Chapter 2

Two- and Three-Dimensional Convex Hulls

In this chapter, we present two O(nlog h)-time convex hull algorithms in the plane E?
the second of which is also extended to E£° with the same optimal time complexity.
Although algorithms with this time complexity were known, our methods are simpler
than the previous and also illustrate the basic ideas to be used in the rest of this thesis for
constructing convex hulls in higher dimensions. In particular, the first planar convex hull
algorithm we present, which can be considered as a simplification of the original optimal
method of Kirkpatrick and Seidel [KS86], serves as the basis of the four-dimensional

output-sensitive algorithm in the next chapter.

2.1 A Simplified “Ultimate Planar Convex Hull Algorithm”

This section describes a simple O(nlog h) convex hull algorithm in the plane. Since our
algorithm can be viewed as a simplification of Kirkpatrick and Seidel’s planar convex
hull algorithm, we first sketch here their method for comparison.

Given an n-point set P C E?, we want to construct the convex hull of P. It suffices
to compute just the upper hull of P, consisting of the sequence of hull edges that have
an upward normal vector. Then the lower hull can be computed in a similar manner by
reflection and the convex hull can be obtained by joining these two hulls.

Kirkpatrick and Seidel’s algorithm constructs the upper hull of P as follows: (i) find a

point p* € P with the median a-coordinate, (ii) compute the edge ppz of the upper hull

14

Chapter 2. Two- and Three-Dimensional Convex Hulls 15

that intersects the vertical line through p* (x[pi] < x[p*] < x[p2]), and (iii) recursively
compute the upper hull of all points left of (and including) p; and the upper hull of all
points right of (and including) ps.

To find the edge prpz (the bridge) that intersects a given vertical line in step (ii),
Kirkpatrick and Seidel used a prune-and-search procedure, similar to the prune-and-
search linear programming algorithm of Dyer [Dye84] and Megiddo [Meg83b, Meg84].
(In fact, bridge-finding can be formulated as a linear program in dual space.) Here is a
high-level description what is involved in this prune-and-search procedure: First, points
are paired, the slope of the line through each pair is calculated, and the median slope m
is computed. Then the upper-hull vertex p,, with a supporting line of slope m is found.
A comparison involving p,, and the given vertical line is then performed, which allows
one point in half of the pairs be pruned. This step eliminates 1/4 of the points and the
procedure is repeated.

This ends our brief sketch of Kirkpatrick and Seidel’s algorithm. As a summary,
we can say that their algorithm has two levels: the lower level is a prune-and-search
procedure, and on top of that is a divide-and-conquer method. Our main observation is
that we can get a simpler algorithm if we combine these two levels into one, i.e., if we use
pruning directly for divide-and-conquer rather than for searching. As a result, we can
skip the step that computes the point p* with median z-coordinate and avoid actually

searching for the bridge at each recursive step.

2.1.1 The prune-and-divide algorithm in the plane

We now give the details of our simplified planar convex hull algorithm. As in Kirkpatrick
and Seidel’s algorithm, only the upper hull of the given n-point set P C E? is computed.
We first pair the points of P arbitrarily and calculate the slope of the line through each

pair. We then find the median slope m and compute the upper-hull vertex p,, that has a

Chapter 2. Two- and Three-Dimensional Convex Hulls 16

L

median slope m

Figure 2.2: Pairing and pruning points in the plane. Points marked L belong to Py,
points marked R belong to P,., and points marked X belong to neither sets.

supporting line of slope m; this vertex can be computed by taking the maximum along a
projection of P parallel to m. The x-coordinate of p,, is then used to divide P into two
parts: P, which contains p,, and all points to its left, and P,., which contains p,, and all
points to its right.

Now, if a pair has slope less than m, then the right point in the pair cannot participate
in the upper hull of P, and thus can be pruned from F,. Similarly, if a pair has slope
greater than m, then its left point in the pair cannot participate in the upper hull of P,
and can be pruned from P,. Since half (n/4) of the pairs have slope less than the median
m and half have slope greater than m, pruning ensures that P, and P, each contain
at most 3n/4 points. We then recursively compute the upper hull of P, and P,. See

Figure 2.2 for an example.

Chapter 2. Two- and Three-Dimensional Convex Hulls 17

The pseudocode of the algorithm is given below. For convenience, we assume that
the leftmost and rightmost points p; and p, of P have been identified and we let n be the
cardinality of the set P* = P—{p, p.} instead. In the interest of practical efficiency, line 1

has been added to the algorithm; it does not affect asymptotic worst-case performance.

Algorithm DivideHull2d(P*,py,p,)
[Given n-point set P* C E? and points py, p, € E? such that x[p,] < x[p] < z[p,] for
all p € P*, return the sequence of edges of the upper hull of P = P* U {ps, p,}. |
. discard points from P* that lie below pgp,
2. if P* = () then return (p;p,)
if P* = {p} then return (p¢p, Pp,)
3. arbitrarily choose |n/2]| disjoint pairs {{s1,%1},...,{S|n/2/» t|ns2) }} from P°
and order each pair so that z[s;] < z[t;]
4. et m; = (y[ti] —y[s:]) [/ (x[ts] — x[si]), e =1,...,|n/2]
and m = median of (my,...,m,2))
let p,, = point in P that maximizes y[p,,] — m - z[py]
let PP ={pe P*:zlp| < z[pn]}—{ti: m; <m}
B ={p € P*:x[p] > x[pn]t — {si : mi 2 m}
7. if p,, = p, then return DivideHull2d(P, ps, p,)
if p,, = ps then return DivideHull2d(P?, ps, pr)

otherwise return the concatenation of
DivideHull2d(P}, p¢, prm) and DivideHull2d(P?, p,., p,)

Remark: 1t is not difficult to modify DivideHull2d() to work for point sets P not in
general position. When there are more than one point in P that maximize y[p,,|—m-x[p,,]
in line 5, we simply pick the leftmost one. When two points in a pair share the same

x-coordinate, we can eliminate the bottom one.

Chapter 2. Two- and Three-Dimensional Convex Hulls 18

2.1.2 Analysis of the prune-and-divide algorithm in the plane

Let T'(n, k) be the running time of algorithm DivideHull2d() on a point set with n + 2
points (i.e., n points excluding p; and p,) and h+ 1 upper-hull vertices (i.e., h upper-hull
edges). By noting that median-finding (line 4) can be done in linear time, we obtain the

following recurrence for T'(n, h), where ¢ denotes a constant:

c ifn<l1
T(n,h) < T(ne, h) +cn ifn>2and h, =0
T(n. h)+ecn ifn>2and hy =0

T(ne, he) + T(npyhy) +en if n>2and hy,h, > 1
for some 0 < ng, n, < [3n/4] and he, h, > 0 with ng + n, <n and he + h, = h.

Using the concavity of the logarithm, one can then prove that T'(n,h) = O(nlog h) by
induction. Here, we observe an alternative proof that is perhaps simpler as it avoids the
use of induction. The proof is more general and provides better insight into recurrences
of this kind by examining their recursion trees.

Let T' be a rooted tree in which each node v is assigned a cost ¢(v) € [0,00). We say
that the cost function ¢ is a-fading for a constant o € (0,1) if ¢(u) < ac(v) for every
node p and its parent v. As part of the analysis of their 3-d output-sensitive convex
hull algorithm, Edelsbrunner and Shi [ES91, Lemma 3.1] proved that the total cost in
such a tree is asymptotically bounded by the per-level cost times the logarithm of the
number of nodes. Their proof uses a path compression operation that transforms 7" into a
balanced tree. We give a simple, short proof of their result that avoids path compression
altogether; we then improve the bound to depend on the number of leaves rather than

the number of nodes.

Lemma 2.1.1 In a recursion tree T with m nodes and { leaves and an a-fading cost
function ¢, if the sum of the costs at each level is bounded by C, then the sum of the costs
of all nodes in 1" is (i) at most C(log, ,, m+2) and (ii) at most C(log, ,, (+1+1/(1—a)).

Chapter 2. Two- and Three-Dimensional Convex Hulls 19

Proof: Number the levels of the tree 0, 1, 2, ...with the root at level zero. Let
k = Uogl/a mJ The sum of the costs at levels 0,1,...,k is bounded by C(k + 1) <
C’(logl/CY m+1). Furthermore, by the a-fading property, each node on a level greater than
k has cost bounded by C'a*+! < ('/m; hence, the sum of the costs at level k+1,k+42,...
is bounded by C. Part (i) follows.

To prove part (ii), we choose k = Uogl/a EJ instead. As before, the sum of the costs
at levels 0,1,...,k is bounded by C'(k +1) < C(log,,, ¢ + 1). Thus, we just have to
account for the costs of nodes at levels greater than k. Note that each node belongs to
some root-to-leaf path in T'. By the a-fading property, the sum of the costs at levels

k+1,k+2,... along such a path is bounded by

k1
Ca - C ‘
l—a = (1—a)

Since there are ¢ root-to-leaf paths in total, the sum of the costs at levels k+1,k+2,...

Ca"tt + Cort2 4. =

is bounded by C'/(1 — «). Part (ii) follows. O

With Lemma 2.1.1, it is now easy to show that the running time of algorithm
DivideHull2d() is O(nlogh). Consider the recursion tree generated by the calls to
DivideHull2d(). It is clear that the sum of the costs at each level of the tree is bounded
by ¢n and that the cost function satisfies the (3/4)-fading property. Since the num-
ber of leaves is at most h (as a new edge is discovered at every leaf), Lemma 2.1.1(ii)
immediately implies that the total cost of the algorithm is bounded by cnlog, /5 h + O(n).

The storage requirement of the algorithm is clearly linear. We have thus shown:
Theorem 2.1.2 Algorithm DivideHull2d() computes the (h + 1)-vertex upper hull of

an (n + 2)-point set P C E? in O(nlog h) time and O(n) space.

Remarks:

1. Compared to the algorithm by Kirkpatrick and Seidel, DivideHull2d() is faster

