Design of Digital Systems II Combinational Logic Design Principles

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University
Brno, Czech Republic
amiri@mail.muni.cz
prenosil@fi.muni.cz

October, 2012

Introduction

- Combinational logic circuit

- A circuit whose outputs depend only on its current inputs
- May contain an arbitrary number of logic gates and inverters but no feedback loops
- A feedback loop is a signal path that allows output of a gate to propagate back to input of that same gate
- Such a loop creates sequential circuit behavior
- Combinational circuit analysis
- We start with a logic diagram and proceed to a formal description of function performed by that circuit, such as a truth table or a logic expression
- Combinational circuit synthesis
- Reverse of analysis
- Starting with a formal description and proceeding to a logic diagram
- Boolean algebra
- A two-valued algebraic system
- Is used to formulate propositions that are true or false, combine them to make new propositions, and determine truth or falsehood of the new propositions
- Switching algebra
- Adaptation of Boolean algebra to analyze and describe behavior of circuits
- A physical condition—voltage HIGH or LOW, capacitor charged or discharged, and so on-is represented by a variable X that can have one of two possible values, 0 or 1

- Axioms or postulates

- A minimal set of basic definitions that we assume to be true, from which all other information about system can be derived
- The first two axioms of switching algebra embody digital abstraction
(A1) $\quad X=0 \quad$ if $X \neq 1$
$\left(A 1^{\prime}\right) \quad X=1 \quad$ if $X \neq 0$
- The only difference between $A 1$ and $A 1^{\prime}$ is interchange of 0 and 1
- This is a characteristic of all axioms of switching algebra
- This is basis of duality principle
- If X denotes an inverter's input signal, X^{\prime} denotes its output value $(A 2)$ If $X=0$, then $X^{\prime}=1 \quad\left(A 2^{\prime}\right) \quad$ If $X=1$, then $X^{\prime}=0$
- AND and OR operations (AND has precedence)
(A3) $\quad 0 \cdot 0=0$
$\left(A 3^{\prime}\right) \quad 1+1=1$
(A4) $1 \cdot 1=1$
$\left(A 4^{\prime}\right) \quad 0+0=0$
(A5) $\quad 0 \cdot 1=1 \cdot 0=0$
(A5') $1+0=0+1=1$
- The five pairs of axioms, $A 1-A 5$ and $A 1^{\prime}-A 5^{\prime}$, completely define switching algebra
- All other facts about system can be proved using these axioms as a staring point

Switching Algebra: Single-Variable Theorems

- Switching-algebra theorems
- True statements that allow us to manipulate algebraic expressions to allow simpler analysis or more efficient synthesis of corresponding circuits

Table 1: Switching-algebra theorems with one variable.

(T1)	$\mathrm{X}+0=\mathrm{X}$	(T1')	$\mathrm{X} \cdot 1=\mathrm{X}$	(Identities)
(T2)	$\mathrm{X}+1=1$	(T2')	$\mathrm{X} \cdot 0=0$	(Null elements)
(T3)	$\mathrm{X}+\mathrm{X}=\mathrm{X}$	(T3')	$\mathrm{X} \cdot \mathrm{X}=\mathrm{X}$	(Idempotency)
(T4)	(X $^{\prime}=\mathrm{X}$			(Involution)
(T5)	$\mathrm{X}+\mathrm{X}^{\prime}=1$	(T5')	$\mathrm{X} \cdot \mathrm{X}^{\prime}=0$	(Complements)

- Perfect induction
- A technique to prove theorems in switching algebra
- Since a variable can take on only 0 and 1 , prove a theorem involving a single variable X by proving that it is true for both $X=0$ and $X=1$
- E.g., to prove T1

$$
\begin{aligned}
& {[X=0] \longrightarrow 0+0=0 \longrightarrow \text { true, according to axiom } A 4^{\prime}} \\
& {[X=1] \longrightarrow 1+0=1 \longrightarrow \text { true, according to axiom } A 5^{\prime}}
\end{aligned}
$$

Switching Algebra: Two- and Three-Variable Theorems

Table 2: Switching-algebra theorems with two or three variables.

(T6)	$\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$	(T6')	$\mathrm{X} \cdot \mathrm{Y}=\mathrm{Y} \cdot \mathrm{X}$	(Commutativity)
(T7)	$(\mathrm{X}+\mathrm{Y})+\mathrm{Z}=\mathrm{X}+(\mathrm{Y}+\mathrm{Z})$	(T7')	$(\mathrm{X} \cdot \mathrm{Y}) \cdot \mathrm{Z}=\mathrm{X} \cdot(\mathrm{Y} \cdot \mathrm{Z})$	(Associativity)
(T8)	$\mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \mathrm{Z}=\mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})$	(T8')	$(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z})=\mathrm{X}+\mathrm{Y} \cdot \mathrm{Z}$	(Distributivity)
(T9)	$\mathrm{X}+\mathrm{X} \cdot \mathrm{Y}=\mathrm{X}$	(T9')	$\mathrm{X} \cdot(\mathrm{X}+\mathrm{Y})=\mathrm{X}$	(Covering)
(T10)	$\mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \mathrm{Y}^{\prime}=\mathrm{X}$	(T10')	$(\mathrm{X}+\mathrm{Y}) \cdot\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)=\mathrm{X}$	(Combining)
(T11)	$\mathrm{X} \cdot \mathrm{Y}+\mathrm{X}^{\prime} \cdot \mathrm{Z}+\mathrm{Y} \cdot \mathrm{Z=X} \mathbf{X} \cdot \mathrm{Y}+\mathrm{X}^{\prime} \cdot \mathrm{Z}$			(Consensus)
(T11')	$(\mathrm{X}+\mathrm{Y}) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Z}\right) \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)$			

- Theorems in Tab. 2 are proved by perfect induction, by evaluating theorem statements for all possible combinations of X and Y (and Z)
- Proof of T9: $X+X \cdot Y=X \cdot 1+X \cdot Y=X \cdot(1+Y)=X \cdot 1=X$
- In T11, if $Y \cdot Z=1$, either $X \cdot Y$ or $X^{\prime} \cdot Z$ must also be 1
- Thus, $Y \cdot Z$ term is redundant
- Consensus theorem is used to eliminate certain timing hazards
- It is possible to replace each variable in Tab. 2 with a logic expression

Table 3: Switching-algebra theorems with n variables.

(T12)	$\mathrm{X}+\mathrm{X}+\cdots+\mathrm{X}=\mathrm{X}$	(Generalized idempotency)
(T12')	$\mathrm{X} \cdot \mathrm{X} \cdot \cdots \cdot \mathrm{X}=\mathrm{X}$	
(T13)	$\left(\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdot \cdots \cdot \mathrm{X}_{n}\right)^{\prime}=\mathrm{X}_{1}^{\prime}+\mathrm{X}_{2}^{\prime}+\cdots+\mathrm{X}_{n}^{\prime}$	(DeMorgan's theorems)
(T13')	$\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\cdots+\mathrm{X}_{n}\right)^{\prime}=\mathrm{X}_{1}^{\prime} \cdot \mathrm{X}_{2}^{\prime} \cdot \cdots \cdot \mathrm{X}_{n}^{\prime}$	
(T14)	$\left[\mathrm{F}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n},+, \cdot\right)\right]^{\prime}=\mathrm{F}\left(\mathrm{X}_{1}^{\prime}, \mathrm{X}_{2}^{\prime}, \ldots, \mathrm{X}_{n}^{\prime}, \cdot,+\right)$	(Generalized DeMorgan's theorem)
(T15)	$\mathrm{F}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right)=\mathrm{X}_{1} \cdot \mathrm{~F}\left(1 \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right)+\mathrm{X}_{1}^{\prime} \cdot \mathrm{F}\left(0, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right)$	(Shannon's expansion theorems)
(T15')	$\mathrm{F}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right)=\left[\mathrm{X}_{1}+\mathrm{F}\left(0, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right)\right] \cdot\left[\mathrm{X}_{1}^{\prime}+\mathrm{F}\left(1, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}\right)\right]$	

- Theorems in Tab. 3 are proved using finite induction
(1) Basis step: prove theorem is true for $n=2$
(2) Induction step: if theorem is true for $n=i$, it is also true for $n=i+1$
- Example: T12
(1) For $n=2, \mathrm{~T} 12=\mathrm{T} 3$, therefore true
(2) If it is true for a logical sum of $i X$'s, it is also true for a sum of $i+1 X$'s

$$
\underbrace{X+X+X+\cdots+X}_{i+1 X^{\prime} s}=X+(\underbrace{X+X+\cdots+X}_{i X^{\prime} s})=X+(\underbrace{X 12}_{\text {if }} \text { is true for } n=i
$$

(a)

(b)

(c)

(d)

Figure 1: Equivalent circuits according to DeMorgan's theorem T13: (a) AND-NOT; (b) NOT-OR; (c) logic symbol for a NAND gate; (d) equivalent symbol for a NAND gate.
(a)

(c)

(b)

(d)

Figure 2: Equivalent circuits according to DeMorgan's theorem T13': (a) OR-NOT; (b) NOT-AND; (c) logic symbol for a NOR gate; (d) equivalent symbol for a NOR gate.

Switching Algebra: Duality

- Principle of duality
- Any theorem or identity in switching algebra remains true if 0 and 1 are swapped and • and + are swapped throughout
- This is true because duals of all axioms are true, so duals of all switching-algebra theorems can be proved using duals of axioms
- Dual of a logic expression

$$
F^{D}\left(X_{1}, X_{2}, \ldots, X_{n},+, \cdot^{\prime}\right)=F\left(X_{1}, X_{2}, \ldots, X_{n}, \cdot,+,^{\prime}\right)
$$

- Generalized DeMorgan's theorem

$$
\begin{aligned}
{\left[F\left(X_{1}, X_{2}, \ldots, X_{n},+, \cdot\right)\right]^{\prime} } & =F\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}, \cdot,+\right) \\
& =F^{D}\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime},+, \cdot\right)
\end{aligned}
$$

(a)

(b)

(c)

X	Y	Z
LOW	LOW	LOW
LOW	HIGH	LOW
HIGH	LOW	LOW
HIGH	HIGH	HIGH

X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	Z
1	1	1
1	0	1
0	1	1
0	0	0

Figure 3: A "type-1" logic gate: (a) electrical function table; (b) logic function table and symbol with positive logic; (c) logic function table and symbol with negative logic.
(a)

X	Y	Z
LOW	LOW	LOW
LOW	HIGH	HIGH
HIGH	LOW	HIGH
HIGH	HIGH	HIGH

(b)

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

(c)

X	Y	Z
1	1	1
1	0	0
0	1	0
0	0	0

Figure 4: A "type-2" logic gate: (a) electrical function table; (b) logic function table and symbol with positive logic; (c) logic function table and symbol with negative logic.

Figure 5: Circuit for a logic function using inverters and type-1 and type-2 gates under a positive-logic convention.

Figure 6: Negative-logic interpretation of the previous circuit.

Switching Algebra: Duality

- Figs. 5 and 6
- Fig. 5 shows a circuit corresponding to expression $F\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ following positive-logic convention
- Circuit of Fig. 6 is that of Fig. 5 without change, but logic convention is changed from positive to negative
- For every possible combination of input voltages (HIGH and LOW), the circuit still produces the same output voltage
- But from point of view of switching algebra, output value-0 or 1-is opposite of what it was under positive-logic convention
- Likewise, each input value is opposite of what it was
- Therefore, for each possible input combination to circuit in Fig. 5, output is opposite of that produced by opposite input combination applied to circuit in Fig. 6

$$
F\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left[F^{D}\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}\right)\right]^{\prime}
$$

By complementing both sides, we get generalized DeMorgan's theorem

$$
\left[F\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]^{\prime}=F^{D}\left(X_{1}^{\prime}, X_{2}^{\prime}, \ldots, X_{n}^{\prime}\right)
$$

- The most basic representation of a logic function is truth table
- It lists output of circuit for every possible input combination

Table 4: General truth table structure for a 3-variable logic function, $F(X, Y, Z)$.

Row	X	Y	Z	F
0	0	0	0	$\mathrm{~F}(0,0,0)$
1	0	0	1	$\mathrm{~F}(0,0,1)$
2	0	1	0	$\mathrm{~F}(0,1,0)$
3	0	1	1	$\mathrm{~F}(0,1,1)$
4	1	0	0	$\mathrm{~F}(1,0,0)$
5	1	0	1	$\mathrm{~F}(1,0,1)$
6	1	1	0	$\mathrm{~F}(1,1,0)$
7	1	1	1	$\mathrm{~F}(1,1,1)$

Table 5: Truth table for a particular 3-variable logic function, $F(X, Y, Z)$.

Row	X	Y	Z	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Standard Representations of Logic Functions

- Literal
- A variable or complement of a variable
- Examples: $X, Y, X^{\prime}, Y^{\prime}$
- Product term
- A single literal or a logical product of two or more literals
- Examples: $Z^{\prime}, W \cdot X \cdot Y, X \cdot Y^{\prime} \cdot Z, W^{\prime} \cdot Y^{\prime} \cdot Z$
- Sum-of-products expression
- A logical sum of product terms
- Example: $Z^{\prime}+W \cdot X \cdot Y+X \cdot Y^{\prime} \cdot Z+W^{\prime} \cdot Y^{\prime} \cdot Z$
- Sum term
- A single literal or a logical sum of two or more literals
- Examples: $Z^{\prime}, W+X+Y, X+Y^{\prime}+Z, W^{\prime}+Y^{\prime}+Z$
- Product-of-sums expression
- A logical product of sum terms
- Example: $Z^{\prime} \cdot(W+X+Y) \cdot\left(X+Y^{\prime}+Z\right) \cdot\left(W^{\prime}+Y^{\prime}+Z\right)$

Standard Representations of Logic Functions

- Normal term

- A product or sum term in which no variable appears more than once
- A nonnormal term can always be simplified to a constant or a normal term
- Examples of nonnormal terms:

$$
W \cdot X \cdot X \cdot Y^{\prime}, W+W+X^{\prime}+Y, X \cdot X^{\prime} \cdot Y
$$

- Examples of normal terms: $W \cdot X \cdot Y^{\prime}, W+X^{\prime}+Y$
- n-variable minterm
- A normal product term with n literals
- There are 2^{n} such product terms
- Examples of 4-variable minterms:

$$
W^{\prime} \cdot X^{\prime} \cdot Y^{\prime} \cdot Z^{\prime}, W \cdot X \cdot Y^{\prime} \cdot Z, W^{\prime} \cdot X^{\prime} \cdot Y \cdot Z^{\prime}
$$

- n-variable maxterm
- A normal sum term with n literals
- There are 2^{n} such sum terms
- Examples of 4 -variable maxterms:

$$
W^{\prime}+X^{\prime}+Y^{\prime}+Z^{\prime}, W+X^{\prime}+Y^{\prime}+Z, W^{\prime}+X^{\prime}+Y+Z^{\prime}
$$

- Correspondence between truth table and minterms and maxterms
- A minterm is defined as a product term that is 1 in exactly one row of truth table
- A maxterm is defined as a sum term that is 0 in exactly one row of truth table

Table 6: Minterms and maxterms for a 3-variable logic function, $F(X, Y, Z)$.

Row	X	Y	Z	F	Minterm	Maxterm
0	0	0	0	$\mathrm{~F}(0,0,0)$	$\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}^{\prime}$	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}$
1	0	0	1	$\mathrm{~F}(0,0,1)$	$\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}$	$\mathrm{X}+\mathrm{Y}+\mathrm{Z}^{\prime}$
2	0	1	0	$\mathrm{~F}(0,1,0)$	$\mathrm{X}^{\prime} \cdot \mathrm{Y} \cdot \mathrm{Z}^{\prime}$	$\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}$
3	0	1	1	$\mathrm{~F}(0,1,1)$	$\mathrm{X}^{\prime} \cdot \mathrm{Y} \cdot \mathrm{Z}$	$\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}$
4	1	0	0	$\mathrm{~F}(1,0,0)$	$\mathrm{X} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}^{\prime}$	$\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}$
5	1	0	1	$\mathrm{~F}(1,0,1)$	$\mathrm{X} \cdot \mathrm{Y}^{\prime} \cdot \mathrm{Z}$	$\mathrm{X}^{\prime}+\mathrm{Y}+\mathrm{Z}^{\prime}$
6	1	1	0	$\mathrm{~F}(1,1,0)$	$\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}^{\prime}$	$\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}$
7	1	1	1	$\mathrm{~F}(1,1,1)$	$\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}$	$\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}$

Standard Representations of Logic Functions

- Minterm i
- The minterm corresponding to row i of truth table
- A variable is complemented if corresponding bit in binary is 0
- Example: row $5 \longrightarrow$ binary: $101 \longrightarrow$ minterm 5: $X \cdot Y^{\prime} \cdot Z$
- Maxterm i
- The maxterm corresponding to row i of truth table
- A variable is complemented if corresponding bit in binary is 1
- Example: row $5 \longrightarrow$ binary: $101 \longrightarrow$ maxterm 5: $X^{\prime}+Y+Z^{\prime}$
- Canonical sum of a logic function
- A sum of minterms corresponding to truth-table rows (input combinations) for which the function produces a 1 output
- Canonical product of a logic function
- A product of maxterms corresponding to input combinations for which the function produces a 0 output
- In Tab. 5
- Canonical sum

$$
\begin{aligned}
F & =\sum_{X, Y, Z}(0,3,4,6,7) \\
& =X^{\prime} \cdot Y^{\prime} \cdot Z^{\prime}+X^{\prime} \cdot Y \cdot Z+X \cdot Y^{\prime} \cdot Z^{\prime}+X \cdot Y \cdot Z^{\prime}+X \cdot Y \cdot Z
\end{aligned}
$$

Notation $\sum_{X, Y, Z}(0,3,4,6,7)$ is a minterm list or on-set

- Canonical product

$$
F=\prod_{X, Y, Z}(1,2,5)=\left(X+Y+Z^{\prime}\right) \cdot\left(X+Y^{\prime}+Z\right) \cdot\left(X^{\prime}+Y+Z^{\prime}\right)
$$

Notation $\prod_{X, Y, Z}(1,2,5)$ is a maxterm list or off-set

Row	X	Y	Z	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

- Conversion between a minterm list and a maxterm list
- For a function of n variables, possible minterm and maxterm numbers are in the set $\left\{0,1, \ldots, 2^{n}-1\right\}$
- To switch between list types, take the set complement
- Example

$$
\begin{aligned}
\sum_{A, B, C}(0,1,2,3) & =\prod_{A, B, C}(4,5,6,7) \\
\sum_{X, Y}(1) & =\prod_{X, Y}(0,2,3) \\
\sum_{W, X, Y, Z}(0,1,2,3,5,7,11,13) & =\prod_{W, X, Y, Z}(4,6,8,9,10,12,14,15)
\end{aligned}
$$

- Each of these representations specifies exactly the same information
(1) A truth table
(2) An algebraic sum of minterms, the canonical sum
(3) A minterm list using \sum notation
(4) An algebraic product of maxterms, the canonical product
(5) A maxterm list using Π notation

Combinational-Circuit Analysis

- We analyze a combinational logic circuit by obtaining a formal description of its logic function
- Operations possible after obtaining a formal description
- Determining behavior of logic circuit for various input combinations
- Manipulating an algebraic description to suggest different circuit structures
- Transforming an algebraic description into a standard form corresponding to an available circuit structure
- E.g., a sum-of-products expression corresponds directly to circuit structure used in PLAs, and a truth table corresponds to lookup memory used in most FPGAs
- Using an algebraic description of circuit's functional behavior in analysis of a larger system that includes the circuit
- The most basic functional description is truth table
- Obtain truth table of an n-input circuit by working the way through all 2^{n} input combinations
- For each input combination, determine all of gate outputs produced by that input, propagating information from circuit inputs to outputs
- Truth table is written by transcribing output sequence of final gate

Figure 7: Gate outputs created by all input combinations.

Table 7: Truth table for the logic circuit of Fig. 7.

Row	X	Y	Z	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

- The number of input combinations of a logic circuit grows exponentially with the number of inputs
- Instead of exhaustive approach, we normally use an algebraic approach
- Complexity of algebraic approach is linearly proportional to size of circuit
- Algebraic approach
- Build up a parenthesized logic expression corresponding to logic operators and structure of circuit
- Start at circuit inputs and propagate expressions through gates toward output
- Simplify expressions while going, or defer all algebraic manipulations until an output expression is obtained

Figure 8: Logic expressions for signal lines.

- In Fig. 8, a sum of products is obtained by "multiplying out" output function

$$
\begin{aligned}
F & =\left(\left(X+Y^{\prime}\right) \cdot Z\right)+\left(X^{\prime} \cdot Y \cdot Z^{\prime}\right) \\
& =X \cdot Z+Y^{\prime} \cdot Z+X^{\prime} \cdot Y \cdot Z^{\prime}
\end{aligned}
$$

This new expression corresponds to a different circuit for the same logic function, as shown in Fig. 9

Figure 9: Two-level AND-OR circuit.

- Similarly, a product of sums is obtained by "adding out" output function of Fig. 8

$$
\begin{aligned}
F & =\left(\left(X+Y^{\prime}\right) \cdot Z\right)+\left(X^{\prime} \cdot Y \cdot Z^{\prime}\right) \\
& =\left(X+Y^{\prime}+X^{\prime}\right) \cdot\left(X+Y^{\prime}+Y\right) \cdot\left(X+Y^{\prime}+Z^{\prime}\right) \cdot\left(Z+X^{\prime}\right) \cdot(Z+Y) \cdot\left(Z+Z^{\prime}\right) \\
& =1 \cdot 1 \cdot\left(X+Y^{\prime}+Z^{\prime}\right) \cdot\left(X^{\prime}+Z\right) \cdot(Y+Z) \cdot 1 \\
& =\left(X+Y^{\prime}+Z^{\prime}\right) \cdot\left(X^{\prime}+Z\right) \cdot(Y+Z)
\end{aligned}
$$

Figure 10: Two-level OR-AND circuit.

Figure 11: Algebraic analysis of a logic circuit with NAND and NOR gates.

$$
\begin{aligned}
F & =\left[\left(\left(W \cdot X^{\prime}\right)^{\prime} \cdot Y\right)^{\prime}+\left(W^{\prime}+X+Y^{\prime}\right)^{\prime}+(W+Z)^{\prime}\right]^{\prime} \\
& =\left(\left(W^{\prime}+X\right)^{\prime}+Y^{\prime}\right)^{\prime} \cdot\left(W \cdot X^{\prime} \cdot Y\right)^{\prime} \cdot\left(W^{\prime} \cdot Z^{\prime}\right)^{\prime} \\
& =\left(\left(W \cdot X^{\prime}\right)^{\prime} \cdot Y\right) \cdot\left(W^{\prime}+X+Y^{\prime}\right) \cdot(W+Z) \\
& =\left(\left(W^{\prime}+X\right) \cdot Y\right) \cdot\left(W^{\prime}+X+Y^{\prime}\right) \cdot(W+Z)
\end{aligned}
$$

- DeMorgan's theorem can be applied graphically to simplify algebraic analysis
- We can cancel out some of inversions
- In Fig. 12, this manipulation leads us to a simplified output expression directly

$$
\begin{equation*}
F=\left(\left(W^{\prime}+X\right) \cdot Y\right) \cdot\left(W^{\prime}+X+Y^{\prime}\right) \cdot(W+Z) \tag{1}
\end{equation*}
$$

Figure 12: Algebraic analysis of the circuit in Fig. 11 after substituting some NAND and NOR symbols.

- When we simplify a logic expression, we get an expression corresponding to a different physical circuit
- E.g., simplified expression (1) corresponds to circuit of Fig. 13

Figure 13: A different circuit for same logic function.

- We could also multiply out and add out expression (1) to obtain sum-of-products and product-of-sums expressions corresponding to two more physically different circuits for same logic function
- Logic expressions are not always used to convey information about physical structure of a circuit
- An expression might describe more than one circuit structure
- The only sure way to determine a circuit's structure is via its drawing
- But, for certain classes of circuits, structural information could be described without reference to drawing
- E.g., "a two-level NAND-NAND circuit for $W \cdot X \cdot Y+Y \cdot Z$ "
(a)

(c)

Figure 14: Three circuits for $G(W, X, Y, Z)=W \cdot X \cdot Y+Y \cdot Z:$ (a) two-level AND-OR;
(b) two-level NAND-NAND; (c) with 2-input gates only.

Com.-Circuit Synthesis: Circuit Descriptions and Designs

- Sometimes, a logic circuit description is a list of input combinations, verbal equivalent of a truth table or \sum or Π notation
- Example (prime-number detector): "Given a 4-bit input combination $N=N_{3} N_{2} N_{1} N_{0}$, produce a 1 output for $N=1,2,3,5,7,11,13$ and 0 otherwise"
- A logic function described in this way can be designed directly from canonical sum or product expression

$$
\begin{aligned}
F= & \sum_{N_{3}, N_{2}, N_{1}, N_{0}}(1,2,3,5,7,11,13) \\
= & N_{3}^{\prime} \cdot N_{2}^{\prime} \cdot N_{1}^{\prime} \cdot N_{0}+N_{3}^{\prime} \cdot N_{2}^{\prime} \cdot N_{1} \cdot N_{0}^{\prime}+N_{3}^{\prime} \cdot N_{2}^{\prime} \cdot N_{1} \cdot N_{0} \\
& +N_{3}^{\prime} \cdot N_{2} \cdot N_{1}^{\prime} \cdot N_{0}+N_{3}^{\prime} \cdot N_{2} \cdot N_{1} \cdot N_{0}+N_{3} \cdot N_{2}^{\prime} \cdot N_{1} \cdot N_{0} \\
& +N_{3} \cdot N_{2} \cdot N_{1}^{\prime} \cdot N_{0}
\end{aligned}
$$

Com.-Circuit Synthesis: Circuit Descriptions and Designs

Figure 15: Canonical-sum design for 4-bit prime-number detector.

- Often, we describe a logic function using English-language connectives "and," "or," and " not"
- Example (alarm circuit): "ALARM output is 1 if PANIC input is 1 , or if ENABLE input is 1 , EXITING input is 0 , and house is not secure; house is secure if WINDOW, DOOR, and GARAGE inputs are all 1"
- Such a description can be translated directly into algebraic expressions

$$
\begin{aligned}
\text { ALARM } & =\text { PANIC }+{\text { ENABLE } \cdot \text { EXITING }^{\prime} \cdot \text { SECURE }^{\prime}}^{\text {SECURE }}=\text { WINDOW } \cdot \text { DOOR } \cdot \text { GARAGE }^{\prime} \\
\text { ALARM } & =\text { PANIC }+ \text { ENABLE } \cdot \text { EXITING }^{\prime} \cdot(\text { WINDOW } \cdot \text { DOOR } \cdot \text { GARAGE })^{\prime}
\end{aligned}
$$

Figure 16: Alarm circuit derived from logic expression.

Com.-Circuit Synthesis: Circuit Descriptions and Designs

- Having an expression for a logic function, we can do some other operations
- We can manipulate it to get different circuits
- E.g., ALARM expression can be multiplied out to get sum-of-products circuit
- We can construct the truth table for the expression and use any of synthesis methods that apply to truth tables
- E.g., canonical sum or product method and minimization methods

Figure 17: Sum-of-products version of alarm circuit.

- We can translate any logic expression into an equivalent sum-of-products expression by multiplying it out
- Such an expression may be realized directly with AND and OR gates
- By substituting gates: two-level AND-OR \longrightarrow two-level NAND-NAND

Figure 18: Alternative sum-of-products realizations: (a) AND-OR; (b) AND-OR with extra inverter pairs; (c) NAND-NAND.

(c)

Figure 19: Another two-level sum-of-products circuit: (a) AND-OR; (b) AND-OR with extra inverter pairs; (c) NAND-NAND.

- We can translate any logic expression into an equivalent product-of-sums expression by adding it out
- Such an expression has both OR-AND and NOR-NOR circuit realizations
(c)

(b)

Figure 20: Realizations of a product-of-sums expression: (a) OR-AND; (b) OR-AND with extra inverter pairs; (c) NOR-NOR.
(a)

(c)

(b)

(d)

Figure 21: Logic-symbol manipulations: (a) original circuit; (b) transformation with a nonstandard gate; (c) inverter used to eliminate nonstandard gate; (d) preferred inverter placement; one level of gate delay is eliminated, and bottom gate becomes a NOR instead of AND.

- Conmbinational-circuit-minimization methods have as their starting point a truth table or, equivalently, a minterm list or maxterm list
- Given a logic function that is not expressed in this form, we must convert it to an appropriate form before using these methods
- Minimization methods reduce cost of a two-level AND-OR, OR-AND, NAND-NAND, or NOR-NOR circuit in three ways
(1) By minimizing number of first-level gates
(2) By minimizing number of inputs on each first-level gate
(3) By minimizing number of inputs on second-level gate
- This is a side effect of the first reduction
- Minimization methods do not consider cost of input inverters
- They assume both true and complemented versions of all input variables are available
- Not always the case in gate-level or ASIC design
- But, appropriate for PLD-based design where both true and complemented versions of all input variables are available for free
- Most minimization methods are based on combining theorems, T10 and $\mathrm{T} 10^{\prime}$
given product term $\cdot Y+$ given product term $\cdot Y^{\prime}=$ given product term (given sum term $+Y$) $\left(\right.$ given sum term $\left.+Y^{\prime}\right)=$ given sum term
- Applying this method repeatedly to combine minterms $1,3,5$, and 7 of prime-number detector shown in Fig. 15

$$
\begin{aligned}
F & =\sum_{N_{3}, N_{2}, N_{1}, N_{0}}(1,3,5,7,2,11,13) \\
& =N_{3}^{\prime} \cdot N_{2}^{\prime} \cdot N_{1}^{\prime} \cdot N_{0}+N_{3}^{\prime} \cdot N_{2}^{\prime} \cdot N_{1} \cdot N_{0}+N_{3}^{\prime} \cdot N_{2} \cdot N_{1}^{\prime} \cdot N_{0}+N_{3}^{\prime} \cdot N_{2} \cdot N_{1} \cdot N_{0}+\cdots \\
& =\left(N_{3}^{\prime} \cdot N_{2}^{\prime} \cdot N_{1}^{\prime} \cdot N_{0}+N_{3}^{\prime} \cdot N_{2}^{\prime} \cdot N_{1} \cdot N_{0}\right)+\left(N_{3}^{\prime} \cdot N_{2} \cdot N_{1}^{\prime} \cdot N_{0}+N_{3}^{\prime} \cdot N_{2} \cdot N_{1} \cdot N_{0}\right)+\cdots \\
& =N_{3}^{\prime} \cdot N_{2}^{\prime} \cdot N_{0}+N_{3}^{\prime} \cdot N_{2} \cdot N_{0}+\cdots \\
& =N_{3}^{\prime} \cdot N_{0}+\cdots
\end{aligned}
$$

Figure 22: Simplified sum-of-products realization for 4-bit prime-number detector.

- Working more on preceding expression, we could save a couple more first-level gate inputs

Combinational-Circuit Synthesis: Karnaugh Maps

- Karnaugh map

- A graphical representation of a logic function's truth table
- Map for an n-input logic function is an array with 2^{n} cells, one for each possible input combination or minterm
- Number inside each cell is corresponding minterm number in truth table
- Truth-table inputs are labeled alphabetically from left to right (e.g., $X, Y, Z)$
- E.g., cell 13 in 4-variable map corresponds to truth table row in which $W X Y Z=1101$

- To represent a logic function on a Karnaugh map, we copy 1s and 0s from truth table or equivalent to the corresponding cells of map

Figure 24: Karnaugh maps for logic functions: (a) $F=\sum_{X, Y}$ (3); (b) $F=\sum_{X, Y, Z}(0,3,4,6,7) ;(\mathrm{c}) F=\sum_{W, X, Y, Z}(1,2,3,5,7,11,13)$.

- Particular order of row and column numbers in a Karnaugh map makes each cell correspond to an input combination that differs from each of its immediately adjacent neighbors in only one variable
- Corresponding cells on left/right or top/bottom borders also differ in one variable and hence neighbors; e.g., cells 12 and 14 in 4 -variable map
- Each input combination with a "1" in truth table corresponds to a minterm in logic function's canonical sum
- Pairs of adjacent "1" cells in map have minterms that differ in only one variable
- Thus, minterm pairs can be combined into a single product term

$$
\text { term } \cdot Y+\text { term } \cdot Y^{\prime}=\text { term }
$$

- Thus, we can use a Karnaugh map to simplify canonical sum of a logic function

X	Y	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$X^{\prime} \cdot Y \cdot Z^{\prime}$

Figure 25: $F=\sum_{X, Y, Z}(1,2,5,7)$: (a) truth table; (b) Karnaugh map; (c) combining adjacent 1 -cells.

- In Fig. 25(b)

For cells 5 and 7 :

$$
\begin{aligned}
F & =\cdots+X \cdot Y^{\prime} \cdot Z+X \cdot Y \cdot Z \\
& =\cdots+(X \cdot Z) \cdot Y^{\prime}+(X \cdot Z) \cdot Y \\
& =\cdots+X \cdot Z
\end{aligned}
$$

For cells 1 and 5:

$$
\begin{aligned}
F & =X^{\prime} \cdot Y^{\prime} \cdot Z+X \cdot Y^{\prime} \cdot Z+\cdots \\
& =X^{\prime} \cdot\left(Y^{\prime} \cdot Z\right)+X \cdot\left(Y^{\prime} \cdot Z\right)+\cdots \\
& =Y^{\prime} \cdot Z+\cdots
\end{aligned}
$$

- We can simplify a logic function by first combining pairs of adjacent 1 -cells (minterms) wherever possible and then selecting a set of product terms that covers all of 1 -cells and summing them
- Fig. 25(c) shows the result for our example logic function
- Corresponding AND-OR circuit is shown in Fig. 26

Figure 26: Minimized AND-OR circuit.

- In many logic functions, cell-combining procedure can be extended to combine more than two 1-cells into a single product term
- Number of cells combined is always a power of 2
- Example

$$
\begin{aligned}
F & =\sum_{X, Y, Z}(0,1,4,5,6) \\
& =X^{\prime} \cdot Y^{\prime} \cdot Z^{\prime}+X^{\prime} \cdot Y^{\prime} \cdot Z+X \cdot Y^{\prime} \cdot Z^{\prime}+X \cdot Y^{\prime} \cdot Z+X \cdot Y \cdot Z^{\prime} \\
& =\left[\left(X^{\prime} \cdot Y^{\prime}\right) \cdot Z^{\prime}+\left(X^{\prime} \cdot Y^{\prime}\right) \cdot Z\right]+\left[\left(X \cdot Y^{\prime}\right) \cdot Z^{\prime}+\left(X \cdot Y^{\prime}\right) \cdot Z\right]+X \cdot Y \cdot Z^{\prime} \\
& =X^{\prime} \cdot Y^{\prime}+X \cdot Y^{\prime}+X \cdot Y \cdot Z^{\prime} \\
& =\left[X^{\prime} \cdot\left(Y^{\prime}\right)+X \cdot\left(Y^{\prime}\right)\right]+X \cdot Y \cdot Z^{\prime} \\
& =Y^{\prime}+X \cdot Y \cdot Z^{\prime}
\end{aligned}
$$

- $2^{i} 1$-cells may be combined to form a product term containing $n-i$ literals ($n=$ number of variables in function)
- A set of $2^{i} 1$-cells are combined if there are i variables that take on all 2^{i} possible combinations within that set, while remaining $n-i$ variables have the same value throughout that set
- Corresponding product term has $n-i$ literals, where a variable is complemented if it is 0 in all of 1 -cells, and uncomplemented if it is 1
- Graphically, we circle rectangular sets of $2^{i} 1 \mathrm{~s}$, stretching definition of rectangular to account for wraparound at edges of map
- For each variable, if a circle covers only areas of map where it is 0 , the variable is complemented in product term
- If a circle covers only areas of map where the variable is 1 , the variable is uncomplemented in product term
- If a circle covers areas of map where the variable is 0 as well as areas where it is 1 , the variable does not appear in product term
- Finally, a sum-of-products expression for a function must contain product terms that cover all of 1 s and none of 0 s on map
- By circling largest possible set of 1 s , a less expensive realization of logic function is found
(a)

(b)

(c)

Figure 27: $F=\sum_{X, Y, Z}(0,1,4,5,6)$: (a) initial Karnaugh map; (b) Karnaugh map with circled product terms; (c) AND/OR circuit.

Figure 28: Prime-number detector: (a) initial Karnaugh map; (b) circled product terms; (c) minimized circuit.

- Minimal sum of a logic function $F\left(X_{1}, \ldots, X_{n}\right)$
(1) Has the fewest possible product terms
(2) Within constraint 1 , has the fewest possible literals
- A logic function $P\left(X_{1}, \ldots, X_{n}\right)$ implies a logic function $F\left(X_{1}, \ldots, X_{n}\right)$ if for every input combination such that $P=1$, then $F=1$ too
- " P implies $F " \equiv " F$ includes $P " \equiv " F$ covers $P " \equiv P \Rightarrow F$
- Prime implicant of a logic function $F\left(X_{1}, \ldots, X_{n}\right)$
- A normal product term $P\left(X_{1}, \ldots, X_{n}\right)$ that implies F, such that if any variable is removed from P, resulting product term does not imply F
- In Karnaugh map, a prime implicant of F is a circled set of 1-cells, such that if we make it larger (twice as many cells), it covers one or more 0s
- Prime-implicant theorem
- A minimal sum is a sum of prime implicants
(a)

$$
\mathrm{F}=\Sigma_{\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}}(5,7,12,13,14,15)
$$

$$
F=X \cdot Z+W \cdot X
$$

Figure 29: $F=\sum_{W, X, Y, Z}(5,7,12,13,14,15)$: (a) Karnaugh map; (b) prime implicants.

- Complete sum

- Sum of all prime implicants of a logic function
- Is not always minimal
- E.g., logic function shown in Fig. 30 has five prime implicants, but minimal sum includes only three of them

Figure 30: $F=\sum_{W, X, Y, Z}(1,3,4,5,9,11,12,13,14,15)$: (a) Karnaugh map;
(b) prime implicants and distinguished 1 -cells.

- Distinguished 1-cell of a logic function
- An input combination that is covered by only one prime implicant
- Essential prime implicant of a logic function
- A prime implicant that covers one or more distinguished 1-cells
- First step in prime-implicant selection process
- Identify distinguished 1-cells and corresponding essential prime implicants, and include them in minimal sum
- In Fig. 30, three distinguished 1-cells are shaded, and corresponding essential prime implicants are circled with heavier lines
- All of 1-cells are covered by essential prime implicants, so we need go no further
- In Fig. 31, all of prime implicants are essential, and so all are included in minimal sum

$\mathrm{F}=\Sigma_{\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}}(2,3,4,5,6,7,11,13,15)$

$F=W^{\prime} \cdot Y+W^{\prime} \cdot X+X \cdot Z+Y \cdot Z$

Figure 31: $F=\sum_{W, X, Y, Z}(2,3,4,5,6,7,11,13,15):(a)$ Karnaugh map; (b) prime implicants and distinguished 1-cells.

$$
F=\Sigma_{W, X, Y, Z}(0,1,2,3,4,5,7,14,15)
$$

$F=W^{\prime} \cdot Y^{\prime}+W^{\prime} \cdot X^{\prime}+W \cdot X \cdot Y+W^{\prime} \cdot Z$

Figure 32: $F=\sum_{W, X, Y, Z}(0,1,2,3,4,5,7,14,15)$: (a) Karnaugh map; (b) prime implicants and distinguished 1-cells; (c) reduced map after removal of essential prime implicants and covered 1 -cells.

- In Fig. 32, by removing essential prime implicants and the 1-cells they cover, we obtain a reduced map with only a single 1-cell and two prime implicants that cover it
- We use $W^{\prime} \cdot Z$ product term because it has fewer inputs and therefore lower cost

- Eclipse

- Given two prime implicants P and Q in a reduced map, P is said to eclipse $Q(P \supseteq Q)$ if P covers at least all 1-cells covered by Q
- If P eclipses Q, then Q can be ignored when finding a minimal sum - In Fig. 33(c), $X \cdot Y \cdot Z$ eclipses the other two prime implicants
- $X \cdot Y \cdot Z$ is a secondary essential prime implicant that must be included in minimal sum

$\mathrm{F}=\Sigma_{\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}}(2,6,7,9,13,15)$

$$
F=W \cdot Y^{\prime} \cdot Z+W^{\prime} \cdot Y \cdot Z^{\prime}+X \cdot Y \cdot Z
$$

Figure 33: $F=\sum_{W, X, Y, Z}(2,6,7,9,13,15)$: (a) Karnaugh map; (b) prime implicants and distinguished 1-cells; (c) reduced map after removal of essential prime implicants and covered 1-cells.

(b)

(c)

(d)

$$
F=W^{\prime} \cdot X \cdot Z+W \cdot Y \cdot Z+X^{\prime} \cdot Y^{\prime} \cdot Z
$$

$$
F=X \cdot Y \cdot Z+W \cdot X^{\prime} \cdot Z+W^{\prime} \cdot Y^{\prime} \cdot Z
$$

Figure 34: $F=\sum_{W, X, Y, Z}(1,5,7,9,11,15)$: (a) Karnaugh map; (b) prime implicants (no essential); (c) a minimal sum; (d) another minimal sum.

- Using principle of duality, we can minimize product-of-sums expressions by looking at 0s on a Karnaugh map
- Each 0 on map corresponds to a maxterm in canonical product of logic function
- To find minimal product, we write sum terms corresponding to circled sets of 0s
- In Fig. 35

$$
F=\left(X+Y^{\prime}+Z\right) \cdot\left(X^{\prime}+Z^{\prime}\right) \cdot\left(Y+Z^{\prime}\right)
$$

$\left.\begin{array}{cccc}\hline \mathrm{X} & \mathrm{Y} & \mathrm{Z} & \mathrm{F} \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ & 1 & 1 & 1\end{array}\right) 0$

Figure 35: $F=\prod_{X, Y, Z}(1,2,5,7)$: (a) truth table; (b) Karnaugh map; (c) combining adjacent 0 -cells.

- Indirect method to find minimal product
- For circled sets of 0s in Karnaugh map, write product terms
- Equate F^{\prime} to minimal sum
- Use DeMorgan's theorem to find F
- E.g., for Fig. 35(c), product terms of circled 0s are: $X^{\prime} \cdot Y \cdot Z^{\prime}, X \cdot Z, Y^{\prime} \cdot Z$

$$
\begin{aligned}
F^{\prime} & =X^{\prime} \cdot Y \cdot Z^{\prime}+X \cdot Z+Y^{\prime} \cdot Z \\
{\left[F^{\prime}\right]^{\prime} } & =\left[X^{\prime} \cdot Y \cdot Z^{\prime}+X \cdot Z+Y^{\prime} \cdot Z\right]^{\prime} \\
F & =\left(X+Y^{\prime}+Z\right) \cdot\left(X^{\prime}+Z^{\prime}\right) \cdot\left(Y+Z^{\prime}\right)
\end{aligned}
$$

- PLD minimization

- PLDs have an AND-OR array corresponding to sum-of-products form
- Most PLDs, also have an inverter/buffer at output of AND-OR array, which can be programmed to invert or not
- Thus, PLD can utilize the equivalent of minimal sum by using AND-OR array to realize complement of desired function and then programming inverter/buffer to invert
- Most logic-minimization programs for PLDs find both minimal sum and minimal product and select the one that requires fewer terms
- Predicting steady-state behavior of combinational logic circuits
- Predicting a circuit's output as a function of its inputs under assumption that inputs have been stable for a long time, relative to delays in circuit's electronics
- Circuit delay is ignored
- But actual delay from an input change to corresponding output change in a real circuit is nonzero
- Transient behavior of a combinational logic circuit
- Considers circuit delays
- May differ from what is predicted by a steady-state analysis
- A circuit's output may produce a short pulse, called a glitch, at a time when steady-state analysis predicts that output should not change
- A hazard exists when a circuit has possibility of producing such a glitch
- A logic designer must eliminate hazards
- Static-1 hazard
- A pair of input combinations that
(1) Differ in only one input variable
(2) Both give a 1 output
such that it is possible for a momentary 0 output to occur during a transition in the differing input variable
(a)

Figure 36: Circuit with a static-1 hazard: (a) logic diagram; (b) timing diagram ($X=1, Y=1, Z: 1 \rightarrow 0$, propagation delay through each gate or inverter is one unit time).

- Static-0 hazard
- A pair of input combinations that
(1) Differ in only one input variable
(2) Both give a 0 output
such that it is possible for a momentary 1 output to occur during a transition in the differing input variable
(a)

(b)

Figure 37: Circuit with static-0 hazards: (a) logic diagram; (b) timing diagram.

- A Karnaugh map can be used to detect static hazards in a two-level sum-of-products or product-of-sums circuit
- A properly designed two-level sum-of-products (AND-OR) circuit has no static-0 hazards
- A static-0 hazard would exist only if both a variable and its complement were connected to the same AND gate, which would be silly
- But the circuit may have static-1 hazards

$$
F=X \cdot Z^{\prime}+Y \cdot Z
$$

$$
F=X \cdot Z^{\prime}+Y \cdot Z+X \cdot Y
$$

Figure 38: Karnaugh map for the circuit of Fig. 36: (a) as originally designed; (b) with static-1 hazard eliminated.

- In Fig. 38
- There is no single product term that covers both input combinations $X, Y, Z=111$ and $X, Y, Z=110$
- Possible for output to glitch momentarily to 0 if AND gate output that covers one of combinations goes to 0 before AND gate output covering the other input combination goes to 1
- To eliminate hazard, include an extra product term (AND gate) to cover hazardous input pair
- The extra product term to be added is consensus of the two original terms

Figure 39: Circuit of Fig. 36 with static-1 hazard eliminated.

Figure 40: Karnaugh map for another sum-of-products circuit: (a) as originally designed; (b) with extra product terms to cover static-1 hazards.

- A properly designed two-level product-of-sums (OR-AND) circuit has no static-1 hazards
- But, it may have static-0 hazards
- These hazards can be detected and eliminated by studying adjacent 0s in Karnaugh map

$F=\left(X^{\prime}+Z\right) \cdot\left(Y^{\prime}+Z^{\prime}\right) \cdot\left(X^{\prime}+Y^{\prime}\right)$

Figure 41: Karnaugh map for a product-of-sums circuit: (a) as originally designed; (b) with extra sum term to cover the static-0 hazard.

Timing Hazards: Dynamic Hazards

- Dynamic hazard

- Possibility of an output changing more than once as the result of a single input transition
- Multiple output transitions can occur if there are multiple paths with different delays from the changing input to the changing output

Figure 42: Circuit with a dynamic hazard.

Timing Hazards: Dynamic Hazards

- In Fig. 42
- Three different paths with different delays from input X to output F
- If all of gates except the two marked "slow" and "slower" are very fast, the transitions shown in black occur first, and output goes to 0
- Then, output of "slow" OR gate changes, creating transitions shown in nonitalic color, and output goes to 1
- Finally, output of "slower" OR gate changes, creating transitions shown in italic color, and output goes to 0
- Dynamic hazards do not occur in a properly designed two-level AND-OR or OR-AND circuit
- In such a circuit, no variable and its complement are connected to the same first-level gate

References

John F. Wakerly, Digital Design: Principles and Practices (4th Edition), Prentice Hall, 2005.

