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Introduction

Combinational logic circuit
A circuit whose outputs depend only on its current inputs
May contain an arbitrary number of logic gates and inverters but no
feedback loops

A feedback loop is a signal path that allows output of a gate to
propagate back to input of that same gate
Such a loop creates sequential circuit behavior

Combinational circuit analysis
We start with a logic diagram and proceed to a formal description of
function performed by that circuit, such as a truth table or a logic
expression

Combinational circuit synthesis
Reverse of analysis
Starting with a formal description and proceeding to a logic diagram
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Switching Algebra

Boolean algebra
A two-valued algebraic system
Is used to formulate propositions that are true or false, combine them to
make new propositions, and determine truth or falsehood of the new
propositions

Switching algebra
Adaptation of Boolean algebra to analyze and describe behavior of
circuits
A physical condition—voltage HIGH or LOW, capacitor charged or
discharged, and so on—is represented by a variable X that can have one
of two possible values, 0 or 1
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Switching Algebra: Axioms

Axioms or postulates
A minimal set of basic definitions that we assume to be true, from
which all other information about system can be derived
The first two axioms of switching algebra embody digital abstraction

(A1) X = 0 if X 6= 1 (A1′) X = 1 if X 6= 0

The only difference between A1 and A1′ is interchange of 0 and 1
This is a characteristic of all axioms of switching algebra
This is basis of duality principle

If X denotes an inverter’s input signal, X ′ denotes its output value

(A2) If X = 0, then X ′ = 1 (A2′) If X = 1, then X ′ = 0

AND and OR operations (AND has precedence)

(A3) 0 · 0 = 0 (A3′) 1 + 1 = 1
(A4) 1 · 1 = 1 (A4′) 0 + 0 = 0
(A5) 0 · 1 = 1 · 0 = 0 (A5′) 1 + 0 = 0 + 1 = 1

The five pairs of axioms, A1–A5 and A1′–A5′, completely define
switching algebra

All other facts about system can be proved using these axioms as a
staring point
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Switching Algebra: Single-Variable Theorems

Switching-algebra theorems
True statements that allow us to manipulate algebraic expressions to
allow simpler analysis or more efficient synthesis of corresponding circuits

Table 1: Switching-algebra theorems with one variable.196 Chapter 4 Combinational Logic Design Principles
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4.1.2 Single-Variable Theorems
During the analysis or synthesis of logic circuits, we often write algebraic
expressions that characterize a circuit’s actual or desired behavior. Switching-
algebra theorems are statements, known to be always true, that allow us to
manipulate algebraic expressions to allow simpler analysis or more efficient
synthesis of the corresponding circuits. For example, the theorem X + 0 = X
allows us to substitute every occurrence of X + 0 in an expression with X.

Table 4-1 lists switching-algebra theorems involving a single variable X.
How do we know that these theorems are true? We can either prove them our-
selves or take the word of someone who has. OK, we’re in college now, let’s
learn how to prove them.

Most theorems in switching algebra are exceedingly simple to prove using
a technique called perfect induction. Axiom A1 is the key to this technique—
since a switching variable can take on only two different values, 0 and 1, we can
prove a theorem involving a single variable X by proving that it is true for both
X = 0 and X = 1. For example, to prove theorem T1, we make two substitutions:

All of the theorems in Table 4-1 can be proved using perfect induction, as you’re
asked to do in the Drills 4.2 and 4.3.

4.1.3 Two- and Three-Variable Theorems
Switching-algebra theorems with two or three variables are listed in Table 4-2.
Each of these theorems is easily proved by perfect induction, by evaluating the
theorem statement for the four possible combinations of X and Y, or the eight
possible combinations of X, Y, and Z.

The first two theorem pairs concern commutativity and associativity of
logical addition and multiplication and are identical to the commutative and
associative laws for addition and multiplication of integers and reals. Taken
together, they indicate that the parenthesization or order of terms in a logical
sum or logical product is irrelevant. For example, from a strictly algebraic point
of view, an expression such as W ⋅ X ⋅ Y ⋅ Z is ambiguous; it should be written as
(W ⋅ (X ⋅ (Y ⋅ Z))) or (((W ⋅ X) ⋅ Y) ⋅ Z) or (W ⋅ X) ⋅ (Y ⋅ Z) (see Exercise 4.29).
But the theorems tell us that the ambiguous form of the expression is OK

Ta b l e  4 - 1
Switching-algebra 
theorems with one 
variable.

(T1) X + 0 = X (T1′ ) X ⋅ 1 = X (Identities)

(T2) X + 1 = 1 (T2′ ) X ⋅ 0 = 0 (Null elements)

(T3) X + X = X (T3′ ) X ⋅ X = X (Idempotency)

(T4) (X′)′ = X (Involution)

(T5) X + X′ = 1 (T5′ ) X ⋅ X′ = 0 (Complements)

[X = 0] 0 + 0 = 0 true, according to axiom A4′
[X = 1] 1 + 0 = 1 true, according to axiom A5′

theorem

perfect induction

Perfect induction
A technique to prove theorems in switching algebra
Since a variable can take on only 0 and 1, prove a theorem involving a
single variable X by proving that it is true for both X = 0 and X = 1
E.g., to prove T1

[X = 0] −→ 0 + 0 = 0 −→ true, according to axiom A4′

[X = 1] −→ 1 + 0 = 1 −→ true, according to axiom A5′
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Switching Algebra: Two- and Three-Variable Theorems

Table 2: Switching-algebra theorems with two or three variables.
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because we get the same results in any case. We even could have rearranged the
order of the variables (e.g., X ⋅ Z ⋅ Y ⋅ W) and gotten the same results.

As trivial as this discussion may seem, it is very important because it forms
the theoretical basis for using logic gates with more than two inputs. We defined
⋅  and + as binary operators—operators that combine two variables. Yet we use
3-input, 4-input, and larger AND and OR gates in practice. The theorems tell us
we can connect gate inputs in any order; in fact, many printed-circuit-board and
ASIC layout programs take advantage of this. We can use either one n-input gate
or (n−1) 2-input gates interchangeably, though propagation delay and cost are
likely to be higher with multiple 2-input gates.

Theorem T8 is identical to the distributive law for integers and reals—that
is, logical multiplication distributes over logical addition. Hence, we can “multi-
ply out” an expression to obtain a sum-of-products form, as in the example
below:

V ⋅ (W + X) ⋅ (Y + Z) = V ⋅ W ⋅ Y + V ⋅ W ⋅ Z + V ⋅ X ⋅ Y + V ⋅ X ⋅ Z

However, switching algebra also has the unfamiliar property that the reverse is
true—logical addition distributes over logical multiplication—as demonstrated
by theorem T8′. Thus, we can also “add out” an expression to obtain a product-
of-sums form:

(V ⋅ W ⋅ X) + (Y ⋅ Z) = (V + Y) ⋅ (V + Z) ⋅ (W + Y) ⋅ (W + Z) ⋅ (X + Y) ⋅ (X + Z)

Theorems T9 and T10 are used extensively in the minimization of logic
functions. For example, if the subexpression X + X ⋅ Y appears in a logic expres-
sion, the covering theorem T9 says that we need only include X in the
expression; X is said to cover X ⋅ Y. The combining theorem T10 says that if the
subexpression X ⋅ Y + X ⋅ Y′ appears in an expression, we can replace it with X.
Since Y must be 0 or 1, either way the original subexpression is 1 if and only if X
is 1.

Ta b l e  4 - 2 Switching-algebra theorems with two or three variables.

(T6) X + Y = Y + X (T6′) X ⋅ Y = Y ⋅ X (Commutativity)

(T7) (X + Y) + Z = X + (Y + Z) (T7′) (X ⋅ Y) ⋅ Z = X ⋅ (Y ⋅ Z) (Associativity)

(T8) X ⋅ Y + X ⋅ Z = X ⋅ (Y + Z) (T8′) (X + Y) ⋅ (X + Z) = X + Y ⋅ Z (Distributivity)

(T9) X + X ⋅ Y = X (T9′) X ⋅ (X + Y)=X (Covering)

(T10) X ⋅ Y + X ⋅ Y′ = X (T10′) (X + Y) ⋅ (X + Y’)=X (Combining)

(T11) X ⋅ Y + X′ ⋅ Z + Y ⋅ Z = X ⋅ Y + X′ ⋅ Z (Consensus)

(T11′) (X + Y) ⋅ (X′ + Z) ⋅ (Y + Z) = (X + Y) ⋅ (X′+ Z)

binary operator

covering theorem
cover
combining theorem

Theorems in Tab. 2 are proved by perfect induction, by evaluating
theorem statements for all possible combinations of X and Y (and Z)
Proof of T9: X + X · Y = X · 1 + X · Y = X · (1 + Y ) = X · 1 = X
In T11, if Y · Z = 1, either X · Y or X ′ · Z must also be 1

Thus, Y · Z term is redundant
Consensus theorem is used to eliminate certain timing hazards

It is possible to replace each variable in Tab. 2 with a logic expression
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Switching Algebra: n-Variable Theorems

Table 3: Switching-algebra theorems with n variables.
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AND gate whose output is complemented is equivalent to an n-input OR gate
whose inputs are complemented. That is, the circuits of Figure 4-3(a) and (b) are
equivalent.

In Section 3.3.4 we showed how to build a CMOS NAND gate. The output
of a NAND gate for any set of inputs is the complement of an AND gate’s output
for the same inputs, so a NAND gate can have the logic symbol in Figure 4-3(c).
However, the CMOS NAND circuit is not designed as an AND gate followed by a
transistor inverter (NOT gate); it’s just a collection of transistors that happens to
perform the AND-NOT function. In fact, theorem T13 tells us that the logic sym-
bol in (d) denotes the same logic function (bubbles on the OR-gate inputs
indicate logical inversion). That is, a NAND gate may be viewed as performing a
NOT-OR function.

By observing the inputs and output of a NAND gate, it is impossible to
determine whether it has been built internally as an AND gate followed by an
inverter, as inverters followed by an OR gate, or as a direct CMOS realization,
because all NAND circuits perform precisely the same logic function. Although
the choice of symbol has no bearing on the functionality of a circuit, we’ll show
in Section 5.1 that the proper choice can make the circuit’s function much easier
to understand.

Ta b l e  4 - 3 Switching-algebra theorems with n variables.

(T12)
(T12′)

X + X + … + X = X
X ⋅ X ⋅  … ⋅ X = X

(Generalized idempotency)

(T13)
(T13′)

(X1 ⋅ X2 ⋅  … ⋅ Xn)′ = X1′ + X2′+ … + Xn′
(X1 + X2 + … + Xn)′ = X1′ ⋅ X2′ ⋅  … ⋅ Xn′

(DeMorgan’s theorems)

(T14) [F(X1,X2,…,Xn,+, ⋅ )]’ = F(X1′,X2′,…, Xn′, ⋅ , +) (Generalized DeMorgan’s theorem)

(T15)
(T15′)

F(X1,X2,…,Xn) = X1 ⋅ F(1X2,…,Xn) + X1′ ⋅ F(0,X2,…,Xn)

F(X1,X2,…,Xn) = [X1 + F(0,X2, …,Xn)] ⋅ [X1′ + F(1,X2,…,Xn)]

(Shannon’s expansion theorems)

X

Y

X

Y

X

Y

Z = (X • Y)′ Z = (X • Y)′

X′

Y′

X

Y

Z = X′ + Y′

(a) (c)

(b) Z = X′ + Y′(d)

X • Y

Figure 4-3 Equivalent circuits according to DeMorgan’s theorem T13:
(a) AND-NOT; (b) NOT-OR; (c) logic symbol for a NAND gate;
(d) equivalent symbol for a NAND gate.

Theorems in Tab. 3 are proved using finite induction
1 Basis step: prove theorem is true for n = 2
2 Induction step: if theorem is true for n = i , it is also true for n = i + 1

Example: T12
1 For n = 2, T12 = T3, therefore true
2 If it is true for a logical sum of i X ’s, it is also true for a sum of i + 1 X ’s

X + X + X + · · ·+ X︸ ︷︷ ︸
i+1 X ’s

= X + (X + X + · · ·+ X︸ ︷︷ ︸
i X ’s

) = X + ( X︸︷︷︸
if T12 is true for n=i

)
T3
= X
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Switching Algebra: n-Variable Theorems
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AND gate whose output is complemented is equivalent to an n-input OR gate
whose inputs are complemented. That is, the circuits of Figure 4-3(a) and (b) are
equivalent.

In Section 3.3.4 we showed how to build a CMOS NAND gate. The output
of a NAND gate for any set of inputs is the complement of an AND gate’s output
for the same inputs, so a NAND gate can have the logic symbol in Figure 4-3(c).
However, the CMOS NAND circuit is not designed as an AND gate followed by a
transistor inverter (NOT gate); it’s just a collection of transistors that happens to
perform the AND-NOT function. In fact, theorem T13 tells us that the logic sym-
bol in (d) denotes the same logic function (bubbles on the OR-gate inputs
indicate logical inversion). That is, a NAND gate may be viewed as performing a
NOT-OR function.

By observing the inputs and output of a NAND gate, it is impossible to
determine whether it has been built internally as an AND gate followed by an
inverter, as inverters followed by an OR gate, or as a direct CMOS realization,
because all NAND circuits perform precisely the same logic function. Although
the choice of symbol has no bearing on the functionality of a circuit, we’ll show
in Section 5.1 that the proper choice can make the circuit’s function much easier
to understand.

Ta b l e  4 - 3 Switching-algebra theorems with n variables.

(T12)
(T12′)

X + X + … + X = X
X ⋅ X ⋅  … ⋅ X = X

(Generalized idempotency)

(T13)
(T13′)

(X1 ⋅ X2 ⋅  … ⋅ Xn)′ = X1′ + X2′+ … + Xn′
(X1 + X2 + … + Xn)′ = X1′ ⋅ X2′ ⋅  … ⋅ Xn′

(DeMorgan’s theorems)

(T14) [F(X1,X2,…,Xn,+, ⋅ )]’ = F(X1′,X2′,…, Xn′, ⋅ , +) (Generalized DeMorgan’s theorem)

(T15)
(T15′)

F(X1,X2,…,Xn) = X1 ⋅ F(1X2,…,Xn) + X1′ ⋅ F(0,X2,…,Xn)

F(X1,X2,…,Xn) = [X1 + F(0,X2, …,Xn)] ⋅ [X1′ + F(1,X2,…,Xn)]

(Shannon’s expansion theorems)

X

Y

X

Y

X

Y

Z = (X • Y)′ Z = (X • Y)′

X′

Y′

X

Y

Z = X′ + Y′

(a) (c)

(b) Z = X′ + Y′(d)

X • Y

Figure 4-3 Equivalent circuits according to DeMorgan’s theorem T13:
(a) AND-NOT; (b) NOT-OR; (c) logic symbol for a NAND gate;
(d) equivalent symbol for a NAND gate.

Figure 1: Equivalent circuits according to DeMorgan’s theorem T13: (a) AND-NOT; (b)
NOT-OR; (c) logic symbol for a NAND gate; (d) equivalent symbol for a NAND gate.

Figure 2: Equivalent circuits according to DeMorgan’s theorem T13′: (a) OR-NOT; (b)
NOT-AND; (c) logic symbol for a NOR gate; (d) equivalent symbol for a NOR gate.
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Switching Algebra: Duality

Principle of duality
Any theorem or identity in switching algebra remains true if 0 and 1 are
swapped and · and + are swapped throughout
This is true because duals of all axioms are true, so duals of all
switching-algebra theorems can be proved using duals of axioms

Dual of a logic expression

FD(X1,X2, . . . ,Xn,+, ·,′ ) = F (X1,X2, . . . ,Xn, ·,+,′ )

Generalized DeMorgan’s theorem

[F (X1,X2, . . . ,Xn,+, ·)]′ = F (X ′1,X
′
2, . . . ,X

′
n, ·,+)

= FD(X ′1,X
′
2, . . . ,X

′
n,+, ·)
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Switching Algebra: Duality
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the operators +, ⋅ , and ′, then the dual of F, written FD, is the same expression
with + and ⋅  swapped:

You already knew this, of course, but we wrote the definition in this way just to
highlight the similarity between duality and the generalized DeMorgan’s theo-
rem T14, which may now be restated as follows:

Let’s examine this statement in terms of a physical network.
Figure 4-5(a) shows the electrical function table for a logic element that

we’ll simply call a “type-1” gate. Under the positive-logic convention (LOW = 0
and HIGH = 1), this is an AND gate, but under the negative-logic convention
(LOW = 1 and HIGH = 0), it is an OR gate, as shown in (b) and (c). We can also
imagine a “type-2” gate, shown in Figure 4-6, that is a positive-logic OR or a
negative-logic AND. Similar tables can be developed for gates with more than
two inputs.

FD(X1,X2,…,Xn,+, ⋅ ,′) = F(X1,X2,…,Xn, ⋅ ,+,′)

[F(X1,X2,…,Xn)]′ = FD(X1′,X2′,…,Xn′)

Z = X + Y= X • Y Z

X Y Z

X

Y
Z

X Y Z

X

Y

LOW LOW LOW 0 0 0 1 1 1
LOW HIGH LOW 0 1 0 1 0 1
HIGH LOW LOW 1 0 0 0 1 1
HIGH HIGHHIGH 1 11 0 00

X Y Z

X

Y

(a)
type 1

(b) (c)
type 1 type 1

Figure 4-5 A “type-1”logic gate: (a) electrical function table; (b) logic function
table and symbol with positive logic; (c) logic function table and 
symbol with negative logic.

= X • Z′Z
(a)

X Y Z

X

Y
Ztype 2

(b)

X Y Z

X

Y

(c)

LOW LOW LOW 0 0 0 1 1 1

LOW HIGH HIGH 0 1 1 1 0 0

HIGH LOW HIGH 1 0 1 0 1 0

0HIGH HIGHHIGH 1 11 0 0

X Y Z

Z = X + YX

Y
type 2 type 2

Figure 4-6 A “type-2” logic gate: (a) electrical function table; (b) logic function
table and symbol with positive logic; (c) logic function table and 
symbol with negative logic.

Figure 3: A ”type-1” logic gate: (a) electrical function table; (b) logic function table and
symbol with positive logic; (c) logic function table and symbol with negative logic.
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the operators +, ×, and ′, then the dual of F, written FD, is the same expression
with + and × swapped:

You already knew this, of course, but we wrote the definition in this way just to
highlight the similarity between duality and the generalized DeMorgan’s theo-
rem T14, which may now be restated as follows:

Let’s examine this statement in terms of a physical network.
Figure 4-5(a) shows the electrical function table for a logic element that

we’ll simply call a “type-1” gate. Under the positive-logic convention (LOW = 0
and HIGH = 1), this is an AND gate, but under the negative-logic convention
(LOW = 1 and HIGH = 0), it is an OR gate, as shown in (b) and (c). We can also
imagine a “type-2” gate, shown in Figure 4-6, that is a positive-logic OR or a
negative-logic AND. Similar tables can be developed for gates with more than
two inputs.

FD(X1,X2,…,Xn,+, ×,′) = F(X1,X2,…,Xn, ×,+,′)

[F(X1,X2,…,Xn)]′ = FD(X1′,X2′,…,Xn′)

Z = X + Y= X • Y Z

X Y Z

X
Y

Z

X Y Z

X
Y

LOW LOW LOW 0 0 0 1 1 1
LOW HIGH LOW 0 1 0 1 0 1
HIGH LOW LOW 1 0 0 0 1 1
HIGH HIGHHIGH 1 11 0 00

X Y Z

X
Y

(a)
type 1

(b) (c)
type 1 type 1

Figure 4-5 A “type-1”logic gate: (a) electrical function table; (b) logic function
table and symbol with positive logic; (c) logic function table and 
symbol with negative logic.

= X . YZ
(a)

X Y Z

X
Y

Ztype 2
(b)

X Y Z

X
Y

(c)

LOW LOW LOW 0 0 0 1 1 1
LOW HIGH HIGH 0 1 1 1 0 0
HIGH LOW HIGH 1 0 1 0 1 0

0HIGH HIGHHIGH 1 11 0 0

X Y Z

Z = X + YX
Y

type 2 type 2

Figure 4-6 A “type-2” logic gate: (a) electrical function table; (b) logic function
table and symbol with positive logic; (c) logic function table and 
symbol with negative logic.

Figure 4: A ”type-2” logic gate: (a) electrical function table; (b) logic function table and
symbol with positive logic; (c) logic function table and symbol with negative logic.

Moslem Amiri, Václav Přenosil Design of Digital Systems II October, 2012 10 / 69



Switching Algebra: Duality
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Suppose that we are given an arbitrary logic expression, F(X1,X2,…,Xn).
Following the positive-logic convention, we can build a circuit corresponding to
this expression using inverters for NOT operations, type-1 gates for AND, and
type-2 gates for OR, as shown in Figure 4-7. Now suppose that, without chang-
ing this circuit, we simply change the logic convention from positive to negative.
Then we should redraw the circuit as shown in Figure 4-8. Clearly, for every
possible combination of input voltages (HIGH and LOW), the circuit still produc-
es the same output voltage. However, from the point of view of switching
algebra, the output value—0 or 1—is the opposite of what it was under the posi-
tive-logic convention. Likewise, each input value is the opposite of what it was.
Therefore, for each possible input combination to the circuit in Figure 4-7, the
output is the opposite of that produced by the opposite input combination
applied to the circuit in Figure 4-8: 

F(X1,X2,…,Xn) = [FD(X1′,X2′,…,Xn′)]′

X2

X3

X1

X4

X5

Xn

type 1

type 1

type 1

type 1

type 2

type 2

type 2

F(X1, X2, ... , Xn)

type 2

type 1

Figure 4-7 Circuit for a logic function using inverters and type-1 and type-2 
gates under a positive-logic convention.

X2′
X3′

X1′

X4′

X5′

Xn′

type 1

type 1

type 1

type 1

type 2

type 2

type 2

type 2

type 1 FD(X1′, X2′, ... , Xn′)

Figure 4-8
Negative-logic 
interpretation of the 
previous circuit.

Figure 5: Circuit for a logic function using inverters and type-1 and type-2 gates under a
positive-logic convention.
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Suppose that we are given an arbitrary logic expression, F(X1,X2,…,Xn).
Following the positive-logic convention, we can build a circuit corresponding to
this expression using inverters for NOT operations, type-1 gates for AND, and
type-2 gates for OR, as shown in Figure 4-7. Now suppose that, without chang-
ing this circuit, we simply change the logic convention from positive to negative.
Then we should redraw the circuit as shown in Figure 4-8. Clearly, for every
possible combination of input voltages (HIGH and LOW), the circuit still produc-
es the same output voltage. However, from the point of view of switching
algebra, the output value—0 or 1—is the opposite of what it was under the posi-
tive-logic convention. Likewise, each input value is the opposite of what it was.
Therefore, for each possible input combination to the circuit in Figure 4-7, the
output is the opposite of that produced by the opposite input combination
applied to the circuit in Figure 4-8: 

F(X1,X2,…,Xn) = [FD(X1′,X2′,…,Xn′)]′

X2

X3

X1

X4

X5

Xn

type 1

type 1

type 1

type 1

type 2

type 2

type 2

F(X1, X2, ... , Xn)

type 2

type 1

Figure 4-7 Circuit for a logic function using inverters and type-1 and type-2 
gates under a positive-logic convention.

X2′
X3′

X1′

X4′

X5′

Xn′

type 1

type 1

type 1

type 1

type 2

type 2

type 2

type 2

type 1 FD(X1′, X2′, ... , Xn′)

Figure 6: Negative-logic interpretation of the previous circuit.
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Switching Algebra: Duality

Figs. 5 and 6

Fig. 5 shows a circuit corresponding to expression F (X1,X2, . . . ,Xn)
following positive-logic convention
Circuit of Fig. 6 is that of Fig. 5 without change, but logic convention
is changed from positive to negative

For every possible combination of input voltages (HIGH and LOW), the
circuit still produces the same output voltage
But from point of view of switching algebra, output value—0 or 1—is
opposite of what it was under positive-logic convention
Likewise, each input value is opposite of what it was

Therefore, for each possible input combination to circuit in Fig. 5,
output is opposite of that produced by opposite input combination
applied to circuit in Fig. 6

F (X1,X2, . . . ,Xn) = [FD(X ′
1,X

′
2, . . . ,X

′
n)]′

By complementing both sides, we get generalized DeMorgan’s theorem

[F (X1,X2, . . . ,Xn)]′ = FD(X ′
1,X

′
2, . . . ,X

′
n)

Moslem Amiri, Václav Přenosil Design of Digital Systems II October, 2012 12 / 69



Standard Representations of Logic Functions

The most basic representation of a logic function is truth table
It lists output of circuit for every possible input combination

Table 4: General truth table
structure for a 3-variable logic
function, F (X ,Y ,Z ).
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By complementing both sides, we get the generalized DeMorgan’s theorem:

Amazing!
So, we have seen that duality is the basis for the generalized DeMorgan’s

theorem. Going forward, duality will halve the number of methods you must
learn to manipulate and simplify logic functions.

4.1.6 Standard Representations of Logic Functions
Before moving on to analysis and synthesis of combinational logic functions
we’ll introduce some necessary nomenclature and notation.

The most basic representation of a logic function is the truth table. Similar
in philosophy to the perfect-induction proof method, this brute-force representa-
tion simply lists the output of the circuit for every possible input combination.
Traditionally, the input combinations are arranged in rows in ascending binary
counting order, and the corresponding output values are written in a column next
to the rows. The general structure of a 3-variable truth table is shown below in
Table 4-4. 

The rows are numbered 0–7 corresponding to the binary input combina-
tions, but this numbering is not an essential part of the truth table. The truth table
for a particular 3-variable logic function is shown in Table 4-5. Each distinct pat-
tern of 0s and 1s in the output column yields a different logic function; there are
28 such patterns. Thus, the logic function in Table 4-5 is one of 28 different logic
functions of three variables.

The truth table for an n-variable logic function has 2n rows. Obviously,
truth tables are practical to write only for logic functions with a small number of
variables, say, 10 for students and about 4–5 for everyone else.

[F(X1,X2,…,Xn)]′ = FD(X1′,X2′,…,Xn′)

Ta b l e  4 - 4 t
General truth table 
structure for a 
3-variable logic 
function, F(X,Y,Z).

Row X Y Z F

0 0 0 0 F(0,0,0)

1 0 0 1 F(0,0,1)

2 0 1 0 F(0,1,0)

3 0 1 1 F(0,1,1)

4 1 0 0 F(1,0,0)

5 1 0 1 F(1,0,1)

6 1 1 0 F(1,1,0)

7 1 1 1 F(1,1,1)

truth table

Table 5: Truth table for a particular
3-variable logic function,
F (X ,Y ,Z ). Section 4.1 Switching Algebra 205
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The information contained in a truth table can also be conveyed algebra-
ically. To do so, we first need some definitions:

• A literal is a variable or the complement of a variable. Examples: X, Y, X′,
Y′.

• A product term is a single literal or a logical product of two or more
literals. Examples: Z′, W ⋅ X ⋅ Y,  X ⋅ Y′ ⋅ Z, W′ ⋅ Y′ ⋅ Z.

• A sum-of-products expression is a logical sum of product terms. Example:
Z′ + W ⋅ X ⋅ Y + X ⋅ Y′ ⋅ Z + W′ ⋅ Y′ ⋅ Z. 

• A sum term is a single literal or a logical sum of two or more literals.
Examples: Z′, W + X + Y,  X + Y′ + Z,  W′ + Y′ + Z.

• A product-of-sums expression is a logical product of sum terms. Example:
Z′ ⋅  (W + X + Y) ⋅  (X + Y′ + Z) ⋅  (W′ + Y′ + Z).

• A normal term is a product or sum term in which no variable appears more
than once. A nonnormal term can always be simplified to a constant or a
normal term using one of theorems T3, T3′, T5, or T5′. Examples of non-
normal terms: W ⋅ X ⋅ X ⋅ Y′, W + W + X′ + Y, X ⋅ X′ ⋅ Y. Examples of
normal terms: W ⋅ X ⋅ Y′, W + X′ + Y.

• An n-variable minterm is a normal product term with n literals. There are
2n such product terms. Examples of 4-variable minterms:
W′ ⋅ X′ ⋅ Y′ ⋅ Z′, W ⋅ X ⋅ Y′ ⋅ Z, W′ ⋅ X′ ⋅ Y ⋅ Z′.

• An n-variable maxterm is a normal sum term with n literals. There are 2n

such sum terms. Examples of 4-variable maxterms: W′ + X′ + Y′ + Z′,
W + X′ + Y′ + Z, W′ + X′ + Y + Z′.

There is a close correspondence between the truth table and minterms and
maxterms. A minterm can be defined as a product term that is 1 in exactly one
row of the truth table. Similarly, a maxterm can be defined as a sum term that is
0 in exactly one row of the truth table. Table 4-6 shows this correspondence for a
3-variable truth table.

Row X Y Z F Ta b l e  4 - 5
Truth table for a 
particular 3-variable 
logic function, F(X,Y,Z).

0 0 0 0 1

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 1

5 1 0 1 0

6 1 1 0 1

7 1 1 1 1

literal

product term

sum-of-products 
expression

sum term

product-of-sums 
expression

normal term

minterm

maxterm
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Standard Representations of Logic Functions

Literal
A variable or complement of a variable
Examples: X , Y , X ′, Y ′

Product term
A single literal or a logical product of two or more literals
Examples: Z ′, W · X · Y , X · Y ′ · Z , W ′ · Y ′ · Z

Sum-of-products expression
A logical sum of product terms
Example: Z ′ + W · X · Y + X · Y ′ · Z + W ′ · Y ′ · Z

Sum term
A single literal or a logical sum of two or more literals
Examples: Z ′, W + X + Y , X + Y ′ + Z , W ′ + Y ′ + Z

Product-of-sums expression
A logical product of sum terms
Example: Z ′ · (W + X + Y ) · (X + Y ′ + Z ) · (W ′ + Y ′ + Z )
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Standard Representations of Logic Functions

Normal term
A product or sum term in which no variable appears more than once
A nonnormal term can always be simplified to a constant or a normal
term
Examples of nonnormal terms:
W · X · X · Y ′, W + W + X ′ + Y , X · X ′ · Y
Examples of normal terms: W · X · Y ′, W + X ′ + Y

n-variable minterm
A normal product term with n literals
There are 2n such product terms
Examples of 4-variable minterms:
W ′ · X ′ · Y ′ · Z ′, W · X · Y ′ · Z , W ′ · X ′ · Y · Z ′

n-variable maxterm
A normal sum term with n literals
There are 2n such sum terms
Examples of 4-variable maxterms:
W ′ + X ′ + Y ′ + Z ′, W + X ′ + Y ′ + Z , W ′ + X ′ + Y + Z ′
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Standard Representations of Logic Functions

Correspondence between truth table and minterms and maxterms
A minterm is defined as a product term that is 1 in exactly one row of
truth table
A maxterm is defined as a sum term that is 0 in exactly one row of truth
table

Table 6: Minterms and maxterms for a 3-variable logic function, F (X ,Y ,Z ).206 Chapter 4 Combinational Logic Design Principles
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An n-variable minterm can be represented by an n-bit integer, the minterm
number. We’ll use the name minterm i to denote the minterm corresponding to
row i of the truth table. In minterm i, a particular variable appears complemented
if the corresponding bit in the binary representation of i is 0; otherwise, it is
uncomplemented. For example, row 5 has binary representation 101 and the cor-
responding minterm is X ⋅ Y′ ⋅ Z. As you might expect, the correspondence for
maxterms is just the opposite: in maxterm i, a variable appears complemented if
the corresponding bit in the binary representation of i is 1. Thus, maxterm 5
(101) is X′ + Y + Z′. 

Based on the correspondence between the truth table and minterms, we can
easily create an algebraic representation of a logic function from its truth table.
The canonical sum of a logic function is a sum of the minterms corresponding to
truth-table rows (input combinations) for which the function produces a 1 out-
put. For example, the canonical sum for the logic function in Table 4-5 on
page 205 is

Here, the notation ΣX,Y,Z(0,3,4,6,7) is a minterm list and means “the sum of min-
terms 0, 3, 4, 6, and 7 with variables X, Y, and Z.” The minterm list is also known
as the on-set for the logic function. You can visualize that each minterm “turns
on” the output for exactly one input combination. Any logic function can be
written as a canonical sum.

The canonical product of a logic function is a product of the maxterms cor-
responding to input combinations for which the function produces a 0 output.
For example, the canonical product for the logic function in Table 4-5 is 

Ta b l e  4 - 6
Minterms and maxterms 
for a 3-variable logic 
function, F(X,Y,Z).

Row X Y Z F Minterm Maxterm

0 0 0 0 F(0,0,0) X′ ⋅ Y′ ⋅ Z′ X + Y + Z

1 0 0 1 F(0,0,1) X′ ⋅ Y′ ⋅ Z X + Y + Z′
2 0 1 0 F(0,1,0) X′ ⋅ Y ⋅ Z′ X + Y′ + Z

3 0 1 1 F(0,1,1) X′ ⋅ Y ⋅ Z X + Y′ + Z′
4 1 0 0 F(1,0,0) X ⋅ Y′ ⋅ Z′ X′ + Y + Z

5 1 0 1 F(1,0,1) X ⋅ Y′ ⋅ Z X′ + Y + Z′
6 1 1 0 F(1,1,0) X ⋅ Y ⋅ Z′ X′ + Y′ + Z

7 1 1 1 F(1,1,1) X ⋅ Y ⋅ Z X′ + Y′ + Z′

F = ΣX,Y,Z(0,3,4,6,7)

= X′ ⋅ Y′ ⋅ Z′ + X′ ⋅ Y ⋅ Z + X ⋅ Y′ ⋅ Z′ + X ⋅ Y ⋅ Z′ + X ⋅ Y ⋅ Z

F = ∏X,Y,Z(1,2,5)

= (X + Y + Z′) ⋅ (X + Y′ + Z) ⋅ (X′ + Y + Z′)

minterm number
minterm i

maxterm i

canonical sum

minterm list

on-set

canonical product
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Standard Representations of Logic Functions

Minterm i
The minterm corresponding to row i of truth table
A variable is complemented if corresponding bit in binary is 0
Example: row 5 −→ binary: 101 −→ minterm 5: X · Y ′ · Z

Maxterm i
The maxterm corresponding to row i of truth table
A variable is complemented if corresponding bit in binary is 1
Example: row 5 −→ binary: 101 −→ maxterm 5: X ′ + Y + Z ′

Canonical sum of a logic function

A sum of minterms corresponding to truth-table rows (input
combinations) for which the function produces a 1 output

Canonical product of a logic function

A product of maxterms corresponding to input combinations for which
the function produces a 0 output
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Standard Representations of Logic Functions

In Tab. 5
Canonical sum

F =
∑

X ,Y ,Z

(0, 3, 4, 6, 7)

= X ′ · Y ′ · Z ′ + X ′ · Y · Z + X · Y ′ · Z ′ + X · Y · Z ′ + X · Y · Z
Notation

∑
X ,Y ,Z (0, 3, 4, 6, 7) is a minterm list or on-set

Canonical product

F =
∏

X ,Y ,Z

(1, 2, 5) = (X + Y + Z ′) · (X + Y ′ + Z ) · (X ′ + Y + Z ′)

Notation
∏

X ,Y ,Z (1, 2, 5) is a maxterm list or off-set Section 4.1 Switching Algebra 205
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The information contained in a truth table can also be conveyed algebra-
ically. To do so, we first need some definitions:

• A literal is a variable or the complement of a variable. Examples: X, Y, X′,
Y′.

• A product term is a single literal or a logical product of two or more
literals. Examples: Z′, W ⋅ X ⋅ Y,  X ⋅ Y′ ⋅ Z, W′ ⋅ Y′ ⋅ Z.

• A sum-of-products expression is a logical sum of product terms. Example:
Z′ + W ⋅ X ⋅ Y + X ⋅ Y′ ⋅ Z + W′ ⋅ Y′ ⋅ Z. 

• A sum term is a single literal or a logical sum of two or more literals.
Examples: Z′, W + X + Y,  X + Y′ + Z,  W′ + Y′ + Z.

• A product-of-sums expression is a logical product of sum terms. Example:
Z′ ⋅  (W + X + Y) ⋅  (X + Y′ + Z) ⋅  (W′ + Y′ + Z).

• A normal term is a product or sum term in which no variable appears more
than once. A nonnormal term can always be simplified to a constant or a
normal term using one of theorems T3, T3′, T5, or T5′. Examples of non-
normal terms: W ⋅ X ⋅ X ⋅ Y′, W + W + X′ + Y, X ⋅ X′ ⋅ Y. Examples of
normal terms: W ⋅ X ⋅ Y′, W + X′ + Y.

• An n-variable minterm is a normal product term with n literals. There are
2n such product terms. Examples of 4-variable minterms:
W′ ⋅ X′ ⋅ Y′ ⋅ Z′, W ⋅ X ⋅ Y′ ⋅ Z, W′ ⋅ X′ ⋅ Y ⋅ Z′.

• An n-variable maxterm is a normal sum term with n literals. There are 2n

such sum terms. Examples of 4-variable maxterms: W′ + X′ + Y′ + Z′,
W + X′ + Y′ + Z, W′ + X′ + Y + Z′.

There is a close correspondence between the truth table and minterms and
maxterms. A minterm can be defined as a product term that is 1 in exactly one
row of the truth table. Similarly, a maxterm can be defined as a sum term that is
0 in exactly one row of the truth table. Table 4-6 shows this correspondence for a
3-variable truth table.

Row X Y Z F Ta b l e  4 - 5
Truth table for a 
particular 3-variable 
logic function, F(X,Y,Z).

0 0 0 0 1

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 1

5 1 0 1 0

6 1 1 0 1

7 1 1 1 1

literal

product term

sum-of-products 
expression

sum term

product-of-sums 
expression

normal term

minterm

maxterm
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Standard Representations of Logic Functions

Conversion between a minterm list and a maxterm list
For a function of n variables, possible minterm and maxterm numbers
are in the set {0, 1, . . . , 2n − 1}
To switch between list types, take the set complement
Example ∑

A,B,C

(0, 1, 2, 3) =
∏

A,B,C

(4, 5, 6, 7)

∑
X ,Y

(1) =
∏
X ,Y

(0, 2, 3)

∑
W ,X ,Y ,Z

(0, 1, 2, 3, 5, 7, 11, 13) =
∏

W ,X ,Y ,Z

(4, 6, 8, 9, 10, 12, 14, 15)

Each of these representations specifies exactly the same information
1 A truth table
2 An algebraic sum of minterms, the canonical sum
3 A minterm list using

∑
notation

4 An algebraic product of maxterms, the canonical product
5 A maxterm list using

∏
notation
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Combinational-Circuit Analysis

We analyze a combinational logic circuit by obtaining a formal
description of its logic function

Operations possible after obtaining a formal description

Determining behavior of logic circuit for various input combinations
Manipulating an algebraic description to suggest different circuit
structures
Transforming an algebraic description into a standard form
corresponding to an available circuit structure

E.g., a sum-of-products expression corresponds directly to circuit
structure used in PLAs, and a truth table corresponds to lookup memory
used in most FPGAs

Using an algebraic description of circuit’s functional behavior in analysis
of a larger system that includes the circuit
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Combinational-Circuit Analysis

The most basic functional description is truth table

Obtain truth table of an n-input circuit by working the way through all
2n input combinations
For each input combination, determine all of gate outputs produced by
that input, propagating information from circuit inputs to outputs
Truth table is written by transcribing output sequence of final gate

208 Chapter 4 Combinational Logic Design Principles
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Given a logic diagram for a combinational circuit, such as Figure 4-9, there
are a number of ways to obtain a formal description of the circuit’s function. The
most primitive functional description is the truth table.

Using only the basic axioms of switching algebra, we can obtain the truth
table of an n-input circuit by working our way through all 2n input combinations.
For each input combination, we determine all of the gate outputs produced by
that input, propagating information from the circuit inputs to the circuit outputs.
Figure 4-10 applies this “exhaustive” technique to our example circuit. Written
on each signal line in the circuit is a sequence of eight logic values, the values
present on that line when the circuit inputs XYZ are 000, 001, …, 111. The truth
table can be written by transcribing the output sequence of the final OR gate, as

F

X

Y

Z

Figure 4-9
A three-input, one-
output logic circuit.

01100101

01000101

00100000

11001111

01010101

11110000

01010101

00110011 11001100

00110011

10101010

00001111
00001111

F

X

Y

Z

Figure 4-10 Gate outputs created by all input combinations.

A LESS
EXHAUSTING

WAY TO GO

You can easily obtain the results in Figure 4-10 with typical logic design tools that
include a logic simulator. First, you draw the schematic. Then, you apply the outputs
of a 3-bit binary counter to the X, Y, and Z inputs. (Most simulators have such
counter outputs built-in for just this sort of exercise.) The counter repeatedly cycles
through the eight possible input combinations, in the same order that we’ve shown
in the figure. The simulator allows you to graph the resulting signal values at any
point in the schematic, including the intermediate points as well as the output.

Figure 7: Gate outputs created by all input combinations.
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Combinational-Circuit Analysis

Table 7: Truth table for the logic circuit of Fig. 7.Section 4.2 Combinational Circuit Analysis 209
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shown in Table 4-7. Once we have the truth table for the circuit, we can also
directly write a logic expression—the canonical sum or product—if we wish.

The number of input combinations of a logic circuit grows exponentially
with the number of inputs, so the exhaustive approach can quickly become
exhausting. Instead, we normally use an algebraic approach whose complexity is
more linearly proportional to the size of the circuit. The method is simple—we
build up a parenthesized logic expression corresponding to the logic operators
and structure of the circuit. We start at the circuit inputs and propagate expres-
sions through gates toward the output. Using the theorems of switching algebra,
we may simplify the expressions as we go, or we may defer all algebraic manip-
ulations until an output expression is obtained.

Figure 4-11 applies the algebraic technique to our example circuit. The
output function is given on the output of the final OR gate:

No switching-algebra theorems were used in obtaining this expression. How-
ever, we can use theorems to transform this expression into another form. For
example, a sum of products can be obtained by “multiplying out”:

Row X Y Z F Ta b l e  4 - 7
Truth table for the 
logic circuit of 
Figure 4-9.

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

F = ((X+Y′) ⋅ Z) + (X′ ⋅ Y ⋅ Z′)

F = X ⋅ Z + Y′ ⋅ Z + X′ ⋅ Y ⋅ Z′

F

X

Y
Y′

X + Y′

(X + Y′ ) • Z 

X′

Z′

Z

= ((X + Y′) • Z) + (X′ • Y′ • Z′)

X′ • Y • Z′

Figure 4-11
Logic expressions 
for signal lines.

The number of input combinations of a logic circuit grows
exponentially with the number of inputs

Instead of exhaustive approach, we normally use an algebraic approach
Complexity of algebraic approach is linearly proportional to size of circuit
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Combinational-Circuit Analysis

Algebraic approach
Build up a parenthesized logic expression corresponding to logic
operators and structure of circuit
Start at circuit inputs and propagate expressions through gates toward
output
Simplify expressions while going, or defer all algebraic manipulations
until an output expression is obtained

Section 4.2 Combinational Circuit Analysis 209
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shown in Table 4-7. Once we have the truth table for the circuit, we can also
directly write a logic expression—the canonical sum or product—if we wish.

The number of input combinations of a logic circuit grows exponentially
with the number of inputs, so the exhaustive approach can quickly become
exhausting. Instead, we normally use an algebraic approach whose complexity is
more linearly proportional to the size of the circuit. The method is simple—we
build up a parenthesized logic expression corresponding to the logic operators
and structure of the circuit. We start at the circuit inputs and propagate expres-
sions through gates toward the output. Using the theorems of switching algebra,
we may simplify the expressions as we go, or we may defer all algebraic manip-
ulations until an output expression is obtained.

Figure 4-11 applies the algebraic technique to our example circuit. The
output function is given on the output of the final OR gate:

No switching-algebra theorems were used in obtaining this expression. How-
ever, we can use theorems to transform this expression into another form. For
example, a sum of products can be obtained by “multiplying out”:

Row X Y Z F Ta b l e  4 - 7
Truth table for the 
logic circuit of 
Figure 4-9.

0 0 0 0 0

1 0 0 1 1

2 0 1 0 1

3 0 1 1 0

4 1 0 0 0

5 1 0 1 1

6 1 1 0 0

7 1 1 1 1

F = ((X+Y′) ×Z) + (X′ ⋅ Y ×Z′)

F = X ×Z + Y′ ⋅ Z + X′ ⋅ Y ×Z′

F

X

Y
Y′

X + Y′

(X + Y′ ) • Z 

X′

Z′

Z

= ((X + Y′) • Z) + (X′ • Y • Z′)

X′ • Y • Z′

Figure 8: Logic expressions for signal lines.
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Combinational-Circuit Analysis

In Fig. 8, a sum of products is obtained by ”multiplying out” output
function

F = ((X + Y ′) · Z ) + (X ′ · Y · Z ′)
= X · Z + Y ′ · Z + X ′ · Y · Z ′

This new expression corresponds to a different circuit for the same
logic function, as shown in Fig. 9

210 Chapter 4 Combinational Logic Design Principles
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The new expression corresponds to a different circuit for the same logic func-
tion, as shown in Figure 4-12.

Similarly, we can “add out” the original expression to obtain a product of
sums:

The corresponding logic circuit is shown in Figure 4-13. 
Our next example of algebraic analysis uses a circuit with NAND and NOR

gates, shown in Figure 4-14. This analysis is a little messier than the previous
example, because each gate produces a complemented subexpression, not just a
simple sum or product. However, the output expression can be simplified by
repeated application of the generalized DeMorgan’s theorem:

F = ((X + Y′) ⋅  Z) + (X′ ⋅  Y ⋅  Z′)
= (X + Y′ + X′) ⋅ (X + Y′ + Y) ⋅ (X + Y′ + Z′) ⋅ (Z + X′) ⋅ (Z + Y) ⋅ (Z + Z′)
= 1 ⋅ 1 ⋅ (X + Y′ + Z′) ⋅ (X′ + Z) ⋅ (Y + Z) ⋅ 1

= (X + Y′ + Z′) ⋅ (X′ + Z) ⋅ (Y + Z)

F  =  X • Z  +  Y′ • Z + X′ • Y • Z′

X

Y

Z

Y′
Y′ • Z

X • Z

X′ • Y • Z′

X′

Z′

Figure 4-12 Two-level AND-OR circuit.

X

Y

Z

Y′

Y + Z

X′ + Z

X + Y′ + Z′

X′

Z′

F = (X + Y′ + Z′) • (X′ + Z) • (Y + Z)

Figure 4-13 Two-level OR-AND circuit.

Figure 9: Two-level AND-OR circuit.
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Combinational-Circuit Analysis

Similarly, a product of sums is obtained by ”adding out” output
function of Fig. 8

F = ((X + Y ′) · Z) + (X ′ · Y · Z ′)

= (X + Y ′ + X ′) · (X + Y ′ + Y ) · (X + Y ′ + Z ′) · (Z + X ′) · (Z + Y ) · (Z + Z ′)

= 1 · 1 · (X + Y ′ + Z ′) · (X ′ + Z) · (Y + Z) · 1

= (X + Y ′ + Z ′) · (X ′ + Z) · (Y + Z)
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The new expression corresponds to a different circuit for the same logic func-
tion, as shown in Figure 4-12.

Similarly, we can “add out” the original expression to obtain a product of
sums:

The corresponding logic circuit is shown in Figure 4-13. 
Our next example of algebraic analysis uses a circuit with NAND and NOR

gates, shown in Figure 4-14. This analysis is a little messier than the previous
example, because each gate produces a complemented subexpression, not just a
simple sum or product. However, the output expression can be simplified by
repeated application of the generalized DeMorgan’s theorem:

F = ((X + Y′) ⋅  Z) + (X′ ⋅  Y ⋅  Z′)
= (X + Y′ + X′) ⋅ (X + Y′ + Y) ⋅ (X + Y′ + Z′) ⋅ (Z + X′) ⋅ (Z + Y) ⋅ (Z + Z′)
= 1 ⋅ 1 ⋅ (X + Y′ + Z′) ⋅ (X′ + Z) ⋅ (Y + Z) ⋅ 1

= (X + Y′ + Z′) ⋅ (X′ + Z) ⋅ (Y + Z)

F  =  X • Z  +  Y′ • Z + X′ • Y • Z′

X

Y

Z

Y′
Y′ • Z

X • Z

X′ • Y • Z′

X′

Z′

Figure 4-12 Two-level AND-OR circuit.

X

Y

Z

Y′

Y + Z

X′ + Z

X + Y′ + Z′

X′

Z′

F = (X + Y′ + Z′) • (X′ + Z) • (Y + Z)

Figure 4-13 Two-level OR-AND circuit.

Figure 10: Two-level OR-AND circuit.
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Figure 11: Algebraic analysis of a logic circuit with NAND and NOR gates.

F = [((W · X ′)′ · Y )′ + (W ′ + X + Y ′)′ + (W + Z )′]′

= ((W ′ + X )′ + Y ′)′ · (W · X ′ · Y )′ · (W ′ · Z ′)′

= ((W · X ′)′ · Y ) · (W ′ + X + Y ′) · (W + Z )

= ((W ′ + X ) · Y ) · (W ′ + X + Y ′) · (W + Z )
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DeMorgan’s theorem can be applied graphically to simplify algebraic
analysis

We can cancel out some of inversions
In Fig. 12, this manipulation leads us to a simplified output expression
directly

F = ((W ′ + X ) · Y ) · (W ′ + X + Y ′) · (W + Z ) (1)

Figure 12: Algebraic analysis of the circuit in Fig. 11 after substituting some
NAND and NOR symbols.
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When we simplify a logic expression, we get an expression
corresponding to a different physical circuit

E.g., simplified expression (1) corresponds to circuit of Fig. 13

Figure 13: A different circuit for same logic function.

We could also multiply out and add out expression (1) to obtain
sum-of-products and product-of-sums expressions corresponding to two
more physically different circuits for same logic function
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Logic expressions are not always used to convey information about
physical structure of a circuit

An expression might describe more than one circuit structure
The only sure way to determine a circuit’s structure is via its drawing
But, for certain classes of circuits, structural information could be
described without reference to drawing

E.g., ”a two-level NAND-NAND circuit for W · X · Y + Y · Z”
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expression to obtain sum-of-products and product-of-sums expressions corre-
sponding to two more physically different circuits for the same logic function.

Although we used logic expressions above to convey information about the
physical structure of a circuit, we don’t always do this. For example, we might
use the expression G(W, X, Y, Z) = W ⋅ X ⋅ Y + Y ⋅ Z to describe any one of the cir-
cuits in Figure 4-17. Normally, the only sure way to determine a circuit’s
structure is to look at its schematic drawing. However, for certain restricted
classes of circuits, structural information can be inferred from logic expressions.
For example, the circuit in (a) could be described without reference to the draw-
ing as “a two-level AND-OR circuit for W ⋅ X ⋅ Y + Y ⋅ Z,” while the circuit in (b)
could be described as “a two-level NAND-NAND circuit for W ⋅ X ⋅ Y + Y ⋅ Z.”

F

X

W

Y

Z

= ((W′ + X) • Y) • (W′ + X + Y′)
• (W+ Z)

X′
W′ + X

(W′ + X) • Y

W′ + X + Y′

W + Z

W′

Y′

Figure 4-16 A different circuit for same logic function.

W
X

Y

Z

G

(a) (b)

(c)

W
X

Y

Z

G

G
W

X

Y

Z

Y′

W • X • Y

W • X • Y

(W • X • Y)′

(W • X)′

(Y • Z)′Y • Z

Y • Z

Figure 4-17 Three circuits for G(W, X, Y, Z) = W ⋅ X ⋅Y + Y ⋅ Z: (a) two-level
AND-OR; (b) two-level NAND-NAND; (c) ad hoc.

Figure 14: Three circuits for G(W ,X ,Y ,Z) = W · X · Y + Y · Z : (a) two-level AND-OR;
(b) two-level NAND-NAND; (c) with 2-input gates only.
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Sometimes, a logic circuit description is a list of input combinations,
verbal equivalent of a truth table or

∑
or

∏
notation

Example (prime-number detector): ”Given a 4-bit input combination
N = N3N2N1N0, produce a 1 output for N = 1, 2, 3, 5, 7, 11, 13 and 0
otherwise”
A logic function described in this way can be designed directly from
canonical sum or product expression

F =
∑

N3,N2,N1,N0

(1, 2, 3, 5, 7, 11, 13)

= N ′
3 · N ′

2 · N ′
1 · N0 + N ′

3 · N ′
2 · N1 · N ′

0 + N ′
3 · N ′

2 · N1 · N0

+ N ′
3 · N2 · N ′

1 · N0 + N ′
3 · N2 · N1 · N0 + N3 · N ′

2 · N1 · N0

+ N3 · N2 · N ′
1 · N0
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4.3 Combinational Circuit Synthesis
4.3.1 Circuit Descriptions and Designs
What is the starting point for designing combinational logic circuits? Usually,
we are given a word description of a problem or we develop one ourselves.
Occasionally, the description is a list of input combinations for which a signal
should be on or off, the verbal equivalent of a truth table or the Σ or ∏ notation
introduced previously. For example, the description of a 4-bit prime-number
detector might be, “Given a 4-bit input combination N = N3N2N1N0, this function
produces a 1 output for N = 1, 2, 3, 5, 7, 11, 13, and 0 otherwise.” A logic func-
tion described in this way can be designed directly from the canonical sum or
product expression. For the prime-number detector, we have

The corresponding circuit is shown in Figure 4-18.
More often, we describe a logic function using the English-language con-

nectives “and,” “or,” and “not.” For example, we might describe an alarm circuit
by saying, “The ALARM output is 1 if the PANIC input is 1, or if the ENABLE
input is 1, the EXITING input is 0, and the house is not secure; the house is secure

F = ΣN
3
,N

2
,N

1
,N

0
(1, 2, 3, 5, 7, 11, 13)

= N3′ ⋅N2′ ⋅N1′ ⋅N0 + N3′ ⋅N2′ ⋅N1⋅N0′ + N3′ ⋅N2′ ⋅N1⋅N0+ N3′ ⋅N2′ ⋅N1′ ⋅N0

+ N3′ ⋅N2⋅N1⋅N0 + N3⋅N2′ ⋅N1⋅N0 + N3⋅N2⋅N1′ ⋅N0

N 3

N3

N3′

N3′ • N2′ • N1′ • N0

N3′ • N2′ • N1
• N0′

N3′ • N2′ • N1
• N0

N3′ • N2
• N1′ • N0

N3′ • N2
• N1

• N0

N3
• N2′ • N1

• N0

N3
• N2

• N1′ • N0

N2

N2′

N1

N1′

N0

N0′

N 2

N 1

N 0

F

Figure 4-18 Canonical-sum design for 4-bit prime-number detector.

Figure 15: Canonical-sum design for 4-bit prime-number detector.
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Often, we describe a logic function using English-language connectives
”and,” ”or,” and ”not”

Example (alarm circuit): ”ALARM output is 1 if PANIC input is 1, or if
ENABLE input is 1, EXITING input is 0, and house is not secure; house
is secure if WINDOW, DOOR, and GARAGE inputs are all 1”
Such a description can be translated directly into algebraic expressions

ALARM = PANIC + ENABLE · EXITING′ · SECURE′

SECURE = WINDOW · DOOR · GARAGE

ALARM = PANIC + ENABLE · EXITING′ · (WINDOW · DOOR · GARAGE)′214 Chapter 4 Combinational Logic Design Principles
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if the WINDOW, DOOR, and GARAGE inputs are all 1.” Such a description can
be translated directly into algebraic expressions:

Notice that we used the same method in switching algebra as in ordinary algebra
to formulate a complicated expression—we defined an auxiliary variable
SECURE to simplify the first equation, developed an expression for SECURE,
and used substitution to get the final expression. We can easily draw a circuit
using AND, OR, and NOT gates that realizes the final expression, as shown in
Figure 4-19. A circuit realizes [“makes real”] an expression if its output function
equals that expression, and the circuit is called a realization of the function.

Once we have an expression, any expression, for a logic function, we can
do other things besides building a circuit directly from the expression. We can
manipulate the expression to get different circuits. For example, the ALARM
expression above can be multiplied out to get the sum-of-products circuit in
Figure 4-20. Or, if the number of variables is not too large, we can construct the
truth table for the expression and use any of the synthesis methods that apply to
truth tables, including the canonical sum or product method described earlier
and the minimization methods described later. 

ALARM = PANIC + ENABLE ⋅  EXITING′ ⋅  SECURE′
SECURE = WINDOW ⋅  DOOR ⋅  GARAGE

ALARM = PANIC + ENABLE ⋅  EXITING′ ⋅  (WINDOW ⋅  DOOR ⋅  GARAGE)′

PANIC
ALARM

ENABLE

EXITING

WINDOW

DOOR

GARAGE

SECURE

Figure 4-19 Alarm circuit derived from logic expression.

realize
realization

PANIC

ALARM

ENABLE

EXITING

WINDOW

DOOR

GARAGE

                            = PANIC
+ ENABLE • EXITING′ • WINDOW′ 
+ ENABLE • EXITING′ • DOOR′ 
+ ENABLE • EXITING′ • GARAGE′ 

Figure 4-20 Sum-of-products version of alarm circuit.

Figure 16: Alarm circuit derived from logic expression.
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Having an expression for a logic function, we can do some other
operations

We can manipulate it to get different circuits
E.g., ALARM expression can be multiplied out to get sum-of-products
circuit

We can construct the truth table for the expression and use any of
synthesis methods that apply to truth tables

E.g., canonical sum or product method and minimization methods
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if the WINDOW, DOOR, and GARAGE inputs are all 1.” Such a description can
be translated directly into algebraic expressions:

Notice that we used the same method in switching algebra as in ordinary algebra
to formulate a complicated expression—we defined an auxiliary variable
SECURE to simplify the first equation, developed an expression for SECURE,
and used substitution to get the final expression. We can easily draw a circuit
using AND, OR, and NOT gates that realizes the final expression, as shown in
Figure 4-19. A circuit realizes [“makes real”] an expression if its output function
equals that expression, and the circuit is called a realization of the function.

Once we have an expression, any expression, for a logic function, we can
do other things besides building a circuit directly from the expression. We can
manipulate the expression to get different circuits. For example, the ALARM
expression above can be multiplied out to get the sum-of-products circuit in
Figure 4-20. Or, if the number of variables is not too large, we can construct the
truth table for the expression and use any of the synthesis methods that apply to
truth tables, including the canonical sum or product method described earlier
and the minimization methods described later. 

ALARM = PANIC + ENABLE ⋅  EXITING′ ⋅  SECURE′
SECURE = WINDOW ⋅  DOOR ⋅  GARAGE

ALARM = PANIC + ENABLE ⋅  EXITING′ ⋅  (WINDOW ⋅  DOOR ⋅  GARAGE)′

PANIC
ALARM

ENABLE

EXITING

WINDOW

DOOR

GARAGE

SECURE

Figure 4-19 Alarm circuit derived from logic expression.

realize
realization

PANIC

ALARM

ENABLE

EXITING

WINDOW

DOOR

GARAGE

                            = PANIC
+ ENABLE • EXITING′ • WINDOW′ 
+ ENABLE • EXITING′ • DOOR′ 
+ ENABLE • EXITING′ • GARAGE′ 

Figure 4-20 Sum-of-products version of alarm circuit.

Figure 17: Sum-of-products version of alarm circuit.
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We can translate any logic expression into an equivalent
sum-of-products expression by multiplying it out

Such an expression may be realized directly with AND and OR gates
By substituting gates: two-level AND-OR −→ two-level NAND-NANDSection 4.3 Combinational Circuit Synthesis 215
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In general, it’s easier to describe a circuit in words using logical connec-
tives and to write the corresponding logic expressions than it is to write a
complete truth table, especially if the number of variables is large. However,
sometimes we have to work with imprecise word descriptions of logic functions,
for example, “The ERROR output should be 1 if the GEARUP, GEARDOWN,
and GEARCHECK inputs are inconsistent.” In this situation, the truth-table
approach is best because it allows us to determine the output required for every
input combination, based on our knowledge and understanding of the problem
environment (e.g., the brakes cannot be applied unless the gear is down).

4.3.2 Circuit Manipulations
The design methods that we’ve described so far use AND, OR, and NOT gates.
We might like to use NAND and NOR gates, too—they’re faster than ANDs and
ORs in most technologies. However, most people don’t develop logical proposi-
tions in terms of NAND and NOR connectives. That is, you probably wouldn’t
say, “I won’t date you if you’re not clean or not wealthy and also you’re not
smart or not friendly.” It would be more natural for you to say, “I’ll date you if
you’re clean and wealthy, or if you’re smart and friendly.” So, given a “natural”
logic expression, we need ways to translate it into other forms.

We can translate any logic expression into an equivalent sum-of-products
expression, simply by multiplying it out. As shown in Figure 4-21(a), such an
expression may be realized directly with AND and OR gates. The inverters
required for complemented inputs are not shown.

As shown in Figure 4-21(b), we may insert a pair of inverters between each
AND-gate output and the corresponding OR-gate input in a two-level AND-OR

(c)

(a)(b)

Figure 18: Alternative sum-of-products realizations: (a) AND-OR; (b) AND-OR
with extra inverter pairs; (c) NAND-NAND.
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circuit. According to theorem T4, these inverters have no effect on the output
function of the circuit. In fact, we’ve drawn the second inverter of each pair
with its inversion bubble on its input to provide a graphical reminder that the
inverters cancel. However, if these inverters are absorbed into the AND and OR
gates, we wind up with AND-NOT gates at the first level and a NOT-OR gate
at the second level. These are just two different symbols for the same type of
gate—a NAND gate. Thus, a two-level AND-OR circuit may be converted to a
two-level NAND-NAND circuit simply by substituting gates.

(a)
W

X

Y

Z

(c) W

X

Y

Z

(b)
W

X

Y

Z

(a) (b)

(c)Figure 4-23
Realizations of a 
product-of-sums 
expression: 
(a) OR-AND;
(b) OR-AND with extra 
inverter pairs; 
(c) NOR-NOR.

AND-OR circuit
NAND-NAND circuit

Figure 19: Another two-level sum-of-products circuit: (a) AND-OR; (b)
AND-OR with extra inverter pairs; (c) NAND-NAND.
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We can translate any logic expression into an equivalent
product-of-sums expression by adding it out

Such an expression has both OR-AND and NOR-NOR circuit realizations
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circuit. According to theorem T4, these inverters have no effect on the output
function of the circuit. In fact, we’ve drawn the second inverter of each pair
with its inversion bubble on its input to provide a graphical reminder that the
inverters cancel. However, if these inverters are absorbed into the AND and OR
gates, we wind up with AND-NOT gates at the first level and a NOT-OR gate
at the second level. These are just two different symbols for the same type of
gate—a NAND gate. Thus, a two-level AND-OR circuit may be converted to a
two-level NAND-NAND circuit simply by substituting gates.

(a)
W

X

Y

Z

(c) W

X

Y

Z

(b)
W

X

Y

Z

Figure 4-22
Another two-level 
sum-of-products 
circuit: (a) AND-OR;
(b) AND-OR with extra 
inverter pairs; 
(c) NAND-NAND.

(a) (b)

(c)

Figure 20: Realizations of a product-of-sums expression: (a) OR-AND; (b)
OR-AND with extra inverter pairs; (c) NOR-NOR.
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If any product terms in the sum-of-products expression contain just a sin-
gle literal, then we may gain or lose inverters in the transformation from AND-
OR to NAND-NAND. For example, Figure 4-22 is an example where an inverter
on the W input is no longer needed, but an inverter must be added to the Z input.

We have shown that any sum-of-products expression can be realized in
either of two ways—as an AND-OR circuit or as a NAND-NAND circuit. The
dual of this statement is also true: any product-of-sums expression can be real-
ized as an OR-AND circuit or as a NOR-NOR circuit. Figure 4-23 shows an
example. Any logic expression can be translated into an equivalent product-of-
sums expression by adding it out, and hence has both OR-AND and NOR-NOR
circuit realizations.

The same kind of manipulations can be applied to arbitrary logic circuits.
For example, Figure 4-24(a) shows a circuit built from AND and OR gates. After
adding pairs of inverters, we obtain the circuit in (b). However, one of the gates,
a 2-input AND gate with a single inverted input, is not a standard type. We can
use a discrete inverter as shown in (c) to obtain a circuit that uses only standard
gate types—NAND, AND, and inverters. Actually, a better way to use the inverter
is shown in (d); one level of gate delay is eliminated, and the bottom gate
becomes a NOR instead of AND. In most logic technologies, inverting gates like
NAND and NOR are faster than noninverting gates like AND and OR.

OR-AND circuit
NOR-NOR circuit

(a) (b)

(d)(c)

Figure 4-24 Logic-symbol manipulations: (a) original circuit;
(b) transformation with a nonstandard gate; (c) inverter used to 
eliminate nonstandard gate; (d) preferred inverter placement.

Figure 21: Logic-symbol manipulations: (a) original circuit; (b) transformation
with a nonstandard gate; (c) inverter used to eliminate nonstandard gate; (d)
preferred inverter placement; one level of gate delay is eliminated, and bottom
gate becomes a NOR instead of AND.
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Conmbinational-circuit-minimization methods have as their starting
point a truth table or, equivalently, a minterm list or maxterm list

Given a logic function that is not expressed in this form, we must
convert it to an appropriate form before using these methods

Minimization methods reduce cost of a two-level AND-OR, OR-AND,
NAND-NAND, or NOR-NOR circuit in three ways

1 By minimizing number of first-level gates
2 By minimizing number of inputs on each first-level gate
3 By minimizing number of inputs on second-level gate

This is a side effect of the first reduction

Minimization methods do not consider cost of input inverters
They assume both true and complemented versions of all input variables
are available

Not always the case in gate-level or ASIC design
But, appropriate for PLD-based design where both true and
complemented versions of all input variables are available for free
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Most minimization methods are based on combining theorems, T10
and T10′

given product term · Y + given product term · Y ′ = given product term

(given sum term + Y ) · (given sum term + Y ′) = given sum term

Applying this method repeatedly to combine minterms 1, 3, 5, and 7 of
prime-number detector shown in Fig. 15

F =
∑

N3,N2,N1,N0

(1, 3, 5, 7, 2, 11, 13)

= N ′
3 · N ′

2 · N ′
1 · N0 + N ′

3 · N ′
2 · N1 · N0 + N ′

3 · N2 · N ′
1 · N0 + N ′

3 · N2 · N1 · N0 + · · ·
= (N ′

3 · N ′
2 · N ′

1 · N0 + N ′
3 · N ′

2 · N1 · N0) + (N ′
3 · N2 · N ′

1 · N0 + N ′
3 · N2 · N1 · N0) + · · ·

= N ′
3 · N ′

2 · N0 + N ′
3 · N2 · N0 + · · ·

= N ′
3 · N0 + · · ·
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We can apply this algebraic method repeatedly to combine minterms 1, 3,
5, and 7 of the prime-number detector shown in Figure 4-18 on page 213:

The resulting circuit is shown in Figure 4-25; it has three fewer gates and one of
the remaining gates has two fewer inputs.

If we had worked a little harder on the preceding expression, we could have
saved a couple more first-level gate inputs, though not any gates. It’s difficult to
find terms that can be combined in a jumble of algebraic symbols. In the next
subsection, we’ll begin to explore a minimization method that is more fit for
human consumption. Our starting point will be the graphical equivalent of a
truth table.

4.3.4 Karnaugh Maps
A Karnaugh map is a graphical representation of a logic function’s truth table.
Figure 4-26 shows Karnaugh maps for logic functions of 2, 3, and 4 variables.
The map for an n-input logic function is an array with 2n cells, one for each pos-
sible input combination or minterm.

The rows and columns of a Karnaugh map are labeled so that the input
combination for any cell is easily determined from the row and column headings
for that cell. The small number inside each cell is the corresponding minterm
number in the truth table, assuming that the truth table inputs are labeled alpha-
betically from left to right (e.g., X, Y, Z) and the rows are numbered in binary

F = ΣN
3
,N

2
,N

1
,N

0
(1, 3, 5, 7, 2, 11, 13)

= N3′ ⋅N2′N1′N0 + N3′ ⋅N2′ ⋅N1⋅N0 + N3′ ⋅N2⋅N1′ ⋅N0 + N3′ ⋅N2⋅N1⋅N0 + …

= (N3′ ⋅N2′ ⋅N1′ ⋅N0 + N3′ ⋅N2′ ⋅N1⋅N0) + (⋅N3′ ⋅N2⋅N1′ ⋅N0 + N3′ ⋅N2⋅N1⋅N0) + …

= N3′N2′ ⋅N0 + N3′ ⋅N2⋅N0 + …

= N3′ ⋅N0 + …

N3

N2

N1

N0

F

N3 N3′ N2 N2′ N1 N1′ N0 N0′

N3′ • N0

N3′ • N2′ • N1
• N0′

N3
• N2′ • N1

• N0

N3
• N2

• N1′ • N0

Figure 22: Simplified sum-of-products realization for 4-bit prime-number
detector.

Working more on preceding expression, we could save a couple more
first-level gate inputs
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Karnaugh map
A graphical representation of a logic function’s truth table
Map for an n-input logic function is an array with 2n cells, one for each
possible input combination or minterm
Number inside each cell is corresponding minterm number in truth table

Truth-table inputs are labeled alphabetically from left to right (e.g.,
X ,Y ,Z)
E.g., cell 13 in 4-variable map corresponds to truth table row in which
WXYZ = 1101
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counting order, like all the examples in this text. For example, cell 13 in the 4-
variable map corresponds to the truth-table row in which W X Y Z = 1101.

When we draw the Karnaugh map for a given function, each cell of the map
contains the information from the like-numbered row of the function’s truth
table—a 0 if the function is 0 for that input combination, a 1 otherwise.

In this text, we use two redundant labelings for map rows and columns. For
example, consider the 4-variable map in Figure 4-26(c). The columns are
labeled with the four possible combinations of W and X, W X = 00, 01, 11, and
10. Similarly, the rows are labeled with the Y Z combinations. These labels give
us all the information we need. However, we also use brackets to associate four
regions of the map with the four variables. Each bracketed region is the part of
the map in which the indicated variable is 1. Obviously, the brackets convey the
same information that is given by the row and column labels.

When we draw a map by hand, it is much easier to draw the brackets than
to write out all of the labels. However, we retain the labels in the text’s Karnaugh
maps as an additional aid to understanding. In any case, you must be sure to label
the rows and columns in the proper order to preserve the correspondence
between map cells and truth table row numbers shown in Figure 4-26.

To represent a logic function on a Karnaugh map, we simply copy 1s and
0s from the truth table or equivalent to the corresponding cells of the map.
Figures 4-27(a) and (b) show the truth table and Karnaugh map for a logic func-
tion that we analyzed (beat to death?) in Section 4.2. From now on, we’ll reduce
the clutter in maps by copying only the 1s or the 0s, not both.

4.3.5 Minimizing Sums of Products
By now you must be wondering about the “strange” ordering of the row and
column numbers in a Karnaugh map. There is a very important reason for this
ordering—each cell corresponds to an input combination that differs from each
of its immediately adjacent neighbors in only one variable. For example, cells
5 and 13 in the 4-variable map differ only in the value of W. In the 3- and
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Figure 4-26 Karnaugh maps: (a) 2-variable; (b) 3-variable; (c) 4-variable.Figure 23: Karnaugh maps: (a) 2-variable; (b) 3-variable; (c) 4-variable.
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To represent a logic function on a Karnaugh map, we copy 1s and 0s
from truth table or equivalent to the corresponding cells of map

Figure 24: Karnaugh maps for logic functions: (a) F =
∑

X ,Y (3); (b)
F =

∑
X ,Y ,Z (0, 3, 4, 6, 7); (c) F =

∑
W ,X ,Y ,Z (1, 2, 3, 5, 7, 11, 13).
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Particular order of row and column numbers in a Karnaugh map makes
each cell correspond to an input combination that differs from each of
its immediately adjacent neighbors in only one variable

Corresponding cells on left/right or top/bottom borders also differ in
one variable and hence neighbors; e.g., cells 12 and 14 in 4-variable map

Each input combination with a ”1” in truth table corresponds to a
minterm in logic function’s canonical sum

Pairs of adjacent ”1” cells in map have minterms that differ in only one
variable
Thus, minterm pairs can be combined into a single product term

term · Y + term · Y ′ = term

Thus, we can use a Karnaugh map to simplify canonical sum of a logic
function

Moslem Amiri, Václav Přenosil Design of Digital Systems II October, 2012 43 / 69



Com.-Circuit Synthesis: Minimizing Sums of Products
Section 4.3 Combinational Circuit Synthesis 221

  
  
  
  
  
  
  
  
  

Copyright © 1999 by John F. Wakerly Copying Prohibited

4-variable maps, corresponding cells on the left/right or top/bottom borders are
less obvious neighbors; for example, cells 12 and 14 in the 4-variable map are
adjacent because they differ only in the value of Y.

Each input combination with a “1” in the truth table corresponds to a
minterm in the logic function’s canonical sum. Since pairs of adjacent “1” cells
in the Karnaugh map have minterms that differ in only one variable, the minterm
pairs can be combined into a single product term using the generalization of
theorem T10, term×Y + term× Y′ = term. Thus, we can use a Karnaugh map to
simplify the canonical sum of a logic function.

For example, consider cells 5 and 7 in Figure 4-27(b), and their contribu-
tion to the canonical sum for this function:

Remembering wraparound, we see that cells 1 and 5 in Figure 4-27(b) are also
adjacent and can be combined: 

In general, we can simplify a logic function by combining pairs of adjacent
1-cells (minterms) whenever possible, and writing a sum of product terms that
cover all of the 1-cells. Figure 4-27(c) shows the result for our example logic
function. We circle a pair of 1s to indicate that the corresponding minterms are
combined into a single product term. The corresponding AND-OR circuit is
shown in Figure 4-28.

In many logic functions, the cell-combining procedure can be extended to
combine more than two 1-cells into a single product term. For example, consider

F =  … + X ×Y′ ⋅ Z + X ×Y ×Z
=  … + (X ×Z) ×Y′+(X ×Z) ×Y
=  … + X ×Z

F = X′ ⋅ Y′ ⋅ Z + X ×Y′ ⋅ Z + …

= X′ ⋅ (Y′ ⋅ Z) + X ×(Y′ ⋅ Z) + …

= Y′ ⋅ Z + …

1

1 1 1

00 01 11 10
X Y

0

X

Y

Z1

Z

(c)(b)(a)
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0

1

X
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Z

0 1 0 0

1 0 1 1

Z

X Y Z F

0 0 0 0
10 0 1

0 1 0 1
00 1 1

1 0 0 0
11 0 1

1 1 0 0
11 1 1

X • Z

Y' • Z

X' • Y • Z′

Figure 4-27 F = ΣX,Y,Z(1,2,5,7): (a) truth table; (b) Karnaugh map;
(c) combining adjacent 1-cells.

Figure 25: F =
∑

X ,Y ,Z (1, 2, 5, 7): (a) truth table; (b) Karnaugh map; (c)
combining adjacent 1-cells.

In Fig. 25(b)

For cells 5 and 7:

F = · · ·+ X · Y ′ · Z + X · Y · Z
= · · ·+ (X · Z ) · Y ′ + (X · Z ) · Y
= · · ·+ X · Z

For cells 1 and 5:

F = X ′ · Y ′ · Z + X · Y ′ · Z + · · ·
= X ′ · (Y ′ · Z ) + X · (Y ′ · Z ) + · · ·
= Y ′ · Z + · · ·
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We can simplify a logic function by first combining pairs of adjacent
1-cells (minterms) wherever possible and then selecting a set of
product terms that covers all of 1-cells and summing them

Fig. 25(c) shows the result for our example logic function
Corresponding AND-OR circuit is shown in Fig. 26
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the canonical sum for the logic function F = ΣX,Y,Z(0, 1, 4, 5, 6). We can use the
algebraic manipulations of the previous examples iteratively to combine four of
the five minterms:

In general, 2i 1-cells may be combined to form a product term containing n − i
literals, where n is the number of variables in the function.

A precise mathematical rule determines how 1-cells may be combined and
the form of the corresponding product term:

• A set of 2i 1-cells may be combined if there are i variables of the logic
function that take on all 2i possible combinations within that set, while the
remaining n − i variables have the same value throughout that set. The cor-
responding product term has n − i literals, where a variable is complemented
if it appears as 0 in all of the 1-cells, and uncomplemented if it appears as 1.

Graphically, this rule means that we can circle rectangular sets of 2n 1s, literally
as well as figuratively stretching the definition of rectangular to account for
wraparound at the edges of the map. We can determine the literals of the corre-
sponding product terms directly from the map; for each variable we make the
following determination: 

• If a circle covers only areas of the map where the variable is 0, then the
variable is complemented in the product term. 

• If a circle covers only areas of the map where the variable is 1, then the
variable is uncomplemented in the product term.

• If a circle covers both areas of the map where the variable is 0 and areas
where it is 1, then the variable does not appear in the product term.

F = X′ ⋅ Y′ ⋅ Z′ + X′ ⋅ Y′ ⋅ Z + X ⋅ Y′ ⋅ Z′ + X ⋅ Y′ ⋅ Z + X ⋅ Y ⋅ Z′
= [(X′ ⋅ Y′) ⋅ Z′ + (X′ ⋅ Y′) ⋅ Z] + [(X ⋅ Y′) ⋅ Z′ + (X ⋅ Y′) ⋅ Z] + X ⋅ Y ⋅ Z′
= X′ ⋅ Y′ + X ⋅ Y′ + X ⋅ Y ⋅ Z′
= [X’ ⋅ (Y′) + X ⋅ (Y′)] + X ⋅ Y ⋅ Z′
= Y′ + X ⋅ Y ⋅ Z′

F

X

Y

Z

Y′

X′

Z′

X • Z

Y' • Z

X' • Y • Z′
Figure 4-28
Minimized AND-OR circuit.

rectangular sets of 1s

Figure 26: Minimized AND-OR circuit.
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In many logic functions, cell-combining procedure can be extended to
combine more than two 1-cells into a single product term

Number of cells combined is always a power of 2
Example

F =
∑

X ,Y ,Z

(0, 1, 4, 5, 6)

= X ′ · Y ′ · Z ′ + X ′ · Y ′ · Z + X · Y ′ · Z ′ + X · Y ′ · Z + X · Y · Z ′

= [(X ′ · Y ′) · Z ′ + (X ′ · Y ′) · Z ] + [(X · Y ′) · Z ′ + (X · Y ′) · Z ] + X · Y · Z ′

= X ′ · Y ′ + X · Y ′ + X · Y · Z ′

= [X ′ · (Y ′) + X · (Y ′)] + X · Y · Z ′

= Y ′ + X · Y · Z ′

2i 1-cells may be combined to form a product term containing n − i
literals (n = number of variables in function)
A set of 2i 1-cells are combined if there are i variables that take on all
2i possible combinations within that set, while remaining n − i variables
have the same value throughout that set

Corresponding product term has n − i literals, where a variable is
complemented if it is 0 in all of 1-cells, and uncomplemented if it is 1
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Graphically, we circle rectangular sets of 2i 1s, stretching definition of
rectangular to account for wraparound at edges of map

For each variable, if a circle covers only areas of map where it is 0, the
variable is complemented in product term
If a circle covers only areas of map where the variable is 1, the variable
is uncomplemented in product term
If a circle covers areas of map where the variable is 0 as well as areas
where it is 1, the variable does not appear in product term
Finally, a sum-of-products expression for a function must contain
product terms that cover all of 1s and none of 0s on map
By circling largest possible set of 1s, a less expensive realization of logic
function is found
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A sum-of-products expression for a function must contain product terms (circled
sets of 1-cells) that cover all of the 1s and none of the 0s on the map.

The Karnaugh map for our most recent example, F = Σ X,Y,Z(0, 1, 4, 5, 6),
is shown in Figure 4-29(a) and (b). We have circled one set of four 1s, corre-
sponding to the product term Y′, and a set of two 1s corresponding to the product
term X ⋅ Z′. Notice that the second product term has one less literal than the
corresponding product term in our algebraic solution (X ⋅ Y ⋅ Z′). By circling the
largest possible set of 1s containing cell 6, we have found a less expensive
realization of the logic function, since a 2-input AND gate should cost less than a
3-input one. The fact that two different product terms now cover the same
1-cell (4) does not affect the logic function, since for logical addition 1 + 1 = 1,
not 2! The corresponding two-level AND/OR circuit is shown in (c).

As another example, the prime-number detector circuit that we introduced
in Figure 4-18 on page 213 can be minimized as shown in Figure 4-30. 

At this point, we need some more definitions to clarify what we’re doing:

• A minimal sum of a logic function F(X1,…,Xn) is a sum-of-products expres-
sion for F such that no sum-of-products expression for F has fewer product
terms, and any sum-of-products expression with the same number of product
terms has at least as many literals.

That is, the minimal sum has the fewest possible product terms (first-level gates
and second-level gate inputs) and, within that constraint, the fewest possible lit-
erals (first-level gate inputs). Thus, among our three prime-number detector
circuits, only the one in Figure 4-30 on the next page realizes a minimal sum.

The next definition says precisely what the word “imply” means when we
talk about logic functions:

• A logic function P(X1,…,Xn) implies a logic function F(X1,…,Xn) if for every
input combination such that P = 1, then F = 1 also. 
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Z
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1 1

1 1

F = X • Z′ + Y′

X • Z′

Figure 4-29
F = ΣX,Y,Z(0,1,4,5,6): 
(a) initial Karnaugh 
map; (b) Karnaugh
map with circled 
product terms; 
(c) AND/OR circuit.

minimal sum

imply

Figure 27: F =
∑

X ,Y ,Z (0, 1, 4, 5, 6): (a) initial Karnaugh map; (b) Karnaugh
map with circled product terms; (c) AND/OR circuit.
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That is, if P implies F, then F is 1 for every input combination that P is 1, and
maybe some more. We may write the shorthand P ⇒ F. We may also say that “F
includes P,” or that “F covers P.”

• A prime implicant of a logic function F(X1,…,Xn) is a normal product term
P(X1,…,Xn) that implies F, such that if any variable is removed from P, then
the resulting product term does not imply F.

In terms of a Karnaugh map, a prime implicant of F is a circled set of 1-cells
satisfying our combining rule, such that if we try to make it larger (covering
twice as many cells), it covers one or more 0s.

Now comes the most important part, a theorem that limits how much work
we must do to find a minimal sum for a logic function:

Prime Implicant TheoremA minimal sum is a sum of prime implicants. 

That is, to find a minimal sum, we need not consider any product terms that are
not prime implicants. This theorem is easily proved by contradiction. Suppose

includes
covers
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Figure 4-30 Prime-number detector: (a) initial Karnaugh map; (b) circled 
product terms; (c) minimized circuit.

Figure 28: Prime-number detector: (a) initial Karnaugh map; (b) circled
product terms; (c) minimized circuit.
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Minimal sum of a logic function F (X1, . . . ,Xn)
1 Has the fewest possible product terms
2 Within constraint 1, has the fewest possible literals

A logic function P(X1, . . . ,Xn) implies a logic function F (X1, . . . ,Xn)
if for every input combination such that P = 1, then F = 1 too

”P implies F” ≡ ”F includes P” ≡ ”F covers P” ≡ P ⇒ F

Prime implicant of a logic function F (X1, . . . ,Xn)

A normal product term P(X1, . . . ,Xn) that implies F , such that if any
variable is removed from P, resulting product term does not imply F
In Karnaugh map, a prime implicant of F is a circled set of 1-cells, such
that if we make it larger (twice as many cells), it covers one or more 0s

Prime-implicant theorem
A minimal sum is a sum of prime implicants
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that a product term P in a “minimal” sum is not a prime implicant. Then
according to the definition of prime implicant, if P is not one, it is possible to
remove some literal from P to obtain a new product term P* that still implies F.
If we replace P with P* in the presumed “minimal” sum, the resulting sum still
equals F but has one fewer literal. Therefore, the presumed “minimal” sum was
not minimal after all.

Another minimization example, this time a 4-variable function, is shown in
Figure 4-31. There are just two prime implicants, and it’s quite obvious that both
of them must be included in the minimal sum in order to cover all of the 1-cells
on the map. We didn’t draw the logic diagram for this example because you
should know how to do that yourself by now.

The sum of all the prime implicants of a logic function is called the com-
plete sum. Although the complete sum is always a legitimate way to realize a
logic function, it’s not always minimal. For example, consider the logic function
shown in Figure 4-32. It has five prime implicants, but the minimal sum includes
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Figure 4-31 F = ΣW,X,Y,Z(5,7,12,13,14,15): (a) Karnaugh map;
(b) prime implicants.
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Figure 4-32 F = ΣW,X,Y,Z(1,3,4,5,9,11,12,13,14,15): (a) Karnaugh map;
(b) prime implicants and distinguished 1-cells.

Figure 29: F =
∑

W ,X ,Y ,Z (5, 7, 12, 13, 14, 15): (a) Karnaugh map; (b) prime
implicants.

Complete sum
Sum of all prime implicants of a logic function
Is not always minimal
E.g., logic function shown in Fig. 30 has five prime implicants, but
minimal sum includes only three of them
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that a product term P in a “minimal” sum is not a prime implicant. Then
according to the definition of prime implicant, if P is not one, it is possible to
remove some literal from P to obtain a new product term P* that still implies F.
If we replace P with P* in the presumed “minimal” sum, the resulting sum still
equals F but has one fewer literal. Therefore, the presumed “minimal” sum was
not minimal after all.

Another minimization example, this time a 4-variable function, is shown in
Figure 4-31. There are just two prime implicants, and it’s quite obvious that both
of them must be included in the minimal sum in order to cover all of the 1-cells
on the map. We didn’t draw the logic diagram for this example because you
should know how to do that yourself by now.

The sum of all the prime implicants of a logic function is called the com-
plete sum. Although the complete sum is always a legitimate way to realize a
logic function, it’s not always minimal. For example, consider the logic function
shown in Figure 4-32. It has five prime implicants, but the minimal sum includes
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Figure 4-31 F = ΣW,X,Y,Z(5,7,12,13,14,15): (a) Karnaugh map;
(b) prime implicants.
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Figure 4-32 F = ΣW,X,Y,Z(1,3,4,5,9,11,12,13,14,15): (a) Karnaugh map;
(b) prime implicants and distinguished 1-cells.

Figure 30: F =
∑

W ,X ,Y ,Z (1, 3, 4, 5, 9, 11, 12, 13, 14, 15): (a) Karnaugh map;
(b) prime implicants and distinguished 1-cells.

Distinguished 1-cell of a logic function
An input combination that is covered by only one prime implicant

Essential prime implicant of a logic function
A prime implicant that covers one or more distinguished 1-cells
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First step in prime-implicant selection process

Identify distinguished 1-cells and corresponding essential prime
implicants, and include them in minimal sum
In Fig. 30, three distinguished 1-cells are shaded, and corresponding
essential prime implicants are circled with heavier lines

All of 1-cells are covered by essential prime implicants, so we need go no
further

In Fig. 31, all of prime implicants are essential, and so all are included in
minimal sum
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only three of them. So, how can we systematically determine which prime impli-
cants to include and which to leave out? Two more definitions are needed:

• A distinguished 1-cell of a logic function is an input combination that is
covered by only one prime implicant.

• An essential prime implicant of a logic function is a prime implicant that
covers one or more distinguished 1-cells.

Since an essential prime implicant is the only prime implicant that covers some
1-cell, it must be included in every minimal sum for the logic function. So, the
first step in the prime implicant selection process is simple—we identify distin-
guished 1-cells and the corresponding prime implicants, and include the
essential prime implicants in the minimal sum. Then we need only determine
how to cover the 1-cells, if any, that are not covered by the essential prime impli-
cants. In the example of Figure 4-32, the three distinguished 1-cells are shaded,
and the corresponding essential prime implicants are circled with heavier lines.
All of the 1-cells in this example are covered by essential prime implicants, so
we need go no further. Likewise, Figure 4-33 shows an example where all of the
prime implicants are essential, and so all are included in the minimal sum.

A logic function in which not all the 1-cells are covered by essential prime
implicants is shown in Figure 4-34. By removing the essential prime implicants
and the 1-cells they cover, we obtain a reduced map with only a single 1-cell and
two prime implicants that cover it. The choice in this case is simple—we use the
W′ ⋅ Z product term because it has fewer inputs and therefore lower cost.

For more complex cases, we need yet another definition:

• Given two prime implicants P and Q in a reduced map, P is said to eclipse Q
(written P … Q) if P covers at least all the 1-cells covered by Q.

If P costs no more than Q and eclipses Q, then removing Q from consideration
cannot prevent us from finding a minimal sum; that is, P is at least as good as Q.
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F = ΣW,X,Y,Z(2,3,4,5,6,7,11,13,15) F  =  W′ • Y  +  W′ • X  +  X • Z  +  Y • Z

W′ • X
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Figure 4-33 F =ΣW,X,Y,Z(2,3,4,5,6,7,11,13,15): (a) Karnaugh map; (b) prime
implicants and distinguished 1-cells.

eclipse

Figure 31: F =
∑

W ,X ,Y ,Z (2, 3, 4, 5, 6, 7, 11, 13, 15): (a) Karnaugh map; (b)
prime implicants and distinguished 1-cells.
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An example of eclipsing is shown in Figure 4-35. After removing essential
prime implicants, we are left with two 1-cells, each of which is covered by two
prime implicants. However, X ⋅ Y ⋅ Z eclipses the other two prime implicants,
which therefore may be removed from consideration. The two 1-cells are then
covered only by X ⋅ Y ⋅ Z, which is a secondary essential prime implicant that
must be included in the minimal sum.

Figure 4-36 shows a more difficult case—a logic function with no essential
prime implicants. By trial and error we can find two different minimal sums for
this function.

We can also approach the problem systematically using the branching
method. Starting with any 1-cell, we arbitrarily select one of the prime impli-
cants that covers it, and include it as if it were essential. This simplifies the
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F  =  W′ • Y′ +  W′ • X′ +  W • X • Y  +  W′ • Z F = ΣW,X,Y,Z(0,1,2,3,4,5,7,14,15)
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Figure 4-34 F = ΣW,X,Y,Z(0,1,2,3,4,5,7,14,15): (a) Karnaugh map; (b) prime
implicants and distinguished 1-cells; (c) reduced map after
removal of essential prime implicants and covered 1-cells.
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F  =  W • Y′ • Z  +  W′ • Y • Z′ + X • Y • ZF = ΣW,X,Y,Z(2,6,7,9,13,15)
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Figure 4-35 F = ΣW,X,Y,Z(2,6,7,9,13,15): (a) Karnaugh map; (b) prime 
implicants and distinguished 1-cells; (c) reduced map after 
removal of essential prime implicants and covered 1-cells.

secondary essential 
prime implicant

branching method

Figure 32: F =
∑

W ,X ,Y ,Z (0, 1, 2, 3, 4, 5, 7, 14, 15): (a) Karnaugh map; (b)
prime implicants and distinguished 1-cells; (c) reduced map after removal of
essential prime implicants and covered 1-cells.

In Fig. 32, by removing essential prime implicants and the 1-cells they
cover, we obtain a reduced map with only a single 1-cell and two prime
implicants that cover it

We use W ′ · Z product term because it has fewer inputs and therefore
lower cost
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Eclipse
Given two prime implicants P and Q in a reduced map, P is said to
eclipse Q (P ⊇ Q) if P covers at least all 1-cells covered by Q
If P eclipses Q, then Q can be ignored when finding a minimal sum
In Fig. 33(c), X · Y · Z eclipses the other two prime implicants

X · Y · Z is a secondary essential prime implicant that must be
included in minimal sum
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An example of eclipsing is shown in Figure 4-35. After removing essential
prime implicants, we are left with two 1-cells, each of which is covered by two
prime implicants. However, X ⋅ Y ⋅ Z eclipses the other two prime implicants,
which therefore may be removed from consideration. The two 1-cells are then
covered only by X ⋅ Y ⋅ Z, which is a secondary essential prime implicant that
must be included in the minimal sum.

Figure 4-36 shows a more difficult case—a logic function with no essential
prime implicants. By trial and error we can find two different minimal sums for
this function.

We can also approach the problem systematically using the branching
method. Starting with any 1-cell, we arbitrarily select one of the prime impli-
cants that covers it, and include it as if it were essential. This simplifies the
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Figure 4-34 F = ΣW,X,Y,Z(0,1,2,3,4,5,7,14,15): (a) Karnaugh map; (b) prime
implicants and distinguished 1-cells; (c) reduced map after
removal of essential prime implicants and covered 1-cells.
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Figure 4-35 F = ΣW,X,Y,Z(2,6,7,9,13,15): (a) Karnaugh map; (b) prime 
implicants and distinguished 1-cells; (c) reduced map after 
removal of essential prime implicants and covered 1-cells.

secondary essential 
prime implicant

branching method

Figure 33: F =
∑

W ,X ,Y ,Z (2, 6, 7, 9, 13, 15): (a) Karnaugh map; (b) prime
implicants and distinguished 1-cells; (c) reduced map after removal of essential
prime implicants and covered 1-cells.
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remaining problem, which we can complete in the usual way to find a tentative
minimal sum. We repeat this process starting with all other prime implicants that
cover the starting 1-cell, generating a different tentative minimal sum from each
starting point. We may get stuck along the way and have to apply the branching
method recursively. Finally, we examine all of the tentative minimal sums gener-
ated in this way and select one that is truly minimal.

4.3.6 Simplifying Products of Sums
Using the principle of duality, we can minimize product-of-sums expressions by
looking at the 0s on a Karnaugh map. Each 0 on the map corresponds to a max-
term in the canonical product of the logic function. The entire process in the
preceding subsection can be reformulated in a dual way, including the rules for
writing sum terms corresponding to circled sets of 0s, in order to find a minimal
product. 

Fortunately, once we know how to find minimal sums, there’s an easier
way to find the minimal product for a given logic function F. The first step is to
complement F to obtain F′. Assuming that F is expressed as a minterm list or a
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Figure 4-36 F = ΣW,X,Y,Z(1,5,7,9,11,15): (a) Karnaugh map; (b) prime
implicants; (c) a minimal sum; (d) another minimal sum.

minimal product

Figure 34: F =
∑

W ,X ,Y ,Z (1, 5, 7, 9, 11, 15): (a) Karnaugh map; (b) prime
implicants (no essential); (c) a minimal sum; (d) another minimal sum.
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Using principle of duality, we can minimize product-of-sums
expressions by looking at 0s on a Karnaugh map

Each 0 on map corresponds to a maxterm in canonical product of logic
function
To find minimal product, we write sum terms corresponding to circled
sets of 0s

In Fig. 35
F = (X + Y ′ + Z ) · (X ′ + Z ′) · (Y + Z ′)Section 4.3 Combinational Circuit Synthesis 221
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4-variable maps, corresponding cells on the left/right or top/bottom borders are
less obvious neighbors; for example, cells 12 and 14 in the 4-variable map are
adjacent because they differ only in the value of Y.

Each input combination with a “1” in the truth table corresponds to a
minterm in the logic function’s canonical sum. Since pairs of adjacent “1” cells
in the Karnaugh map have minterms that differ in only one variable, the minterm
pairs can be combined into a single product term using the generalization of
theorem T10, term×Y + term× Y′ = term. Thus, we can use a Karnaugh map to
simplify the canonical sum of a logic function.

For example, consider cells 5 and 7 in Figure 4-27(b), and their contribu-
tion to the canonical sum for this function:

Remembering wraparound, we see that cells 1 and 5 in Figure 4-27(b) are also
adjacent and can be combined: 

In general, we can simplify a logic function by combining pairs of adjacent
1-cells (minterms) whenever possible, and writing a sum of product terms that
cover all of the 1-cells. Figure 4-27(c) shows the result for our example logic
function. We circle a pair of 1s to indicate that the corresponding minterms are
combined into a single product term. The corresponding AND-OR circuit is
shown in Figure 4-28.

In many logic functions, the cell-combining procedure can be extended to
combine more than two 1-cells into a single product term. For example, consider

F =  … + X ×Y′ ⋅ Z + X ×Y ×Z
=  … + (X ×Z) ×Y′+(X ×Z) ×Y
=  … + X ×Z

F = X′ ⋅ Y′ ⋅ Z + X ×Y′ ⋅ Z + …

= X′ ⋅ (Y′ ⋅ Z) + X ×(Y′ ⋅ Z) + …

= Y′ ⋅ Z + …
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Figure 4-27 F = ΣX,Y,Z(1,2,5,7): (a) truth table; (b) Karnaugh map;
(c) combining adjacent 1-cells.

Figure 35: F =
∏

X ,Y ,Z (1, 2, 5, 7): (a) truth table; (b) Karnaugh map; (c)
combining adjacent 0-cells.
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Indirect method to find minimal product
For circled sets of 0s in Karnaugh map, write product terms
Equate F ′ to minimal sum
Use DeMorgan’s theorem to find F
E.g., for Fig. 35(c), product terms of circled 0s are:
X ′ · Y · Z ′, X · Z , Y ′ · Z

F ′ = X ′ · Y · Z ′ + X · Z + Y ′ · Z
[F ′]′ = [X ′ · Y · Z ′ + X · Z + Y ′ · Z ]′

F = (X + Y ′ + Z ) · (X ′ + Z ′) · (Y + Z ′)

PLD minimization
PLDs have an AND-OR array corresponding to sum-of-products form
Most PLDs, also have an inverter/buffer at output of AND-OR array,
which can be programmed to invert or not

Thus, PLD can utilize the equivalent of minimal sum by using AND-OR
array to realize complement of desired function and then programming
inverter/buffer to invert
Most logic-minimization programs for PLDs find both minimal sum and
minimal product and select the one that requires fewer terms
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Timing Hazards

Predicting steady-state behavior of combinational logic circuits
Predicting a circuit’s output as a function of its inputs under assumption
that inputs have been stable for a long time, relative to delays in
circuit’s electronics

Circuit delay is ignored

But actual delay from an input change to corresponding output change
in a real circuit is nonzero

Transient behavior of a combinational logic circuit

Considers circuit delays
May differ from what is predicted by a steady-state analysis
A circuit’s output may produce a short pulse, called a glitch, at a time
when steady-state analysis predicts that output should not change
A hazard exists when a circuit has possibility of producing such a glitch
A logic designer must eliminate hazards
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Static-1 hazard
A pair of input combinations that

1 Differ in only one input variable
2 Both give a 1 output

such that it is possible for a momentary 0 output to occur during a
transition in the differing input variable Section *4.5 Timing Hazards 243
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Definition: A static-1 hazard is a pair of input combinations that: (a) differ in
only one input variable and (b) both give a 1 output; such that it is
possible for a momentary 0 output to occur during a transition in
the differing input variable.

For example, consider the logic circuit in Figure 4-44(a). Suppose that X
and Y are both 1, and Z is changing from 1 to 0. Then (b) shows the timing dia-
gram assuming that the propagation delay through each gate or inverter is one
unit time. Even though “static” analysis predicts that the output is 1 for both
input combinations X,Y,Z = 111 and X,Y,Z = 110, the timing diagram shows that
F goes to 0 for one unit time during a 1-0 transition on Z, because of the delay in
the inverter that generates Z′.

A static-0 hazard is the possibility of a 1 glitch when we expect the circuit
to have a steady 0 output:

Definition: A static-0 hazard is a pair of input combinations that: (a) differ in
only one input variable and (b) both give a 0 output; such that it is
possible for a momentary 1 output to occur during a transition in
the differing input variable.

Since a static-0 hazard is just the dual of a static-1 hazard, an OR-AND circuit
that is the dual of Figure 4-44(a) would have a static-0 hazard.

An OR-AND circuit with four static-0 hazards is shown in Figure 4-45(a).
One of the hazards occurs when W,X,Y = 000 and Z is changed, as shown in (b).
You should be able to find the other three hazards and eliminate all of them after
studying the next subsection.

*4.5.2 Finding Static Hazards Using Maps
A Karnaugh map can be used to detect static hazards in a two-level sum-of-
products or product-of-sums circuit. The existence or nonexistence of static
hazards depends on the circuit design for a logic function.

A properly designed two-level sum-of-products (AND-OR) circuit has no
static-0 hazards. A static-0 hazard would exist in such a circuit only if both a
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Figure 4-44 Circuit with a static-1 hazard: (a) logic diagram; (b) timing diagram.

static-0 hazard

Figure 36: Circuit with a static-1 hazard: (a) logic diagram; (b) timing diagram
(X = 1,Y = 1,Z : 1→ 0, propagation delay through each gate or inverter is
one unit time).
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Static-0 hazard
A pair of input combinations that

1 Differ in only one input variable
2 Both give a 0 output

such that it is possible for a momentary 1 output to occur during a
transition in the differing input variable
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variable and its complement were connected to the same AND gate, which would
be silly. However, the circuit may have static-1 hazards. Their existence can be
predicted from a Karnaugh map where the product terms corresponding to the
AND gates in the circuit are circled.

Figure 4-46(a) shows the Karnaugh map for the circuit of Figure 4-44. It is
clear from the map that there is no single product term that covers both input
combinations X,Y,Z = 111 and X,Y,Z = 110. Thus, intuitively, it is possible for the
output to “glitch” momentarily to 0 if the AND gate output that covers one of the
combinations goes to 0 before the AND gate output covering the other input
combination goes to 1. The way to eliminate the hazard is also quite apparent:
Simply include an extra product term (AND gate) to cover the hazardous input
pair, as shown in Figure 4-46(b). The extra product term, it turns out, is the
consensus of the two original terms; in general, we must add consensus terms to
eliminate hazards. The corresponding hazard-free circuit is shown in
Figure 4-47.

Another example is shown in Figure 4-48. In this example, three product
terms must be added to eliminate the static-1 hazards.

A properly designed two-level product-of-sums (OR-AND) circuit has no
static-1 hazards. It may have static-0 hazards, however. These hazards can be
detected and eliminated by studying the adjacent 0s in the Karnaugh map, in a
manner dual to the foregoing.
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Figure 37: Circuit with static-0 hazards: (a) logic diagram; (b) timing diagram.
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A Karnaugh map can be used to detect static hazards in a two-level
sum-of-products or product-of-sums circuit
A properly designed two-level sum-of-products (AND-OR) circuit has
no static-0 hazards

A static-0 hazard would exist only if both a variable and its complement
were connected to the same AND gate, which would be silly
But the circuit may have static-1 hazards
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variable and its complement were connected to the same AND gate, which would
be silly. However, the circuit may have static-1 hazards. Their existence can be
predicted from a Karnaugh map where the product terms corresponding to the
AND gates in the circuit are circled.

Figure 4-46(a) shows the Karnaugh map for the circuit of Figure 4-44. It is
clear from the map that there is no single product term that covers both input
combinations X,Y,Z = 111 and X,Y,Z = 110. Thus, intuitively, it is possible for the
output to “glitch” momentarily to 0 if the AND gate output that covers one of the
combinations goes to 0 before the AND gate output covering the other input
combination goes to 1. The way to eliminate the hazard is also quite apparent:
Simply include an extra product term (AND gate) to cover the hazardous input
pair, as shown in Figure 4-46(b). The extra product term, it turns out, is the
consensus of the two original terms; in general, we must add consensus terms to
eliminate hazards. The corresponding hazard-free circuit is shown in
Figure 4-47.

Another example is shown in Figure 4-48. In this example, three product
terms must be added to eliminate the static-1 hazards.

A properly designed two-level product-of-sums (OR-AND) circuit has no
static-1 hazards. It may have static-0 hazards, however. These hazards can be
detected and eliminated by studying the adjacent 0s in the Karnaugh map, in a
manner dual to the foregoing.
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Figure 38: Karnaugh map for the circuit of Fig. 36: (a) as originally designed;
(b) with static-1 hazard eliminated.
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Timing Hazards: Static Hazards

In Fig. 38
There is no single product term that covers both input combinations
X ,Y ,Z = 111 and X ,Y ,Z = 110

Possible for output to glitch momentarily to 0 if AND gate output that
covers one of combinations goes to 0 before AND gate output covering
the other input combination goes to 1

To eliminate hazard, include an extra product term (AND gate) to cover
hazardous input pair

The extra product term to be added is consensus of the two original
terms
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*4.5.3 Dynamic Hazards
A dynamic hazard is the possibility of an output changing more than once as the
result of a single input transition. Multiple output transitions can occur if there
are multiple paths with different delays from the changing input to the changing
output.

For example, consider the circuit in Figure 4-49; it has three different paths
from input X to the output F. One of the paths goes through a slow OR gate, and
another goes through an OR gate that is even slower. If the input to the circuit is
W,X,Y,Z = 0,0,0,1, then the output will be 1, as shown. Now suppose we change
the X input to 1. Assuming that all of the gates except the two marked “slow” and
“slower” are very fast, the transitions shown in black occur next, and the output
goes to 0. Eventually, the output of the “slow” OR gate changes, creating the
transitions shown in nonitalic color, and the output goes to 1. Finally, the output
of the “slower” OR gate changes, creating the transitions shown in italic color,
and the output goes to its final state of 0.

Dynamic hazards do not occur in a properly designed two-level AND-OR
or OR-AND circuit, that is, one in which no variable and its complement are con-
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Figure 4-47
Circuit with static-1 
hazard eliminated.
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              +  W′ • X • Y′ + Y • Z′ +  W • X • Z′

F  =  X • Y′ • Z′ +  W′ • Z  +  W • Y

Figure 4-48 Karnaugh map for another sum-of-products circuit: (a) as originally
designed; (b) with extra product terms to cover static-1 hazards.

dynamic hazard

Figure 39: Circuit of Fig. 36 with static-1 hazard eliminated.
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*4.5.3 Dynamic Hazards
A dynamic hazard is the possibility of an output changing more than once as the
result of a single input transition. Multiple output transitions can occur if there
are multiple paths with different delays from the changing input to the changing
output.

For example, consider the circuit in Figure 4-49; it has three different paths
from input X to the output F. One of the paths goes through a slow OR gate, and
another goes through an OR gate that is even slower. If the input to the circuit is
W,X,Y,Z = 0,0,0,1, then the output will be 1, as shown. Now suppose we change
the X input to 1. Assuming that all of the gates except the two marked “slow” and
“slower” are very fast, the transitions shown in black occur next, and the output
goes to 0. Eventually, the output of the “slow” OR gate changes, creating the
transitions shown in nonitalic color, and the output goes to 1. Finally, the output
of the “slower” OR gate changes, creating the transitions shown in italic color,
and the output goes to its final state of 0.

Dynamic hazards do not occur in a properly designed two-level AND-OR
or OR-AND circuit, that is, one in which no variable and its complement are con-

X

Z

Y

F

XZP

YZ

XY

ZP

Figure 4-47
Circuit with static-1 
hazard eliminated.
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Figure 4-48 Karnaugh map for another sum-of-products circuit: (a) as originally
designed; (b) with extra product terms to cover static-1 hazards.

dynamic hazard

Figure 40: Karnaugh map for another sum-of-products circuit: (a) as originally
designed; (b) with extra product terms to cover static-1 hazards.
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A properly designed two-level product-of-sums (OR-AND) circuit has
no static-1 hazards

But, it may have static-0 hazards

These hazards can be detected and eliminated by studying adjacent 0s
in Karnaugh map
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variable and its complement were connected to the same AND gate, which would
be silly. However, the circuit may have static-1 hazards. Their existence can be
predicted from a Karnaugh map where the product terms corresponding to the
AND gates in the circuit are circled.

Figure 4-46(a) shows the Karnaugh map for the circuit of Figure 4-44. It is
clear from the map that there is no single product term that covers both input
combinations X,Y,Z = 111 and X,Y,Z = 110. Thus, intuitively, it is possible for the
output to “glitch” momentarily to 0 if the AND gate output that covers one of the
combinations goes to 0 before the AND gate output covering the other input
combination goes to 1. The way to eliminate the hazard is also quite apparent:
Simply include an extra product term (AND gate) to cover the hazardous input
pair, as shown in Figure 4-46(b). The extra product term, it turns out, is the
consensus of the two original terms; in general, we must add consensus terms to
eliminate hazards. The corresponding hazard-free circuit is shown in
Figure 4-47.

Another example is shown in Figure 4-48. In this example, three product
terms must be added to eliminate the static-1 hazards.

A properly designed two-level product-of-sums (OR-AND) circuit has no
static-1 hazards. It may have static-0 hazards, however. These hazards can be
detected and eliminated by studying the adjacent 0s in the Karnaugh map, in a
manner dual to the foregoing.
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Figure 4-45 Circuit with static-0 hazards: (a) logic diagram; (b) timing diagra
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Karnaugh map for the 
circuit of Figure 4-44: 
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consensus

Figure 41: Karnaugh map for a product-of-sums circuit: (a) as originally
designed; (b) with extra sum term to cover the static-0 hazard.
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Timing Hazards: Dynamic Hazards

Dynamic hazard
Possibility of an output changing more than once as the result of a
single input transition
Multiple output transitions can occur if there are multiple paths with
different delays from the changing input to the changing output
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nected to the same first-level gate. In multilevel circuits, dynamic hazards can be
discovered using a method described in the References.

*4.5.4 Designing Hazard-Free Circuits
There are only a few situations, such as the design of feedback sequential cir-
cuits, that require hazard-free combinational circuits. Techniques for finding
hazards in arbitrary circuits, described in the References, are rather difficult to
use. So, when you require a hazard-free design, it’s best to use a circuit structure
that is easy to analyze.

In particular, we have indicated that a properly designed two-level AND-
OR circuit has no static-0 or dynamic hazards. Static-1 hazards may exist in such
a circuit, but they can be found and eliminated using the map method described
earlier. If cost is not a problem, then a brute-force method of obtaining a hazard-
free realization is to use the complete sum—the sum of all of the prime impli-
cants of the logic function (see Exercise 4.79). In a dual manner, a hazard-free
two-level OR-AND circuit can be designed for any logic function. Finally, note
that everything we’ve said about AND-OR circuits naturally applies to the corre-
sponding NAND-NAND designs, and for OR-AND applies to NOR-NOR.

1

1

W

X

Y

Z

0 → 1 

1 → 0

1 → 0 
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Figure 4-49 Circuit with a dynamic hazard.

MOST HAZARDS
ARE NOT

HAZARDOUS!

Any combinational circuit can be analyzed for the presence of hazards. However, a
well-designed, synchronous digital system is structured so that hazard analysis is not
needed for most of its circuits. In a synchronous system, all of the inputs to a com-
binational circuit are changed at a particular time, and the outputs are not “looked at”
until they have had time to settle to a steady-state value. Hazard analysis and elimi-
nation are typically needed only in the design of asynchronous sequential circuits,
such as the feedback sequential circuits discussed in \secref{fdbkseq}. You’ll rarely
have reason to design such a circuit, but if you do, an understanding of hazards will
be absolutely essential for a reliable result.

Figure 42: Circuit with a dynamic hazard.

Moslem Amiri, Václav Přenosil Design of Digital Systems II October, 2012 67 / 69



Timing Hazards: Dynamic Hazards

In Fig. 42

Three different paths with different delays from input X to output F
If all of gates except the two marked ”slow” and ”slower” are very fast,
the transitions shown in black occur first, and output goes to 0
Then, output of ”slow” OR gate changes, creating transitions shown in
nonitalic color, and output goes to 1
Finally, output of ”slower” OR gate changes, creating transitions shown
in italic color, and output goes to 0

Dynamic hazards do not occur in a properly designed two-level
AND-OR or OR-AND circuit

In such a circuit, no variable and its complement are connected to the
same first-level gate
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