
Chapter �

Two� and Three�Dimensional Convex Hulls

In this chapter� we present two O�n log h��time convex hull algorithms in the plane E��

the second of which is also extended to E� with the same optimal time complexity�

Although algorithms with this time complexity were known� our methods are simpler

than the previous and also illustrate the basic ideas to be used in the rest of this thesis for

constructing convex hulls in higher dimensions� In particular� the �rst planar convex hull

algorithm we present� which can be considered as a simpli�cation of the original optimal

method of Kirkpatrick and Seidel �KS	
�� serves as the basis of the four�dimensional

output�sensitive algorithm in the next chapter�

��� A Simpli�ed �Ultimate Planar Convex Hull Algorithm�

This section describes a simple O�n log h� convex hull algorithm in the plane� Since our

algorithm can be viewed as a simpli�cation of Kirkpatrick and Seidel�s planar convex

hull algorithm� we �rst sketch here their method for comparison�

Given an n�point set P � E�� we want to construct the convex hull of P � It suces

to compute just the upper hull of P � consisting of the sequence of hull edges that have

an upward normal vector� Then the lower hull can be computed in a similar manner by

re�ection and the convex hull can be obtained by joining these two hulls�

Kirkpatrick and Seidel�s algorithm constructs the upper hull of P as follows� �i� �nd a

point p� � P with the median x�coordinate� �ii� compute the edge p�p� of the upper hull

��



Chapter �� Two� and Three�Dimensional Convex Hulls ��

that intersects the vertical line through p� �x�p�� � x�p�� � x�p���� and �iii� recursively

compute the upper hull of all points left of �and including� p� and the upper hull of all

points right of �and including� p��

To �nd the edge p�p� �the bridge� that intersects a given vertical line in step �ii��

Kirkpatrick and Seidel used a prune�and�search procedure� similar to the prune�and�

search linear programming algorithm of Dyer �Dye	�� and Megiddo �Meg	�b� Meg	���

�In fact� bridge��nding can be formulated as a linear program in dual space�� Here is a

high�level description what is involved in this prune�and�search procedure� First� points

are paired� the slope of the line through each pair is calculated� and the median slope m

is computed� Then the upper�hull vertex pm with a supporting line of slope m is found�

A comparison involving pm and the given vertical line is then performed� which allows

one point in half of the pairs be pruned� This step eliminates ��� of the points and the

procedure is repeated�

This ends our brief sketch of Kirkpatrick and Seidel�s algorithm� As a summary�

we can say that their algorithm has two levels� the lower level is a prune�and�search

procedure� and on top of that is a divide�and�conquer method� Our main observation is

that we can get a simpler algorithm if we combine these two levels into one� i�e�� if we use

pruning directly for divide�and�conquer rather than for searching� As a result� we can

skip the step that computes the point p� with median x�coordinate and avoid actually

searching for the bridge at each recursive step�

����� The prune�and�divide algorithm in the plane

We now give the details of our simpli�ed planar convex hull algorithm� As in Kirkpatrick

and Seidel�s algorithm� only the upper hull of the given n�point set P � E� is computed�

We �rst pair the points of P arbitrarily and calculate the slope of the line through each

pair� We then �nd the median slope m and compute the upper�hull vertex pm that has a



Chapter �� Two� and Three�Dimensional Convex Hulls �


L
L

L

R

R

R

X

p
m

upper hull
slope = 

median slope m

m

X

L

Figure ���� Pairing and pruning points in the plane� Points marked L belong to P��
points marked R belong to Pr� and points marked X belong to neither sets�

supporting line of slope m� this vertex can be computed by taking the maximum along a

projection of P parallel to m� The x�coordinate of pm is then used to divide P into two

parts� P�� which contains pm and all points to its left� and Pr� which contains pm and all

points to its right�

Now� if a pair has slope less thanm� then the right point in the pair cannot participate

in the upper hull of P� and thus can be pruned from P�� Similarly� if a pair has slope

greater than m� then its left point in the pair cannot participate in the upper hull of Pr

and can be pruned from Pr� Since half �n��� of the pairs have slope less than the median

m and half have slope greater than m� pruning ensures that P� and Pr each contain

at most �n�� points� We then recursively compute the upper hull of P� and Pr� See

Figure ��� for an example�



Chapter �� Two� and Three�Dimensional Convex Hulls ��

The pseudocode of the algorithm is given below� For convenience� we assume that

the leftmost and rightmost points p� and pr of P have been identi�ed and we let n be the

cardinality of the set P � � P�fp�� prg instead� In the interest of practical eciency� line �

has been added to the algorithm� it does not a�ect asymptotic worst�case performance�

Algorithm DivideHull�d�P �� p�� pr�

� Given n�point set P � � E� and points p�� pr � E� such that x�p�� � x�p� � x�pr� for

all p � P �� return the sequence of edges of the upper hull of P � P � � fp�� prg� �

�� discard points from P � that lie below p�pr

�� if P � � � then return hp�pri

if P � � fpg then return hp�p� ppri

�� arbitrarily choose bn��c disjoint pairs ffs�� t�g� � � � � fsbn��c� tbn��cgg from P �

and order each pair so that x�si� � x�ti�

�� let mi � �y�ti�� y�si�� � �x�ti�� x�si��� i � �� � � � � bn��c

and m � median of hm�� � � � �mbn��ci

�� let pm � point in P that maximizes y�pm��m � x�pm�


� let P �
� � fp � P � � x�p� � x�pm�g � fti � mi � mg

P �
r � fp � P � � x�p� � x�pm�g � fsi � mi � mg

�� if pm � pr then return DivideHull�d�P �
� � p�� pr�

if pm � p� then return DivideHull�d�P �
r � p�� pr�

otherwise return the concatenation of

DivideHull�d�P �
� � p�� pm� and DivideHull�d�P �

r � pm� pr�

Remark � It is not dicult to modify DivideHull�d�� to work for point sets P not in

general position� When there are more than one point in P that maximize y�pm��m�x�pm�

in line �� we simply pick the leftmost one� When two points in a pair share the same

x�coordinate� we can eliminate the bottom one�



Chapter �� Two� and Three�Dimensional Convex Hulls �	

����� Analysis of the prune�and�divide algorithm in the plane

Let T �n� h� be the running time of algorithm DivideHull�d�� on a point set with n � �

points �i�e�� n points excluding p� and pr� and h�� upper�hull vertices �i�e�� h upper�hull

edges�� By noting that median��nding �line �� can be done in linear time� we obtain the

following recurrence for T �n� h�� where c denotes a constant�

T �n� h� �

��������
�������

c if n � �

T �n�� h� � cn if n � � and hr � �

T �nr� h� � cn if n � � and h� � �

T �n�� h�� � T �nr� hr� � cn if n � � and h�� hr � �

for some � � n�� nr � d�n��e and h�� hr � � with n� � nr � n and h� � hr � h�

Using the concavity of the logarithm� one can then prove that T �n� h� � O�n log h� by

induction� Here� we observe an alternative proof that is perhaps simpler as it avoids the

use of induction� The proof is more general and provides better insight into recurrences

of this kind by examining their recursion trees�

Let T be a rooted tree in which each node � is assigned a cost c��� � ���	�� We say

that the cost function c is ��fading for a constant � � ��� �� if c�	� � � c��� for every

node 	 and its parent �� As part of the analysis of their ��d output�sensitive convex

hull algorithm� Edelsbrunner and Shi �ES��� Lemma ���� proved that the total cost in

such a tree is asymptotically bounded by the per�level cost times the logarithm of the

number of nodes� Their proof uses a path compression operation that transforms T into a

balanced tree� We give a simple� short proof of their result that avoids path compression

altogether� we then improve the bound to depend on the number of leaves rather than

the number of nodes�

Lemma ����� In a recursion tree T with m nodes and 
 leaves and an ��fading cost

function c� if the sum of the costs at each level is bounded by C� then the sum of the costs

of all nodes in T is �i� at most C�log���m��� and �ii� at most C�log��� 
������������



Chapter �� Two� and Three�Dimensional Convex Hulls ��

Proof	 Number the levels of the tree �� �� �� � � �with the root at level zero� Let

k �
j
log���m

k
� The sum of the costs at levels �� �� � � � � k is bounded by C�k � �� �

C�log���m���� Furthermore� by the ��fading property� each node on a level greater than

k has cost bounded by C�k�� � C�m� hence� the sum of the costs at level k��� k��� � � �

is bounded by C� Part �i� follows�

To prove part �ii�� we choose k �
j
log��� 


k
instead� As before� the sum of the costs

at levels �� �� � � � � k is bounded by C�k � �� � C�log��� 
 � ��� Thus� we just have to

account for the costs of nodes at levels greater than k� Note that each node belongs to

some root�to�leaf path in T � By the ��fading property� the sum of the costs at levels

k � �� k � �� � � � along such a path is bounded by

C�k�� � C�k�� � � � � �
C�k��

� � �
�

C

��� ��

�

Since there are 
 root�to�leaf paths in total� the sum of the costs at levels k��� k��� � � �

is bounded by C��� � ��� Part �ii� follows� �

With Lemma ������ it is now easy to show that the running time of algorithm

DivideHull�d�� is O�n log h�� Consider the recursion tree generated by the calls to

DivideHull�d��� It is clear that the sum of the costs at each level of the tree is bounded

by cn and that the cost function satis�es the ������fading property� Since the num�

ber of leaves is at most h �as a new edge is discovered at every leaf�� Lemma ������ii�

immediately implies that the total cost of the algorithm is bounded by cn log��� h�O�n��

The storage requirement of the algorithm is clearly linear� We have thus shown�

Theorem ����� Algorithm DivideHull�d�� computes the �h � ���vertex upper hull of

an �n� ���point set P � E� in O�n log h� time and O�n� space�

Remarks�

�� Compared to the algorithm by Kirkpatrick and Seidel� DivideHull�d�� is faster


