(d), then F(a) = d|a (d)G a d . Prime numbers: pn = n ln n + n ln ln n - n + n ln ln n ln n + O n ln n , (n) = n ln n + n (ln n)2 + 2!n (ln n)3 + O n (ln n)4 . Definitions: Loop An edge connecting a vertex to itself. Directed Each edge has a direction. Simple Graph with no loops or multi-edges. Walk A sequence v0e1v1 . . . e v . Trail A walk with distinct edges. Path A trail with distinct vertices. Connected A graph where there exists a path between any two vertices. Component A maximal connected subgraph. Tree A connected acyclic graph. Free tree A tree with no root. DAG Directed acyclic graph. Eulerian Graph with a trail visiting each edge exactly once. Hamiltonian Graph with a cycle visiting each vertex exactly once. Cut A set of edges whose removal increases the number of components. Cut-set A minimal cut. Cut edge A size 1 cut. k-Connected A graph connected with the removal of any k - 1 vertices. k-Tough S V, S = we have k c(G - S) |S|. k-Regular A graph where all vertices have degree k. k-Factor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Ind. set A set of vertices, none of which are adjacent. Vertex cover A set of vertices which cover all edges. Planar graph A graph which can be embeded in the plane. Plane graph An embedding of a planar graph. vV deg(v) = 2m. If G is planar then n - m + f = 2, so f 2n - 4, m 3n - 6. Any planar graph has a vertex with degree 5. Notation: E(G) Edge set V (G) Vertex set c(G) Number of components G[S] Induced subgraph deg(v) Degree of v (G) Maximum degree (G) Minimum degree (G) Chromatic number E(G) Edge chromatic number Gc Complement graph Kn Complete graph Kn1,n2 Complete bipartite graph r(k, ) Ramsey number Geometry Projective coordinates: triples (x, y, z), not all x, y and z zero. (x, y, z) = (cx, cy, cz) c = 0. Cartesian Projective (x, y) (x, y, 1) y = mx + b (m, -1, b) x = c (1, 0, -c) Distance formula, Lp and L metric: (x1 - x0)2 + (y1 - y0)2, |x1 - x0|p + |y1 - y0|p 1/p , lim p |x1 - x0|p + |y1 - y0|p 1/p . Area of triangle (x0, y0), (x1, y1) and (x2, y2): 1 2 abs x1 - x0 y1 - y0 x2 - x0 y2 - y0 . Angle formed by three points: (0, 0) (x1, y1) (x2, y2) 2 1 cos = (x1, y1) (x2, y2) 1 2 . Line through two points (x0, y0) and (x1, y1): x y 1 x0 y0 1 x1 y1 1 = 0. Area of circle, volume of sphere: A = r2 , V = 4 3 r3 . If I have seen farther than others, it is because I have stood on the shoulders of giants. ­ Issac Newton Theoretical Computer Science Cheat Sheet Calculus Wallis' identity: = 2 2 2 4 4 6 6 1 3 3 5 5 7 Brouncker's continued fraction expansion: 4 = 1 + 12 2 + 32 2+ 52 2+ 72 2+ Gregrory's series: 4 = 1 - 1 3 + 1 5 - 1 7 + 1 9 - Newton's series: 6 = 1 2 + 1 2 3 23 + 1 3 2 4 5 25 + Sharp's series: 6 = 1 3 1- 1 31 3 + 1 32 5 - 1 33 7 + Euler's series: 2 6 = 1 12 + 1 22 + 1 32 + 1 42 + 1 52 + 2 8 = 1 12 + 1 32 + 1 52 + 1 72 + 1 92 + 2 12 = 1 12 - 1 22 + 1 32 - 1 42 + 1 52 - Derivatives: 1. d(cu) dx = c du dx , 2. d(u + v) dx = du dx + dv dx , 3. d(uv) dx = u dv dx + v du dx , 4. d(un ) dx = nun-1 du dx , 5. d(u/v) dx = v du dx - u dv dx v2 , 6. d(ecu ) dx = cecu du dx , 7. d(cu ) dx = (ln c)cu du dx , 8. d(ln u) dx = 1 u du dx , 9. d(sin u) dx = cos u du dx , 10. d(cos u) dx = - sin u du dx , 11. d(tan u) dx = sec2 u du dx , 12. d(cot u) dx = csc2 u du dx , 13. d(sec u) dx = tan u sec u du dx , 14. d(csc u) dx = - cot u csc u du dx , 15. d(arcsin u) dx = 1 1 - u2 du dx , 16. d(arccos u) dx = -1 1 - u2 du dx , 17. d(arctan u) dx = 1 1 + u2 du dx , 18. d(arccot u) dx = -1 1 + u2 du dx , 19. d(arcsec u) dx = 1 u 1 - u2 du dx , 20. d(arccsc u) dx = -1 u 1 - u2 du dx , 21. d(sinh u) dx = cosh u du dx , 22. d(cosh u) dx = sinh u du dx , 23. d(tanh u) dx = sech2 u du dx , 24. d(coth u) dx = - csch2 u du dx , 25. d(sech u) dx = - sech u tanh u du dx , 26. d(csch u) dx = - csch u coth u du dx , 27. d(arcsinh u) dx = 1 1 + u2 du dx , 28. d(arccosh u) dx = 1 u2 - 1 du dx , 29. d(arctanh u) dx = 1 1 - u2 du dx , 30. d(arccoth u) dx = 1 u2 - 1 du dx , 31. d(arcsech u) dx = -1 u 1 - u2 du dx , 32. d(arccsch u) dx = -1 |u| 1 + u2 du dx . Integrals: 1. cu dx = c u dx, 2. (u + v) dx = u dx + v dx, 3. xn dx = 1 n + 1 xn+1 , n = -1, 4. 1 x dx = ln x, 5. ex dx = ex , 6. dx 1 + x2 = arctan x, 7. u dv dx dx = uv - v du dx dx, 8. sin x dx = - cos x, 9. cos x dx = sin x, 10. tan x dx = - ln | cos x|, 11. cot x dx = ln | cos x|, 12. sec x dx = ln | sec x + tan x|, 13. csc x dx = ln | csc x + cot x|, 14. arcsin x a dx = arcsin x a + a2 - x2, a > 0, Partial Fractions Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining N(x) D(x) = Q(x) + N (x) D(x) , where the degree of N is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor: N(x) (x - a)D(x) = A x - a + N (x) D(x) , where A = N(x) D(x) x=a . For a repeated factor: N(x) (x - a)mD(x) = m-1 k=0 Ak (x - a)m-k + N (x) D(x) , where Ak = 1 k! dk dxk N(x) D(x) x=a . The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. ­ George Bernard Shaw Theoretical Computer Science Cheat Sheet Calculus Cont. 15. arccos x a dx = arccos x a - a2 - x2, a > 0, 16. arctan x a dx = x arctan x a - a 2 ln(a2 + x2 ), a > 0, 17. sin2 (ax)dx = 1 2a ax - sin(ax) cos(ax) , 18. cos2 (ax)dx = 1 2a ax + sin(ax) cos(ax) , 19. sec2 x dx = tan x, 20. csc2 x dx = - cot x, 21. sinn x dx = - sinn-1 x cos x n + n - 1 n sinn-2 x dx, 22. cosn x dx = cosn-1 x sin x n + n - 1 n cosn-2 x dx, 23. tann x dx = tann-1 x n - 1 - tann-2 x dx, n = 1, 24. cotn x dx = - cotn-1 x n - 1 - cotn-2 x dx, n = 1, 25. secn x dx = tan x secn-1 x n - 1 + n - 2 n - 1 secn-2 x dx, n = 1, 26. cscn x dx = cot x cscn-1 x n - 1 + n - 2 n - 1 cscn-2 x dx, n = 1, 27. sinh x dx = cosh x, 28. cosh x dx = sinh x, 29. tanh x dx = ln | cosh x|, 30. coth x dx = ln | sinh x|, 31. sech x dx = arctan sinh x, 32. csch x dx = ln tanh x 2 , 33. sinh2 x dx = 1 4 sinh(2x) - 1 2 x, 34. cosh2 x dx = 1 4 sinh(2x) + 1 2 x, 35. sech2 x dx = tanh x, 36. arcsinh x a dx = x arcsinh x a - x2 + a2, a > 0, 37. arctanh x a dx = x arctanh x a + a 2 ln |a2 - x2 |, 38. arccosh x a dx = x arccosh x a - x2 + a2, if arccosh x a > 0 and a > 0, x arccosh x a + x2 + a2, if arccosh x a < 0 and a > 0, 39. dx a2 + x2 = ln x + a2 + x2 , a > 0, 40. dx a2 + x2 = 1 a arctan x a , a > 0, 41. a2 - x2 dx = x 2 a2 - x2 + a2 2 arcsin x a , a > 0, 42. (a2 - x2 )3/2 dx = x 8 (5a2 - 2x2 ) a2 - x2 + 3a4 8 arcsin x a , a > 0, 43. dx a2 - x2 = arcsin x a , a > 0, 44. dx a2 - x2 = 1 2a ln a + x a - x , 45. dx (a2 - x2)3/2 = x a2 a2 - x2 , 46. a2 x2 dx = x 2 a2 x2 a2 2 ln x + a2 x2 , 47. dx x2 - a2 = ln x + x2 - a2 , a > 0, 48. dx ax2 + bx = 1 a ln x a + bx , 49. x a + bx dx = 2(3bx - 2a)(a + bx)3/2 15b2 , 50. a + bx x dx = 2 a + bx + a 1 x a + bx dx, 51. x a + bx dx = 1 2 ln a + bx - a a + bx + a , a > 0, 52. a2 - x2 x dx = a2 - x2 - a ln a + a2 - x2 x , 53. x a2 - x2 dx = -1 3 (a2 - x2 )3/2 , 54. x2 a2 - x2 dx = x 8 (2x2 - a2 ) a2 - x2 + a4 8 arcsin x a , a > 0, 55. dx a2 - x2 = -1 a ln a + a2 - x2 x , 56. x dx a2 - x2 = - a2 - x2, 57. x2 dx a2 - x2 = -x 2 a2 - x2 + a2 2 arcsin x a, a > 0, 58. a2 + x2 x dx = a2 + x2 - a ln a + a2 + x2 x , 59. x2 - a2 x dx = x2 - a2 - a arccos a |x| , a > 0, 60. x x2 a2 dx = 1 3 (x2 a2 )3/2 , 61. dx x x2 + a2 = 1 a ln x a + a2 + x2 , Theoretical Computer Science Cheat Sheet Calculus Cont. Finite Calculus 62. dx x x2 - a2 = 1 a arccos a |x| , a > 0, 63. dx x2 x2 a2 = x2 a2 a2x , 64. x dx x2 a2 = x2 a2, 65. x2 a2 x4 dx = (x2 + a2 )3/2 3a2x3 , 66. dx ax2 + bx + c = 1 b2 - 4ac ln 2ax + b - b2 - 4ac 2ax + b + b2 - 4ac , if b2 > 4ac, 2 4ac - b2 arctan 2ax + b 4ac - b2 , if b2 < 4ac, 67. dx ax2 + bx + c = 1 a ln 2ax + b + 2 a ax2 + bx + c , if a > 0, 1 -a arcsin -2ax - b b2 - 4ac , if a < 0, 68. ax2 + bx + c dx = 2ax + b 4a ax2 + bx + c + 4ax - b2 8a dx ax2 + bx + c , 69. x dx ax2 + bx + c = ax2 + bx + c a - b 2a dx ax2 + bx + c , 70. dx x ax2 + bx + c = -1 c ln 2 c ax2 + bx + c + bx + 2c x , if c > 0, 1 -c arcsin bx + 2c |x| b2 - 4ac , if c < 0, 71. x3 x2 + a2 dx = (1 3 x2 - 2 15 a2 )(x2 + a2 )3/2 , 72. xn sin(ax) dx = -1 a xn cos(ax) + n a xn-1 cos(ax) dx, 73. xn cos(ax) dx = 1 a xn sin(ax) - n a xn-1 sin(ax) dx, 74. xn eax dx = xn eax a - n a xn-1 eax dx, 75. xn ln(ax) dx = xn+1 ln(ax) n + 1 - 1 (n + 1)2 , 76. xn (ln ax)m dx = xn+1 n + 1 (ln ax)m - m n + 1 xn (ln ax)m-1 dx. Difference, shift operators: f(x) = f(x + 1) - f(x), E f(x) = f(x + 1). Fundamental Theorem: f(x) = F(x) f(x)x = F(x) + C. b a f(x)x = b-1 i=a f(i). Differences: (cu) = cu, (u + v) = u + v, (uv) = uv + E vu, (xn ) = nxn-1 , (Hx) = x-1 , (2x ) = 2x , (cx ) = (c - 1)cx , x m = x m-1 . Sums: cu x = c u x, (u + v) x = u x + v x, uv x = uv - E vu x, xn x = x n+1 m+1 , x-1 x = Hx, cx x = cx c-1 , x m x = x m+1 . Falling Factorial Powers: xn = x(x - 1) (x - n + 1), n > 0, x0 = 1, xn = 1 (x + 1) (x + |n|) , n < 0, xn+m = xm (x - m)n . Rising Factorial Powers: xn = x(x + 1) (x + n - 1), n > 0, x0 = 1, xn = 1 (x - 1) (x - |n|) , n < 0, xn+m = xm (x + m)n . Conversion: xn = (-1)n (-x)n = (x - n + 1)n = 1/(x + 1)-n , xn = (-1)n (-x)n = (x + n - 1)n = 1/(x - 1)-n , xn = n k=1 n k xk = n k=1 n k (-1)n-k xk , xn = n k=1 n k (-1)n-k xk , xn = n k=1 n k xk . x1 = x1 = x1 x2 = x2 + x1 = x2 - x1 x3 = x3 + 3x2 + x1 = x3 - 3x2 + x1 x4 = x4 + 6x3 + 7x2 + x1 = x4 - 6x3 + 7x2 - x1 x5 = x5 + 15x4 + 25x3 + 10x2 + x1 = x5 - 15x4 + 25x3 - 10x2 + x1 x1 = x1 x1 = x1 x2 = x2 + x1 x2 = x2 - x1 x3 = x3 + 3x2 + 2x1 x3 = x3 - 3x2 + 2x1 x4 = x4 + 6x3 + 11x2 + 6x1 x4 = x4 - 6x3 + 11x2 - 6x1 x5 = x5 + 10x4 + 35x3 + 50x2 + 24x1 x5 = x5 - 10x4 + 35x3 - 50x2 + 24x1 Theoretical Computer Science Cheat Sheet Series Taylor's series: f(x) = f(a) + (x - a)f (a) + (x - a)2 2 f (a) + = i=0 (x - a)i i! f(i) (a). Expansions: 1 1 - x = 1 + x + x2 + x3 + x4 + = i=0 xi , 1 1 - cx = 1 + cx + c2 x2 + c3 x3 + = i=0 ci xi , 1 1 - xn = 1 + xn + x2n + x3n + = i=0 xni , x (1 - x)2 = x + 2x2 + 3x3 + 4x4 + = i=0 ixi , xk dn dxn 1 1 - x = x + 2n x2 + 3n x3 + 4n x4 + = i=0 in xi , ex = 1 + x + 1 2 x2 + 1 6 x3 + = i=0 xi i! , ln(1 + x) = x - 1 2 x2 + 1 3 x3 - 1 4 x4 - = i=1 (-1)i+1 xi i , ln 1 1 - x = x + 1 2 x2 + 1 3 x3 + 1 4 x4 + = i=1 xi i , sin x = x - 1 3! x3 + 1 5! x5 - 1 7! x7 + = i=0 (-1)i x2i+1 (2i + 1)! , cos x = 1 - 1 2! x2 + 1 4! x4 - 1 6! x6 + = i=0 (-1)i x2i (2i)! , tan-1 x = x - 1 3 x3 + 1 5 x5 - 1 7 x7 + = i=0 (-1)i x2i+1 (2i + 1) , (1 + x)n = 1 + nx + n(n-1) 2 x2 + = i=0 n i xi , 1 (1 - x)n+1 = 1 + (n + 1)x + n+2 2 x2 + = i=0 i + n i xi , x ex - 1 = 1 - 1 2 x + 1 12 x2 - 1 720 x4 + = i=0 Bixi i! , 1 2x (1 - 1 - 4x) = 1 + x + 2x2 + 5x3 + = i=0 1 i + 1 2i i xi , 1 1 - 4x = 1 + x + 2x2 + 6x3 + = i=0 2i i xi , 1 1 - 4x 1 - 1 - 4x 2x n = 1 + (2 + n)x + 4+n 2 x2 + = i=0 2i + n i xi , 1 1 - x ln 1 1 - x = x + 3 2 x2 + 11 6 x3 + 25 12 x4 + = i=1 Hixi , 1 2 ln 1 1 - x 2 = 1 2 x2 + 3 4 x3 + 11 24 x4 + = i=2 Hi-1xi i , x 1 - x - x2 = x + x2 + 2x3 + 3x4 + = i=0 Fixi , Fnx 1 - (Fn-1 + Fn+1)x - (-1)nx2 = Fnx + F2nx2 + F3nx3 + = i=0 Fnixi . Ordinary power series: A(x) = i=0 aixi . Exponential power series: A(x) = i=0 ai xi i! . Dirichlet power series: A(x) = i=1 ai ix . Binomial theorem: (x + y)n = n k=0 n k xn-k yk . Difference of like powers: xn - yn = (x - y) n-1 k=0 xn-1-k yk . For ordinary power series: A(x) + B(x) = i=0 (ai + bi)xi , xk A(x) = i=k ai-kxi , A(x) - k-1 i=0 aixi xk = i=0 ai+kxi , A(cx) = i=0 ci aixi , A (x) = i=0 (i + 1)ai+1xi , xA (x) = i=1 iaixi , A(x) dx = i=1 ai-1 i xi , A(x) + A(-x) 2 = i=0 a2ix2i , A(x) - A(-x) 2 = i=0 a2i+1x2i+1 . Summation: If bi = i j=0 ai then B(x) = 1 1 - x A(x). Convolution: A(x)B(x) = i=0 i j=0 ajbi-j xi . God made the natural numbers; all the rest is the work of man. ­ Leopold Kronecker Theoretical Computer Science Cheat Sheet Series Escher's Knot Expansions: 1 (1 - x)n+1 ln 1 1 - x = i=0 (Hn+i - Hn) n + i i xi , 1 x -n = i=0 i n xi , xn = i=0 n i xi , (ex - 1)n = i=0 i n n!xi i! , ln 1 1 - x n = i=0 i n n!xi i! , x cot x = i=0 (-4)i B2ix2i (2i)! , tan x = i=1 (-1)i-1 22i (22i - 1)B2ix2i-1 (2i)! , (x) = i=1 1 ix , 1 (x) = i=1 (i) ix , (x - 1) (x) = i=1 (i) ix , Stieltjes Integration(x) = p 1 1 - p-x , 2 (x) = i=1 d(i) xi where d(n) = d|n 1, (x)(x - 1) = i=1 S(i) xi where S(n) = d|n d, (2n) = 22n-1 |B2n| (2n)! 2n , n N, x sin x = i=0 (-1)i-1 (4i - 2)B2ix2i (2i)! , 1 - 1 - 4x 2x n = i=0 n(2i + n - 1)! i!(n + i)! xi , ex sin x = i=1 2i/2 sin i 4 i! xi , 1 - 1 - x x = i=0 (4i)! 16i 2(2i)!(2i + 1)! xi , arcsin x x 2 = i=0 4i i!2 (i + 1)(2i + 1)! x2i . If G is continuous in the interval [a, b] and F is nondecreasing then b a G(x) dF(x) exists. If a b c then c a G(x) dF(x) = b a G(x) dF(x) + c b G(x) dF(x). If the integrals involved exist b a G(x) + H(x) dF(x) = b a G(x) dF(x) + b a H(x) dF(x), b a G(x) d F(x) + H(x) = b a G(x) dF(x) + b a G(x) dH(x), b a c G(x) dF(x) = b a G(x) d c F(x) = c b a G(x) dF(x), b a G(x) dF(x) = G(b)F(b) - G(a)F(a) - b a F(x) dG(x). If the integrals involved exist, and F possesses a derivative F at every point in [a, b] then b a G(x) dF(x) = b a G(x)F (x) dx. Cramer's Rule 00 47 18 76 29 93 85 34 61 52 86 11 57 28 70 39 94 45 02 63 95 80 22 67 38 71 49 56 13 04 59 96 81 33 07 48 72 60 24 15 73 69 90 82 44 17 58 01 35 26 68 74 09 91 83 55 27 12 46 30 37 08 75 19 92 84 66 23 50 41 14 25 36 40 51 62 03 77 88 99 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87 Fibonacci Numbers If we have equations: a1,1x1 + a1,2x2 + + a1,nxn = b1 a2,1x1 + a2,2x2 + + a2,nxn = b2 ... ... ... an,1x1 + an,2x2 + + an,nxn = bn Let A = (ai,j) and B be the column matrix (bi). Then there is a unique solution iff det A = 0. Let Ai be A with column i replaced by B. Then xi = det Ai det A . 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . Definitions: Fi = Fi-1+Fi-2, F0 = F1 = 1, F-i = (-1)i-1 Fi, Fi = 1 5 i - ^i , Cassini's identity: for i > 0: Fi+1Fi-1 - F2 i = (-1)i . Additive rule: Fn+k = FkFn+1 + Fk-1Fn, F2n = FnFn+1 + Fn-1Fn. Calculation by matrices: Fn-2 Fn-1 Fn-1 Fn = 0 1 1 1 n . The Fibonacci number system: Every integer n has a unique representation n = Fk1 + Fk2 + + Fkm , where ki ki+1 + 2 for all i, 1 i < m and km 2. Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius. ­ William Blake (The Marriage of Heaven and Hell)