Introduction

Shortest paths in graphs

Introduction

Remarks from previous lectures:

@ Path length in unweighted graph equals to edge count on the
path

@ Oriented distance (0(u, v)) between vertices u, v equals to the
length of the shortest path from u tov

@ In an oriented graph, distance between two vertices need not
to be symmetrical (6(u, v) # 0(v, u) in general)

Figure: In this case §(u, v) # 6(v, u).

Introduction

Distance in weighted graph

In real-world applications, graph edges are weighted — e. g.,
distances between cities, latency of network links.

Definition

Path length in weighted graph equals to sum of edge weights along
the path.

@ Distance between vertices is defined as the length of the
shortest path between them.

@ Negative-weight cycle potentially allows some or all distances
in the graph to be any negative number.

By definition, the shortest paths do not contain any
nonnegative-weight cycle.

Introduction
Triangle inequality

The triangle inequality holds for a graph if and only if
o(u,w) < é(u,v)+d(v,w)

Holaisgfler inagudiite deesidest thaldvinigeshergraphgraph of the
shortest (not direct) distances between cities is the real-world
example in which the inequality holds.

Single-source shortest paths
©000000

Dijkstra’s algorithm

@ Well-known algorithm for finding single-source shortest paths.

@ Solves the problem for both directed and undirected graphs.

@ Computes shortest paths from single source vertex to all
others.

@ Requires non-negative weights of all edges (not only cycles).

@ Linear space complexity.

@ Time complexity depends on chosen data structure.

Single-source shortest paths
0®00000

Dijkstra’s algorithm

@ Denote source vertex as s.
@ For each vertex v in a graph, d[v] equals to length the
shortest path from s to v found so far.
o Initially, d[s]= 0 for source vertex and d[v]= oo for the
others.
e Upon completion, d[v] equals to length of the shortest path
in the graph if it exists, or co otherwise.
@ plv] stores the direct predecessor of vertex v on the shortest
path from s found so far.
o Initially, p[v] is undefined for all vertices except s.
e Upon completion, the shortest path to v is the sequence
s, pl...plvl...7, ... plplvl]l, plvl, v.

Single-source shortest paths
00®0000

Dijkstra’s algorithm

@ Vertices are split into two disjoint sets:
e S contains exactly those vertices, for which the shortest paths
has already been computed and stored in d[v].
e @ contains all other vertices.
@ The vertices of set @ are stored in a priority queue.
e The vertex with the lowest value of d[u] has the highest
priority. The d[u] already stores length of the shortest path
to u.
o Following steps are taken in each iteration:

Remove the vertex u from the queue head.
Move the vertex u from Q to S.
Relax all edges (u, v) going out from u to any v in Q:

e If dlv]l > d[ul +w(u,v), update d[v].
o w(u,v) denotes weight of the edge (u, v).

Single-source shortest paths

000e000

Dijkstra’s algorithm — example

Figure: Vertices in the set S are marked blue. Content of the priority
queue is depicted to the right of the graph (head on top).

Single-source shortest paths
0000®00

Dijkstra's algorithm — animations & illustrations

@ Animation on an example graph

e http://www.unf.edu/~wkloster/foundations/
DijkstraApplet/DijkstraApplet.htm

@ commented computation
e http://www.youtube.com/watch?v=8Ls1RqHCOPw
@ computation allowing to input your own graph

e http:
//www.cse.yorku.ca/~aaw/HFHuang/DijkstraStart.html

@ illustration of a computation

e http://www.animal.ahrgr.de/showAnimationDetails.
php3?lang=en&anim=16

http://www.unf.edu/~wkloster/foundations/DijkstraApplet/DijkstraApplet.htm
http://www.unf.edu/~wkloster/foundations/DijkstraApplet/DijkstraApplet.htm
http://www.youtube.com/watch?v=8Ls1RqHCOPw
http://www.cse.yorku.ca/~aaw/HFHuang/DijkstraStart.html
http://www.cse.yorku.ca/~aaw/HFHuang/DijkstraStart.html
http://www.animal.ahrgr.de/showAnimationDetails.php3?lang=en&anim=16
http://www.animal.ahrgr.de/showAnimationDetails.php3?lang=en&anim=16

Single-source shortest paths
0000080

Dijkstra’s algorithm — time complexity

Let's denote n = |V|,m = |E]|.

Initialization is linear w.r.t. number of vertices.
Each edge is traversed exactly once or twice (in case of oriented
graph).

@ Main loop is run n-times, hence

@ there are n delete operations on the priority queue.

@ Complexity of the delete operations depends on chosen data

structure:

o Array, vertex list — deletion can be done in linear time,
complexity of the whole algorithm is therefore in O(n? + m).

o Binary heap — deletion requires O(log(n)) time. Moreover,
each edge relaxation may require heap update (O(log(n)),
overall complexity is in O((n + m)log(n)).

e Fibonacci’'s heap — complexity of the deletion is the same as
in the case of binary heap, however update on relaxation runs
in constant time — overall complexity is in O(m + nlog(n)).
http://en.wikipedia.org/wiki/Fibonacci_heap

Single-source shortest paths
[elelelelole) }

Dijkstra’s algorithm — application in networks

Link-state routing protocols make use of the Dijkstra's algorithm.
@ Each active elements broadcasts its neighbors list periodically
@ Neighbors list are forwarded through the network to all active
elements
@ Each active element calculates a shortest paths tree to all
other AEs independently
@ Risk of loops in routing tables

OSPF and IS-IS are the most widespread link-state protocols.
They both use the Dijkstra's algorithm.

All-pairs shortest paths
®00

Floyd-Warshall's algorithm

@ Computes shortest paths between each pair of vertices.

@ The algorithm works with negative-weight edges correctly,
however, negative-weight cycles may lead to incorrect solution.

@ The shortest (so far) known distance between any two vertices
is being improved gradually.

@ In each step, a set of vertices which may lie on the shortest
paths is defined.

@ Each iteration introduces a new vertex into this set.

@ In each one of n iterations, shortest paths between all n? pairs
of vertices are updated. The time complexity therefore equals
to O(nd).

o The space complexity is O(n?).

All-pairs shortest paths
oeo

Floyd-Warshall's algorithm

@ Let the vertices be numbered as 1...n.

@ At first, only single-edge paths are considered. Afterwards,
the algorithm searches for paths traversing through vertex 1.
Subsequently, paths using vertices 1 and 2, etc.

@ Between any pair of vertices u, v, a shortest path using
vertices 1. .. k is known in (k + 1)it" iteration.
@ There are two possibilities for the shortest path (which uses
vertices 1... k + 1) between these two vertices:
o It uses only the 1... k vertices.
o It traverses vertices 1... k from u to vertex k 4+ 1 and then
ends in v.
@ Upon completion, shortest paths using all vertices
in the graph are computed.

All-pairs shortest paths

ooe

Floyd-Warshall's algorithm — an example

Figure: Vertices which may be used for shortest paths are highlighted.
Shortest paths computed so far are stored in the matrix.

4

5 12345

? 1 018 411 7

? 218 022 525

3 3 422 07 3

2 411 57 0 2

0 5 725 320
12345 12345

1 018 4127 1 016 411 7
218 022 57 216 012 5 7
3 422 073 3 412 0 7 3
412 5 7 02 411 57 0 2
5?7?7320 5 77320
12345 12345

1 018 4127 014 4 9 7
218 022 57 14 010 5 7
3 422 073 410 0 5 3
412 57 02 9 5502
5?7?7320 77320

All-pairs shortest paths
®000

Distributed Floyd-Warshall's algorithm

Floyd-Warshall's algorithm can be easily applied in distributed
environment — among autonomous units, which communicate only
through message sending
@ Each vertex computes shortest paths to all other graph
vertices
@ Initially, only path to neighbours is known

@ Similarly to the sequential case, each iteration adds single
vertex which can be included in the paths

@ Added vertex broadcasts its distances table to all other
vertices in each iteration

@ The other vertices update their distances and shortest paths
according to the received table

All-pairs shortest paths
0®00

Distributed Floyd-Warshall's algorithm

@ It is crucial for correctness of the algorithm that all vertices
choose the same vertex in each iteration.

@ Algorithm is inefficient in terms of transferred data amount. If
d[v]= oo holds for selected vertex v in any vertex, its paths
are not updated at all, hence it does not need to receive any
distance tables in the current iteration.

@ Before broadcasting distance table, vertices may signal to
each other, which of them should receive the table = Toueg's
algorithm.

@ Further information:

o Ajay D. Kshemkalyani, Mukesh Singhal. Distributed
Computing: Principles, Algorithms, and Systems. Cambridge
University Press, 2008. Pp. 151-155

All-pairs shortest paths

ooeo

Excercises

@ Calculate shortest paths in the graph below using Dijkstra’s
and Floyd-Warshall's algorithm.

@ Propose an implementation of the Floyd-Warshall's algorithm
(Toueg's algorithm). Consider, that vertices can transmit
messages only along graph edges (broadcasting is
implemented by forwarding).

All-pairs shortest paths
oooe

Excercises

© Why doesn't Dijkstra's algorithm work correctly on graphs
with negative-weight edges? What are the possible outcomes
when it is run on such graph?

	Introduction
	Single-source shortest paths
	Dijkstra's algorithm

	All-pairs shortest paths
	Floyd-Warshall's algorithm
	Distributed Floyd-Warshall's algorithm

