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Analog vs. Digital

Analog systems process time-varying signals that can take on any
value across a continuous range of voltage, current, ...

So do digital systems; the difference is a digital signal is modeled as
taking on only one of two discrete values, 0 and 1

Reasons to favor digital circuits over analog ones
Reproducibility of results

Given the same inputs, a digital circuit always produces the same results
Outputs of an analog circuit vary with temperature, power supply
voltage, component aging, ...

Ease of design
Digital design is logical; no math skills and no insights about operation
of capacitors, transistors, ... are needed

Flexibility and functionality
E.g., using a digital circuit that scrambles recorded voice so that anyone
with key can decipher and hear it undistorted

Programmability
Much of digital design is carried out today by writing programs in
hardware description languages (HDLs)
HDLs allow both structure and function of a digital circuit to be modeled
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Analog vs. Digital

Reasons to favor digital circuits over analog ones (continued)
Speed

Today, transistors can switch in less than 10 picoseconds
A device can examine its inputs and produce an output in less than a
nanosecond

Economy

Digital circuits provide a lot of functionality in a small space
Circuits that are used repetitively can be integrated into a single chip
and mass-produced at a very low cost

Steadily advancing technology

Technology for a digital system always gets faster, cheaper, or otherwise
better
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ing outputs. A gate is called a combinational circuit because its output depends
only on the current input combination.

A 2-input OR gate, shown in (b), produces a 1 output if one or both of its
inputs are 1; it produces a 0 output only if both inputs are 0. Once again, there are
four possible input combinations, resulting in the outputs shown in the figure.

A NOT gate, more commonly called an inverter, produces an output value
that is the opposite of the input value, as shown in (c).

We called these three gates the most important for good reason. Any digital
function can be realized using just these three kinds of gates. In Chapter 3 we’ll
show how gates are realized using transistor circuits. You should know, however,
that gates have been built or proposed using other technologies, such as relays,
vacuum tubes, hydraulics, and molecular structures.

A flip-flop is a device that stores either a 0 or 1. The state of a flip-flop is
the value that it currently stores. The stored value can be changed only at certain
times determined by a “clock” input, and the new value may further depend on
the flip-flop’s current state and its “control” inputs. A flip-flop can be built from
a collection of gates hooked up in a clever way, as we’ll show in Section 7.2.

A digital circuit that contains flip-flops is called a sequential circuit
because its output at any time depends not only on its current input, but also on
the past sequence of inputs that have been applied to it. In other words, a sequen-
tial circuit has memory of past events.

1.4 Electronic Aspects of Digital Design
Digital circuits are not exactly a binary version of alphabet soup—with all due
respect to Figure 1-1, they don’t have little 0s and 1s floating around in them. As
we’ll see in Chapter 3, digital circuits deal with analog voltages and currents,
and are built with analog components. The “digital abstraction” allows analog
behavior to be ignored in most cases, so circuits can be modeled as if they really
did process 0s and 1s. 
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Figure 1-1 Digital devices: (a) AND gate; (b) OR gate; (c) NOT gate or inverter.
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Figure 1: Digital devices: (a) AND gate; (b) OR gate; (c) NOT gate or inverter.

Any digital function can be realized using just three kinds of gates
shown in Fig. 1

A gate is a combinational circuit because its output depends only on
current combination of input values
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Digital Devices

A flip-flop is a device that stores either a 0 or 1

State of a flip-flop is the value that it currently stores
Stored value can be changed only at certain times determined by a clock
input
New value may depend on flip-flop’s current state and its control inputs

A digital circuit that contains flip-flops is a sequential circuit because
its output at any time depends not only on its current input but also
on past sequence of inputs
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Electronic Aspects of Digital Design

Digital circuits deal with analog voltages and currents and are built
with analog components

Digital abstraction allows analog behavior to be ignored in most cases,
so circuits can be modeled as if they really did process 0s and 1s

Digital abstraction
To associate a range of analog values with 0 or 1

Noise margin
A gate’s output can be corrupted by this much noise and still be
correctly interpreted at inputs of other gates

8 Chapter 1 Introduction
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One important aspect of the digital abstraction is to associate a range of
analog values with each logic value (0 or 1). As shown in Figure 1-2, a typical
gate is not guaranteed to have a precise voltage level for a logic 0 output. Rather,
it may produce a voltage somewhere in a range that is a subset of the range
guaranteed to be recognized as a 0 by other gate inputs. The difference between
the range boundaries is called noise margin—in a real circuit, a gate’s output can
be corrupted by this much noise and still be correctly interpreted at the inputs of
other gates.

Behavior for logic 1 outputs is similar. Note in the figure that there is an
“invalid” region between the input ranges for logic 0 and logic 1. Although any
given digital device operating at a particular voltage and temperature will have a
fairly well defined boundary (or threshold) between the two ranges, different
devices may have different boundaries. Still, all properly operating devices have
their boundary somewhere in the “invalid” range. Therefore, any signal that is
within the defined ranges for 0 and 1 will be interpreted identically by different
devices. This characteristic is essential for reproducibility of results.

It is the job of an electronic circuit designer to ensure that logic gates
produce and recognize logic signals that are within the appropriate ranges. This
is an analog circuit-design problem; we touch upon some aspects of this in
Chapter 3. It is not possible to design a circuit that has the desired behavior
under every possible condition of power-supply voltage, temperature, loading,
and other factors. Instead, the electronic circuit designer or device manufacturer
provides specifications that define the conditions under which correct behavior
is guaranteed.

As a digital designer, then, you need not delve into the detailed analog
behavior of a digital device to ensure its correct operation. Rather, you need only
examine enough about the device’s operating environment to determine that it is
operating within its published specifications. Granted, some analog knowledge
is needed to perform this examination, but not nearly what you’d need to design
a digital device starting from scratch. In Chapter 3, we’ll give you just what you
need.  

logic 0

Outputs Inputs
Noise
Margin

Voltage
logic 1

logic 0

logic 1

invalid

Figure 1-2
Logic values and noise 
margins.

noise margin

specifications

Figure 2: Logic values and noise margins.
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Software Aspects of Digital Design

In computer-aided design, various software tools improve designer’s
productivity and help to improve correctness and quality of designs

Important examples of software tools for digital design
Schematic entry

Allows schematic diagrams to be drawn on-line instead of with paper
and pencil
Checks for common, easy-to-spot errors, e.g., shorted outputs, signals
that don’t go anywhere, ...

HDLs

Are used to design anything from individual function modules to large,
multichip digital systems

HDL text editors, compilers, and synthesizers

Text editor is used to write an HDL program
HDL compiler checks it for syntax and related errors
Synthesizer creates a corresponding circuit realization that is targeted to
a particular hardware technology
Before synthesis, designer runs HDL program on a simulator to verify
behavior of design
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Software Aspects of Digital Design

Important examples of software tools for digital design (continued)
Simulators

Once first chip is built, it’s very difficult to debug it by probing internal
connections, or to change gates and interconnections
Simulators help predict electrical and functional behavior of a chip,
allowing most bugs to be found before chip is fabricated

Simulators
Used in overall design of systems with many individual components
However, it’s easier to make changes in components and
interconnections on a printed-circuit board

Test benches
Environments to simulate and test HDL-based digital designs
A set of programs are built around HDL programs to automatically
exercise them, checking both their functional and timing behavior

Timing analyzers and verifiers
Automate task of drawing timing diagrams and specifying and verifying
timing relationships between different signals in a complex system

Word processors
HDL-specific text editors are useful for writing source code, but word
processors can be used to create documentation
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Integrated Circuits

Integrated circuit (IC)
A collection of one or more gates fabricated on a single silicon chip
An IC is initially part of a larger, circular wafer, containing dozens to
hundreds of replicas of same IC
All of IC chips on wafer are fabricated at the same time
Each piece (IC chip) is called a die
Each die has pads around its periphery, i.e., electrical contact points, so
wires can be connected later
After wafer is fabricated, dice are tested in place on wafer using tiny,
probing pins that contact pads, and defective dice are marked
Then wafer is sliced up to produce individual dice, and marked ones are
discarded
Each good die is mounted in a package, its pads are wired to package
pins, packaged IC is subjected to a final test, and shipped to a customer
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Integrated Circuits

Small-scale integration (SSI) ICs

Contain equivalent of 1 to 20 gates
Are largely supplanted by programmable logic devices (PLDs)
Are still sometimes used as glue to tie together larger-scale elements in
complex systems

Section 1.6 Integrated Circuits 13

  
  
  
  
  
  
  
  
  

Copyright © 1999 by John F. Wakerly Copying Prohibited

In the early days of integrated circuits, ICs were classified by size—small,
medium, or large—according to how many gates they contained. The simplest
type of commercially available ICs are still called small-scale integration (SSI),
and contain the equivalent of 1 to 20 gates. SSI ICs typically contain a handful of
gates or flip-flops, the basic building blocks of digital design. 

The SSI ICs that you’re likely to encounter in an educational lab come in a
14-pin dual in-line-pin (DIP) package. As shown in Figure 1-4(a), the spacing
between pins in a column is 0.1 inch and the spacing between columns is 0.3
inch. Larger DIP packages accommodate functions with more pins, as shown in
(b) and (c). A pin diagram shows the assignment of device signals to package
pins, or pinout. Figure 1-5 shows the pin diagrams for a few common SSI ICs.
Such diagrams are used only for mechanical reference, when a designer needs to
determine the pin numbers for a particular IC. In the schematic diagram for a
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Figure 1-5 Pin diagrams for a few 7400-series SSI ICs.

Figure 3: Dual inline pin (DIP) packages: (a) 14-pin; (b) 20-pin; (c) 28-pin.
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Integrated Circuits
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In the early days of integrated circuits, ICs were classified by size—small,
medium, or large—according to how many gates they contained. The simplest
type of commercially available ICs are still called small-scale integration (SSI),
and contain the equivalent of 1 to 20 gates. SSI ICs typically contain a handful of
gates or flip-flops, the basic building blocks of digital design. 

The SSI ICs that you’re likely to encounter in an educational lab come in a
14-pin dual in-line-pin (DIP) package. As shown in Figure 1-4(a), the spacing
between pins in a column is 0.1 inch and the spacing between columns is 0.3
inch. Larger DIP packages accommodate functions with more pins, as shown in
(b) and (c). A pin diagram shows the assignment of device signals to package
pins, or pinout. Figure 1-5 shows the pin diagrams for a few common SSI ICs.
Such diagrams are used only for mechanical reference, when a designer needs to
determine the pin numbers for a particular IC. In the schematic diagram for a
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Figure 1-5 Pin diagrams for a few 7400-series SSI ICs.

Figure 4: Pin diagrams for a few 7400-series SSI ICs.
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Integrated Circuits

Medium-scale integration (MSI) ICs

Contain equivalent of about 20 to 200 gates
Typically contain a functional building block, such as a decoder,
register, or counter
Even though use of discrete MSI ICs has declined, equivalent building
blocks are used extensively in design of larger ICs

Large-scale integration (LSI) ICs

Contain equivalent of 200 to 1,000,000 gates or more
LSI parts include small memories, microprocessors, programmable logic
devices, and customized devices

Very large-scale integration (VLSI) ICs

Contain over a few million transistors
E.g., today’s most microprocessors, memories, larger programmable
logic devices and customized devices

12 / 30



Programmable Logic Devices

There are a wide variety of ICs that can have their logic function
programmed into them after they are manufactured

Most of them can be reprogrammed (for fixing bugs)
Programmable logic arrays (PLAs)

Historically, first programmable logic devices
Contained a two-level structure of AND and OR gates with
user-programmable connections

Programmable array logic (PAL) devices
PLA structure was enhanced and PLA costs were reduced with
introduction of PAL devices
Today, such devices are generically called programmable logic devices
(PLDs)
PLDs are MSI of programmable logic industry

Complex PLD (CPLD)
To design larger PLDs for larger applications, for technical reasons, basic
two-level AND-OR structure of PLDs could not be scaled to larger sizes
IC manufacturers devised CPLD architectures to achieve required scale
CPLD is a collection of multiple PLDs and a programmable
interconnection structure, all on the same chip
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Programmable Logic Devices

Field-programmable gate array (FPGA)
While CPLDs were being invented, other IC manufacturers took a
different approach to scaling size of PLDs
Compared to a CPLD, an FPGA contains a much larger number of
smaller individual logic blocks
FPGA provides a large, distributed interconnection structure16 Chapter 1 Introduction
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Proponents of one approach or the other used to get into “religious” argu-
ments over which way was better, but the largest manufacturer of large
programmable logic devices, Xilinx Corporation, acknowledges that there is a
place for both approaches and manufactures both types of devices. What’s more
important than chip architecture is that both approaches support a style of design
in which products can be moved from design concept to prototype and produc-
tion in a very period of time short time.

Also important in achieving short “time-to-market” for all kinds of PLD-
based products is the use of HDLs in their design. Languages like ABEL and
VHDL, and their accompanying software tools, allow a design to be compiled,
synthesized, and downloaded into a PLD, CPLD, or FPGA literally in minutes.
The power of highly structured, hierarchical languages like VHDL is especially
important in helping designers utilize the hundreds of thousands or millions of
gates that are provided in the largest CPLDs and FPGAs.

1.8 Application-Specific ICs
Perhaps the most interesting developments in IC technology for the average
digital designer are not the ever-increasing chip sizes, but the ever-increasing
opportunities to “design your own chip.” Chips designed for a particular, limited
product or application are called semicustom ICs or application-specific ICs
(ASICs). ASICs generally reduce the total component and manufacturing cost of
a product by reducing chip count, physical size, and power consumption, and
they often provide higher performance.

The nonrecurring engineering (NRE) cost for designing an ASIC can
exceed the cost of a discrete design by $5,000 to $250,000 or more. NRE charges
are paid to the IC manufacturer and others who are responsible for designing the

PLD PLD PLD PLD

PLD PLD PLD PLD

Programmable Interconnect

(a) (b) = logic block

Figure 1-6 Large programmable-logic-device scaling approaches: (a) CPLD; (b) FPGA.

semicustom IC
application-specific IC 

(ASIC)

nonrecurring 
engineering (NRE) 
cost

Figure 5: Large PLD scaling approaches: (a) CPLD; (b) FPGA.
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Application-Specific ICs (ASICs)

ASICs or semicustom ICs
Chips designed for a particular, limited product or application
Reduce total component and manufacturing cost of a product by
reducing chip count, physical size, and power consumption
Provide higher performance

Nonrecurring engineering (NRE) cost for an ASIC design can
exceed cost of a discrete design by $10,000 to $500,000 or more

NRE charges are paid to IC manufacturer and others responsible for
designing internal structure of chip, creating tools such as metal masks,
developing tests, and making first few sample chips
An ASIC design makes sense if NRE cost is offset by per-unit savings

Custom LSI chip
A chip whose functions, internal architecture, and detailed
transistor-level design is tailored for a specific customer
Its NRE cost is very high, $500,000 or more
I.e., chips that have general commercial application like microprocessors,
or high sales volume in a specific application like a digital watch chip

15 / 30



Application-Specific ICs (ASICs)

Standard cells
Developed to reduce NRE charges
Libraries of standard cells include commonly used MSI and LSI functions
In a standard-cell design, designer interconnects functions like as in a
multichip MSI/LSI design
Custom cells are created only if absolutely necessary
All of cells are then laid out on chip, optimizing layout to reduce
propagation delays and minimize chip size
NRE cost for a standard-cell design is $250,000 or more

Gate array
Developed to reduce NRE charges even further
Is an IC whose internal structure is an array of gates whose
interconnections are initially unspecified
Designer specifies gate types and interconnections
Even though chip design is ultimately specified at this very low level,
designer works with macrocells, the same high-level functions used in
multichip MSI/LSI and standard-cell design
Software expands high-level design into a low-level one
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Application-Specific ICs (ASICs)

Standard-cell vs. gate-array design
Macrocells and chip layout of a gate array are not as highly optimized as
those in a standard-cell design, so chip may be 25% or more larger and
therefore may cost more
Not possible to create custom cells in gate-array approach
A gate-array design can be finished faster and at lower NRE cost,
ranging from $10,000 to $100,000
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Printed-Circuit Boards (PCBs)

An IC is mounted on a PCB that connects it to other ICs in a system

Multilayer PCBs have copper wiring etched on multiple, thin layers of
fiberglass that are laminated into a single board

PCB traces
Individual wire connections
Are 10 to 25 mils (1 mil = 1/1000 inch) wide in typical PCBs
In fine-line PCB technology, traces are 3 mils wide with 3-mil spacing
between adjacent traces
If higher connection density is needed, more layers are used

Surface-mount technology (SMT)
Instead of having long pins of DIP packages that poke through board
and are soldered to underside, leads of SMT IC packages are bent to
make flat contact with top surface of PCB
First, a solder paste is applied to contact pads on PCB using a stencil
Then, SMT components are placed on pads
Finally, entire assembly is passed through an oven to melt solder paste,
which then solidifies when cooled
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Printed-Circuit Boards (PCBs)

Surface-mount tech. coupled with fine-line PCB tech.

Allows extremely dense packing of ICs and other components on a PCB
Saves space
Minimizes transmission-line effects
Minimizes speed-of-light limitations

Multichip modules (MCMs)
Developed to satisfy the most stringent requirements for speed and
density
IC dice are not mounted in individual plastic or ceramic packages
IC dice for a high-speed subsystem (e.g., a processor and its cache
memory) are bonded directly to a substrate that contains required
interconnections on multiple layers
MCM is sealed and has its own external pins for power, ground, and just
those signals that are required by system that contains it
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Digital-Design Levels

Digital design can be carried out at several different levels of
representation and abstraction

Sometimes it is needed to go up or down a level or two to get the job
done
Industry and most designers are moving to higher levels as circuit
density and functionality increase
Lowest level = device physics and IC manufacturing processes

Won’t be discussed in this course

Transistor level design =⇒ logic design using HDLs

Will be discussed in this course
Level of functional building blocks is center of our discussion

Highest level = computer design and overall system design

Won’t be discussed in this course
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Digital-Design Levels: Example

Multiplexer

Section 1.10 Digital-Design Levels 19

  
  
  
  
  
  
  
  
  

Copyright © 1999 by John F. Wakerly Copying Prohibited

The lowest level of digital design is device physics and IC manufacturing
processes. This is the level that is primarily responsible for the breathtaking
advances in IC speed and density that have occurred over the past decades. The
effects of these advances are summarized in Moore’s Law, first stated by Intel
founder Gordon Moore in 1965: that the number of transistors per square inch in
an IC doubles every year. In recent years, the rate of advance has slowed down to
doubling about every 18 months, but it is important to note that with each dou-
bling of density has also come a doubling of speed.

This book does not reach down to the level of device physics and IC
processes, but you need to recognize the importance of that level. Being aware of
likely technology advances and other changes is important in system and
product planning. For example, decreases in chip geometries have recently
forced a move to lower logic-power-supply voltages, causing major changes in
the way designers plan and specify modular systems and upgrades.

In this book, we jump into digital design at the transistor level and go all
the way up to the level of logic design using HDLs. We stop short of the next
level, which includes computer design and overall system design. The “center”
of our discussion is at the level of functional building blocks.

To get a preview of the levels of design that we’ll cover, consider a simple
design example. Suppose you are to build a “multiplexer” with two data input
bits, A and B, a control input bit S, and an output bit Z. Depending on the value
of S, 0 or 1, the circuit is to transfer the value of either A or B to the output Z. This
idea is illustrated in the “switch model” of Figure 1-7. Let us consider the design
of this function at several different levels.

Although logic design is usually carried out at higher level, for some func-
tions it is advantageous to optimize them by designing at the transistor level. The
multiplexer is such a function. Figure 1-8 shows how the multiplexer can be
designed in “CMOS” technology using specialized transistor circuit structures

Moore’s Law

A

B

Z

S

Figure 1-7
Switch model for
multiplexer function.

A

B

S

VCC

Z

Figure 1-8
Multiplexer design using 
CMOS transmission gates.

Figure 6: Switch model for multiplexer function.

For some functions it is advantageous to optimize them by designing
at transistor level

Multiplexer is such a function
Multiplexer can be designed in CMOS technology using specialized
transistor circuit structures called transmission gates

Using this approach, mux can be built with just six transistors
Any other approach requires at least 14 transistors
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Digital-Design Levels: Example
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The lowest level of digital design is device physics and IC manufacturing
processes. This is the level that is primarily responsible for the breathtaking
advances in IC speed and density that have occurred over the past decades. The
effects of these advances are summarized in Moore’s Law, first stated by Intel
founder Gordon Moore in 1965: that the number of transistors per square inch in
an IC doubles every year. In recent years, the rate of advance has slowed down to
doubling about every 18 months, but it is important to note that with each dou-
bling of density has also come a doubling of speed.

This book does not reach down to the level of device physics and IC
processes, but you need to recognize the importance of that level. Being aware of
likely technology advances and other changes is important in system and
product planning. For example, decreases in chip geometries have recently
forced a move to lower logic-power-supply voltages, causing major changes in
the way designers plan and specify modular systems and upgrades.

In this book, we jump into digital design at the transistor level and go all
the way up to the level of logic design using HDLs. We stop short of the next
level, which includes computer design and overall system design. The “center”
of our discussion is at the level of functional building blocks.

To get a preview of the levels of design that we’ll cover, consider a simple
design example. Suppose you are to build a “multiplexer” with two data input
bits, A and B, a control input bit S, and an output bit Z. Depending on the value
of S, 0 or 1, the circuit is to transfer the value of either A or B to the output Z. This
idea is illustrated in the “switch model” of Figure 1-7. Let us consider the design
of this function at several different levels.

Although logic design is usually carried out at higher level, for some func-
tions it is advantageous to optimize them by designing at the transistor level. The
multiplexer is such a function. Figure 1-8 shows how the multiplexer can be
designed in “CMOS” technology using specialized transistor circuit structures

Moore’s Law
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Figure 1-7
Switch model for
multiplexer function.
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Figure 1-8
Multiplexer design using 
CMOS transmission gates.

Figure 7: Multiplexer design using CMOS transmission gates.
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Truth table
Is used to describe logic function
Traditional logic design methods use Boolean algebra and minimization
algorithms to derive an optimal two-level AND-OR equation from truth
table

For Tab. 1

Z = S ′.A + S .B (1)
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The lowest level of digital design is device physics and IC manufacturing
processes. This is the level that is primarily responsible for the breathtaking
advances in IC speed and density that have occurred over the past decades. The
effects of these advances are summarized in Moore’s Law, first stated by Intel
founder Gordon Moore in 1965: that the number of transistors per square inch in
an IC doubles every year. In recent years, the rate of advance has slowed down to
doubling about every 18 months, but it is important to note that with each dou-
bling of density has also come a doubling of speed.

This book does not reach down to the level of device physics and IC
processes, but you need to recognize the importance of that level. Being aware of
likely technology advances and other changes is important in system and
product planning. For example, decreases in chip geometries have recently
forced a move to lower logic-power-supply voltages, causing major changes in
the way designers plan and specify modular systems and upgrades.

In this book, we jump into digital design at the transistor level and go all
the way up to the level of logic design using HDLs. We stop short of the next
level, which includes computer design and overall system design. The “center”
of our discussion is at the level of functional building blocks.

To get a preview of the levels of design that we’ll cover, consider a simple
design example. Suppose you are to build a “multiplexer” with two data input
bits, A and B, a control input bit S, and an output bit Z. Depending on the value
of S, 0 or 1, the circuit is to transfer the value of either A or B to the output Z. This
idea is illustrated in the “switch model” of Figure 1-7. Let us consider the design
of this function at several different levels.

Although logic design is usually carried out at higher level, for some func-
tions it is advantageous to optimize them by designing at the transistor level. The
multiplexer is such a function. Figure 1-8 shows how the multiplexer can be
designed in “CMOS” technology using specialized transistor circuit structures

Moore’s Law
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Z
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Figure 1-7
Switch model for
multiplexer function.
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Figure 1-8
Multiplexer design using 
CMOS transmission gates.

Table 1: Truth table for the multiplexer function.

S A B Z

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
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Going one step further, (1) can be converted into a set of logic gates,
as shown in Fig. 8

This circuit requires 14 transistors
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called “transmission gates,” discussed in Section 3.7.1. Using this approach, the
multiplexer can be built with just six transistors. Any of the other approaches
that we describe require at least 14 transistors.

In the traditional study of logic design, we would use a “truth table” to
describe the multiplexer’s logic function. A truth table list all possible combina-
tions of input values and the corresponding output values for the function. Since
the multiplexer has three inputs, it has 23 or 8 possible input combinations, as
shown in the truth table in Table 1-1.

Once we have a truth table, traditional logic design methods, described in
Section 4.3, use Boolean algebra and well understood minimization algorithms
to derive an “optimal” two-level AND-OR equation from the truth table. For the
multiplexer truth table, we would derive the following equation:

This equation is read “Z equals not S and A or S and B.” Going one step further,
we can convert the equation into a corresponding set of logic gates that perform
the specified logic function, as shown in Figure 1-9. This circuit requires 14
transistors if we use standard CMOS technology for the four gates shown.

A multiplexer is a very commonly used function, and most digital logic
technologies provide predefined multiplexer building blocks. For example, the
74x157 is an MSI chip that performs multiplexing on two 4-bit inputs simulta-
neously. Figure 1-10 is a logic diagram that shows how we can hook up just one
bit of this 4-bit building block to solve the problem at hand. The numbers in
color are pin numbers of a 16-pin DIP package containing the device.

Table 1-1
Truth table for the 
multiplexer function.

S A B Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Z = S′ ⋅ A + S ⋅ B
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Figure 1-9
Gate-level logic diagram 
for multiplexer function.

Figure 8: Gate-level logic diagram for multiplexer function.
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Multiplexer is a very commonly used function
Most digital logic technologies provide predefined multiplexer building
blocks
E.g., 74x157 is an MSI chip that performs multiplexing on two 4-bit
inputs simultaneously Section 1.10 Digital-Design Levels 21
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We can also realize the multiplexer function as part of a programmable
logic device. Languages like ABEL allow us to specify outputs using Boolean
equations similar to the one on the previous page, but it’s usually more conve-
nient to use “higher-level” language elements. For example, Table 1-2 is an
ABEL program for the multiplexer function. The first three lines define the
name of the program module and specify the type of PLD in which the function
will be realized. The next two lines specify the device pin numbers for inputs and
output. The “WHEN” statement specifies the actual logic function in a way that’s
very easy to understand, even though we haven’t covered ABEL yet.

An even higher level language, VHDL, can be used to specify the multi-
plexer function in a way that is very flexible and hierarchical. Table 1-3 is an
example VHDL program for the multiplexer. The first two lines specify a
standard library and set of definitions to use in the design. The next four lines
specify only the inputs and outputs of the function, and purposely hide any
details about the way the function is realized internally. The “architecture”
section of the program specifies the function’s behavior. VHDL syntax takes a
little getting used to, but the single “when” statement says basically the same
thing that the ABEL version did. A VHDL “synthesis tool” can start with this

module chap1mux
title 'Two-input multiplexer example'
CHAP1MUX device 'P16V8'

A, B, S      pin 1, 2, 3;
Z            pin 13 istype 'com';

equations

WHEN S == 0 THEN Z = A;  ELSE Z = B;

end chap1mux

Table 1-2
ABEL program for 
the multiplexer.
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Figure 1-10
Logic diagram for a 
multiplexer using an 
MSI building block.

Figure 9: Logic diagram for a multiplexer using an MSI building block.
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We can also realize multiplexer function as part of a PLD

HDLs allow us to specify logic functions using Boolean equations like (1)
An HDL’s higher-level language elements can create a more readable
program

Table 2: ABEL program for the multiplexer.

26 / 30



Digital-Design Levels: Example

VHDL and Verilog are even higher-level languages than ABEL

They can be used to specify multiplexer function in a way that is very
flexible and hierarchical

Table 3: VHDL program for the multiplexer.
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Input/output definitions (entity) and internal realization (architecture)
are separate in VHDL

Easy to define alternate realizations of functions
An alternate, structural architecture for multiplexer is shown in Tab. 4

Table 4: ”Structural” VHDL program for the multiplexer.
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called “transmission gates,” discussed in Section 3.7.1. Using this approach, the
multiplexer can be built with just six transistors. Any of the other approaches
that we describe require at least 14 transistors.

In the traditional study of logic design, we would use a “truth table” to
describe the multiplexer’s logic function. A truth table list all possible combina-
tions of input values and the corresponding output values for the function. Since
the multiplexer has three inputs, it has 23 or 8 possible input combinations, as
shown in the truth table in Table 1-1.

Once we have a truth table, traditional logic design methods, described in
Section 4.3, use Boolean algebra and well understood minimization algorithms
to derive an “optimal” two-level AND-OR equation from the truth table. For the
multiplexer truth table, we would derive the following equation:

This equation is read “Z equals not S and A or S and B.” Going one step further,
we can convert the equation into a corresponding set of logic gates that perform
the specified logic function, as shown in Figure 1-9. This circuit requires 14
transistors if we use standard CMOS technology for the four gates shown.

A multiplexer is a very commonly used function, and most digital logic
technologies provide predefined multiplexer building blocks. For example, the
74x157 is an MSI chip that performs multiplexing on two 4-bit inputs simulta-
neously. Figure 1-10 is a logic diagram that shows how we can hook up just one
bit of this 4-bit building block to solve the problem at hand. The numbers in
color are pin numbers of a 16-pin DIP package containing the device.

Table 1-1
Truth table for the 
multiplexer function.

S A B Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Z = S′ ⋅ A + S ⋅ B
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Figure 1-9
Gate-level logic diagram 
for multiplexer function.
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VHDL is powerful enough to define operations that model functional
behavior at transistor level

Won’t be explored in this course

Verilog syntax is somewhat C-like
Like C, Verilog is less picky about variable and type definition

E.g., in Tab. 5 all of variables default to being 1-bit wires

Unlike VHDL, Verilog does not require separate definitions of entity and
architecture
Verilog provides a means for defining functions structurally as in VHDL
example of Tab. 4

Table 5: Verilog program for the multiplexer.
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