
Introduction Single-source shortest paths All-pairs shortest paths

Shortest paths in graphs

Introduction Single-source shortest paths All-pairs shortest paths

Remarks from previous lectures:

Path length in unweighted graph equals to edge count on the
path

Oriented distance (δ(u, v)) between vertices u, v equals to the
length of the shortest path from u tov

In an oriented graph, distance between two vertices need not
to be symmetrical (δ(u, v) 6= δ(v , u) in general)

Figure: In this case δ(u, v) 6= δ(v , u).

Introduction Single-source shortest paths All-pairs shortest paths

Distance in weighted graph

In real-world applications, graph edges are weighted – e. g.,
distances between cities, latency of network links.

Definition

Path length in weighted graph equals to sum of edge weights along
the path.

Distance between vertices is defined as the length of the
shortest path between them.

Negative-weight cycle potentially allows some or all distances
in the graph to be any negative number.

By definition, the shortest paths do not contain any
nonnegative-weight cycle.

Introduction Single-source shortest paths All-pairs shortest paths

Triangle inequality

The triangle inequality holds for a graph if and only if

δ(u,w) ≤ δ(u, v) + δ(v ,w)

holds for any three vertices u, v ,w in the graph.Triangle inequality does not hold in general. A graph of the
shortest (not direct) distances between cities is the real-world
example in which the inequality holds.

Introduction Single-source shortest paths All-pairs shortest paths

Dijkstra’s algorithm

Well-known algorithm for finding single-source shortest paths.

Solves the problem for both directed and undirected graphs.

Computes shortest paths from single source vertex to all
others.

Requires non-negative weights of all edges (not only cycles).

Linear space complexity.

Time complexity depends on chosen data structure.

Introduction Single-source shortest paths All-pairs shortest paths

Dijkstra’s algorithm

Denote source vertex as s.

For each vertex v in a graph, d[v] equals to length the
shortest path from s to v found so far.

Initially, d[s]= 0 for source vertex and d[v]=∞ for the
others.
Upon completion, d[v] equals to length of the shortest path
in the graph if it exists, or ∞ otherwise.

p[v] stores the direct predecessor of vertex v on the shortest
path from s found so far.

Initially, p[v] is undefined for all vertices except s.
Upon completion, the shortest path to v is the sequence
s, p[...p[v]...], ... p[p[v]], p[v], v.

Introduction Single-source shortest paths All-pairs shortest paths

Dijkstra’s algorithm

Vertices are split into two disjoint sets:

S contains exactly those vertices, for which the shortest paths
has already been computed and stored in d[v].
Q contains all other vertices.

The vertices of set Q are stored in a priority queue.

The vertex with the lowest value of d[u] has the highest
priority. The d[u] already stores length of the shortest path
to u.

Following steps are taken in each iteration:

Remove the vertex u from the queue head.
Move the vertex u from Q to S .
Relax all edges (u, v) going out from u to any v in Q:

If d[v] > d[u] +w(u, v), update d[v].

w(u, v) denotes weight of the edge (u, v).

Introduction Single-source shortest paths All-pairs shortest paths

Dijkstra’s algorithm – example

Figure: Vertices in the set S are marked blue. Content of the priority
queue is depicted to the right of the graph (head on top).

Introduction Single-source shortest paths All-pairs shortest paths

Dijkstra’s algorithm – animations & illustrations

Animation on an example graph

http://www.unf.edu/~wkloster/foundations/

DijkstraApplet/DijkstraApplet.htm

commented computation

http://www.youtube.com/watch?v=8Ls1RqHCOPw

computation allowing to input your own graph

http:

//www.cse.yorku.ca/~aaw/HFHuang/DijkstraStart.html

illustration of a computation

http://www.animal.ahrgr.de/showAnimationDetails.

php3?lang=en&anim=16

http://www.unf.edu/~wkloster/foundations/DijkstraApplet/DijkstraApplet.htm
http://www.unf.edu/~wkloster/foundations/DijkstraApplet/DijkstraApplet.htm
http://www.youtube.com/watch?v=8Ls1RqHCOPw
http://www.cse.yorku.ca/~aaw/HFHuang/DijkstraStart.html
http://www.cse.yorku.ca/~aaw/HFHuang/DijkstraStart.html
http://www.animal.ahrgr.de/showAnimationDetails.php3?lang=en&anim=16
http://www.animal.ahrgr.de/showAnimationDetails.php3?lang=en&anim=16

Introduction Single-source shortest paths All-pairs shortest paths

Dijkstra’s algorithm – time complexity

Let’s denote n = |V |,m = |E |.
Initialization is linear w. r. t. number of vertices.

Each edge is traversed exactly once or twice (in case of oriented
graph).

Main loop is run n-times, hence

there are n delete operations on the priority queue.

Complexity of the delete operations depends on chosen data
structure:

Array, vertex list – deletion can be done in linear time,
complexity of the whole algorithm is therefore in O(n2 + m).
Binary heap – deletion requires O(log(n)) time. Moreover,
each edge relaxation may require heap update (O(log(n)),
overall complexity is in O((n + m)log(n)).
Fibonacci’s heap – complexity of the deletion is the same as
in the case of binary heap, however update on relaxation runs
in constant time – overall complexity is in O(m + nlog(n)).
http://en.wikipedia.org/wiki/Fibonacci heap

Introduction Single-source shortest paths All-pairs shortest paths

Dijkstra’s algorithm – application in networks

Link-state routing protocols make use of the Dijkstra’s algorithm.

Each active elements broadcasts its neighbors list periodically

Neighbors list are forwarded through the network to all active
elements

Each active element calculates a shortest paths tree to all
other AEs independently

Risk of loops in routing tables

OSPF and IS-IS are the most widespread link-state protocols.
They both use the Dijkstra’s algorithm.

Introduction Single-source shortest paths All-pairs shortest paths

Floyd-Warshall’s algorithm

Computes shortest paths between each pair of vertices.

The algorithm works with negative-weight edges correctly,
however, negative-weight cycles may lead to incorrect solution.

The shortest (so far) known distance between any two vertices
is being improved gradually.

In each step, a set of vertices which may lie on the shortest
paths is defined.

Each iteration introduces a new vertex into this set.

In each one of n iterations, shortest paths between all n2 pairs
of vertices are updated. The time complexity therefore equals
to O(n3).

The space complexity is O(n2).

Introduction Single-source shortest paths All-pairs shortest paths

Floyd-Warshall’s algorithm

Let the vertices be numbered as 1 . . . n.

At first, only single-edge paths are considered. Afterwards,
the algorithm searches for paths traversing through vertex 1.
Subsequently, paths using vertices 1 and 2, etc.

Between any pair of vertices u, v , a shortest path using
vertices 1 . . . k is known in (k + 1)i th iteration.

There are two possibilities for the shortest path (which uses
vertices 1 . . . k + 1) between these two vertices:

It uses only the 1 . . . k vertices.
It traverses vertices 1 . . . k from u to vertex k + 1 and then
ends in v .

Upon completion, shortest paths using all vertices
in the graph are computed.

Introduction Single-source shortest paths All-pairs shortest paths

Floyd-Warshall’s algorithm – an example

Figure: Vertices which may be used for shortest paths are highlighted.
Shortest paths computed so far are stored in the matrix.

Introduction Single-source shortest paths All-pairs shortest paths

Distributed Floyd-Warshall’s algorithm

Floyd-Warshall’s algorithm can be easily applied in distributed
environment – among autonomous units, which communicate only
through message sending

Each vertex computes shortest paths to all other graph
vertices

Initially, only path to neighbours is known

Similarly to the sequential case, each iteration adds single
vertex which can be included in the paths

Added vertex broadcasts its distances table to all other
vertices in each iteration

The other vertices update their distances and shortest paths
according to the received table

Introduction Single-source shortest paths All-pairs shortest paths

Distributed Floyd-Warshall’s algorithm

It is crucial for correctness of the algorithm that all vertices
choose the same vertex in each iteration.

Algorithm is inefficient in terms of transferred data amount. If
d[v]=∞ holds for selected vertex v in any vertex, its paths
are not updated at all, hence it does not need to receive any
distance tables in the current iteration.

Before broadcasting distance table, vertices may signal to
each other, which of them should receive the table ⇒ Toueg’s
algorithm.

Further information:

Ajay D. Kshemkalyani, Mukesh Singhal. Distributed
Computing: Principles, Algorithms, and Systems. Cambridge
University Press, 2008. Pp. 151-155

Introduction Single-source shortest paths All-pairs shortest paths

Excercises

1 Calculate shortest paths in the graph below using Dijkstra’s
and Floyd-Warshall’s algorithm.

2 Propose an implementation of the Floyd-Warshall’s algorithm
(Toueg’s algorithm). Consider, that vertices can transmit
messages only along graph edges (broadcasting is
implemented by forwarding).

Introduction Single-source shortest paths All-pairs shortest paths

Excercises

3 Why doesn’t Dijkstra’s algorithm work correctly on graphs
with negative-weight edges? What are the possible outcomes
when it is run on such graph?

	Introduction
	Single-source shortest paths
	Dijkstra's algorithm

	All-pairs shortest paths
	Floyd-Warshall's algorithm
	Distributed Floyd-Warshall's algorithm

