Design of Digital Systems II Combinational Logic Design Practices (3)

Moslem Amiri, Václav Přenosil

Embedded Systems Laboratory
Faculty of Informatics, Masaryk University
Brno, Czech Republic
amiri@mail.muni.cz
prenosil@fi.muni.cz
November, 2012

- An XOR gate is a 2-input gate whose output is 1 if its inputs are different

$$
X \oplus Y=X^{\prime} \cdot Y+X \cdot Y^{\prime}
$$

- An XNOR gate is a 2-input gate whose output is 1 if its inputs are the same

Table 1: Truth table for XOR and XNOR functions.

X	Y	$X \oplus Y$	$(X \oplus Y)^{\prime}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

(a)

(b)

Figure 1: Multigate designs for the 2-input XOR function: (a) AND-OR; (b) three-level NAND.
(a)

(b)

Figure 2: Equivalent symbols for (a) XOR gates; (b) XNOR gates.

- As seen in Fig. 2, any two signals (inputs or output) of an XOR or XNOR gate may be complemented without changing resulting logic function
(a)

(b)

Figure 3: Cascading XOR gates: (a) daisy-chain connection; (b) tree structure.

- Fig. 3
- (a) is an odd-parity circuit
- Its output is 1 if an odd number of its inputs are 1
- (b) is also an odd-parity circuit, but it is faster
- If output of either circuit is inverted, we get an even-parity circuit

Figure 4: The 74×280 9-bit odd/even parity generator: (a) logic diagram, including pin numbers for a standard 16-pin dual in-line package; (b) traditional logic symbol.

- A parity bit is used in error-detecting codes to detect errors in transmission and storage of data
- In an even-parity code, parity bit is chosen so that total number of 1 bits in a code word is even
- Parity circuits like 74×280 are used both to generate correct value of parity bit when a code word is stored or transmitted, and to check parity bit when a code word is retrieved or received

Figure 5: Parity generation and checking for an 8-bit-wide memory.

- In Fig. 5, to store a byte into memory
- Specify an address
- Place byte on $\mathrm{D}[0-7]$
- Generate its parity bit on PIN
- Assert WR
- '280's ODD output is connected to PIN, so that total number of 1s stored is even
- In Fig. 5, to retrieve a byte
- Specify an address
- Assert RD
- A 74×541 drives byte onto D bus, and ' 280 checks its parity
- If parity of 9-bit word is odd during a read, ERROR signal is asserted

Exclusive-OR Gates and Parity Circuits in Verilog

Table 2: Dataflow-style Verilog module for a 3-input XOR device.

```
module Vrxor3(A, B, C, Y);
    input A, B, C;
    output Y;
    assign Y = A ^ B ^ C;
endmodule
```

Table 3: Behavioral Verilog program for a 9-input parity checker.

```
module Vrparity9(I, EVEN, ODD);
    input [1:9] I;
    output EVEN, ODD;
    reg p, EVEN, ODD;
    integer j;
    always @ (I) begin
        p = 1'b0;
        for (j =1; j <= 9; j = j+1)
            if (I[j]) p = ~ p;
        else p = p;
        ODD = p;
        EVEN = ~ p;
    end
endmodule
```


Exclusive-OR Gates and Parity Circuits in Verilog

- ASIC and FPGA libraries contain two- and three-input XOR and XNOR functions as primitives
- In CMOS ASICs, these primitives are realized very efficiently at transistor level using transmission gates
- Fast and compact XOR trees can be built using these primitives
- Typical Verilog synthesis tools are not smart enough to create an efficient tree structure from a behavioral program like Tab. 3
- Instead, we can use a structural program to get exactly what we want
- Tab. 4

Table 4: Structural Verilog program for a 74×280-like parity checker.

```
module Vrparity9s(I, EVEN, ODD);
    input [1:9] I;
    output EVEN, ODD;
    wire Y1, Y2, Y3, Y3N;
    Vrxor3 U1 (I[1], I[2], I[3], Y1);
    Vrxor3 U2 (I[4], I[5], I[6], Y2);
    Vrxor3 U3 (I[7], I[8], I[9], Y3);
    assign Y3N = ~Y3;
    Vrxor3 U4 (Y1, Y2, Y3, ODD);
    Vrxor3 U5 (Y1, Y2, Y3N, EVEN);
endmodule
```


- A comparator is a circuit that compares two binary words and indicates whether they are equal
- Magnitude comparators interpret their input words as signed or unsigned numbers and also indicate an arithmetic relationship (greater or less than) between words

Comparators: Comparator Structure

- XOR or XNOR gates may be viewed as 1-bit comparators
(a)

(b)

Figure 6: Comparators using XOR gates: (a) 1-bit comparator; (b) 4-bit comparator.

- We can build an n-bit comparator using n XOR gates and an n-input OR gate
- Wider OR functions can be obtained by cascading individual gates
- A faster circuit is obtained by arranging gates in a tree-like structure
- Using NORs and NANDs in place of ORs makes circuit even faster

Comparators: Comparator Structure

- Comparators can also be built using XNOR gates
- A 2-input XNOR gate produces a 1 output if its two inputs are equal
- A multibit comparator can be constructed using one XNOR gate per bit, and ANDing all of their outputs together
- Output of AND function is 1 if all of individual bits are pairwise equal
- n-bit comparators in this subsection are called parallel comparators
- They look at each pair of input bits simultaneously and deliver 1-bit comparison results in parallel to an n-input OR or AND function
- An iterative circuit contains n identical modules, each of which has both primary inputs and outputs and cascading inputs and outputs
- Left-most cascading inputs are called boundary inputs and are connected to fixed logic values
- Right-most cascading outputs are called boundary outputs and usually provide important information

Figure 7: General structure of an iterative combinational circuit.

Comparators: Iterative Circuits

- Iterative circuits are suited to problems that can be solved by an iterative algorithm
(1) Set C_{0} to its initial value and set i to 0
(2) Use C_{i} and $P I_{i}$ to determine values of $P O_{i}$ and C_{i+1}
(3) Increment i
(4) If $i<n$, go to step 2
- To compare two n-bit values X and Y
(1) Set $E Q_{0}$ to 1 and set i to 0
(2) If $E Q_{i}$ is 1 and X_{i} and Y_{i} are equal, set $E Q_{i+1}$ to 1 , else set $E Q_{i+1}$ to 0
(3) Increment i
(4) If $i<n$, go to step 2

(a)

Figure 8: An iterative comparator circuit: (a) module for one bit; (b) complete circuit.

- Parallel comparators are preferred over iterative ones
- Iterative comparators are very slow
- Cascading signals need time to "ripple" from leftmost to rightmost module
- Iterative circuits that process more than one bit at a time (using modules like 74×85, discussed next) are much more likely to be used in practical designs
- 74×85 is a 4 -bit comparator which provides a greater-than output (AGTBOUT) and a less-than output (ALTBOUT) as well as an equal output (AEQBOUT)
- '85 also has cascading inputs (AGTBIN, ALTBIN, AEQBIN) for combining multiple '85s to create comparators for more than four bits

	74×85		
2	ALTBIN	ALTBOUT	7
3	AEQBIN	AEQBOU	6
4	AGTBIN	AGTBOUT	5
10	A0		
9	B0		
12	A1		
11			
13			
14	A2		
	B2		
	A3		
1	B3		

Figure 9: Traditional logic symbol for the 74×85 4-bit comparator.

Comparators: Standard MSI Magnitude Comparators

Figure 10: A 12-bit comparator using 74×85 s.

- Cascading inputs are defined so outputs of an ' 85 that compares less-significant bits are connected to inputs of an ' 85 that compares more-significant bits
- For each '85

$$
\begin{aligned}
A G T B O U T & =(A>B)+(A=B) \cdot A G T B I N \\
A E Q B O U T & =(A=B) \cdot A E Q B I N \\
A L T B O U T & =(A<B)+(A=B) \cdot A L T B I N
\end{aligned}
$$

Arithmetic comparisons can be expressed using normal logic expressions, e.g.,

$$
\begin{aligned}
(A>B)= & A 3 \cdot B 3^{\prime}+ \\
& (A 3 \oplus B 3)^{\prime} \cdot A 2 \cdot B 2^{\prime}+ \\
& (A 3 \oplus B 3)^{\prime} \cdot(A 2 \oplus B 2)^{\prime} \cdot A 1 \cdot B 1^{\prime}+ \\
& (A 3 \oplus B 3)^{\prime} \cdot(A 2 \oplus B 2)^{\prime} \cdot(A 1 \oplus B 1)^{\prime} \cdot A 0 \cdot B 0^{\prime}
\end{aligned}
$$

74×682

Figure 11: Traditional logic symbol for the 74×6828-bit comparator.

Figure 12: Logic diagram for the 74×6828-bit comparator, including pin numbers for a standard 20 -pin dual in-line package.

Comparators: Standard MSI Magnitude Comparators

- In Fig. 12
- Top half of circuit checks two 8 -bit input words for equality
- PEQQ_L output is asserted if all eight input-bit pairs are equal
- Bottom half of circuit compares input words arithmetically
- PGTQ_L is asserted if $\mathrm{P}[7-0]>\mathrm{Q}[7-0]$
- 74×682 does not have cascading inputs and a "less than" output
- However, any desired condition can be formulated as a function of PEQQ_L and PGTQ_L outputs

Figure 13: Arithmetic conditions derived from 74×682 outputs.

Comparators in HDLs

- Comparing two bit-vectors for equality or inequality is done in an HDL program, in relational expressions using operators such as " $==$ " and "! ="
- Given relational expression " $(A==B)$ ", where A and B are bit vectors each with n elements, compiler generates the logic expression

$$
\left(\left(A_{1} \oplus B_{1}\right)+\left(A_{2} \oplus B_{2}\right)+\cdots+\left(A_{n} \oplus B_{n}\right)\right)^{\prime}
$$

- In a PLD, this is realized as a complemented sum of $2 n$ product terms

$$
\left(\left(A_{1} \cdot B_{1}^{\prime}+A_{1}^{\prime} \cdot B_{1}\right)+\left(A_{2} \cdot B_{2}^{\prime}+A_{2}^{\prime} \cdot B_{2}\right)+\cdots+\left(A_{n} \cdot B_{n}^{\prime}+A_{n}^{\prime} \cdot B_{n}\right)\right)^{\prime}
$$

- Logic expression for " $(\mathrm{A}!=\mathrm{B})$ " is complement of the ones above

Comparators in HDLs

- Given relational expression " $(A<B)$ ", where A and B are bit vectors each with n elements, HDL compiler first builds n equations of the form

$$
L_{i}=\left(A_{i}^{\prime} \cdot\left(B_{i}+L_{i-1}\right)\right)+\left(A_{i} \cdot B_{i} \cdot L_{i-1}\right)
$$

for $i=1$ to n, and $L_{0}=0$

- This is an iterative definition of less-than function, starting with LSB
- Logic equation for " $(\mathrm{A}<\mathrm{B})$ " is the equation for L_{n}
- After creating n equations, HDL compiler collapses them into a single equation for L_{n} involving only A and B
- In case of a compiler that is targeting a PLD, final step is to derive a minimal sum-of-products expression from L_{n} equation
- Collapsing an iterative circuit into a two-level sum-of-products realization creates an exponential expansion of product terms
- Requires $2^{n}-1$ product terms for an n-bit comparator
- Results for " $>$ " comparators are identical
- Logic expressions for ">=" and "<=" are complements of expressions for "<" and ">"
- Verilog has built-in comparison operators: >, >=, <, <=, ==, !=
- These operators can be applied to bit vectors
- Bit vectors are interpreted as unsigned numbers with the MSB on left, regardless of how they are numbered
- Verilog-2001 also supports signed arithmetic
- Verilog matches up operands of different lengths, by adding zeros on left
- Equality and inequality checkers are small and fast
- Built from n XOR or XNOR gates and an n-input AND or OR gate
- Checking for greater-than or less-than
- The number of product terms needed for an n-bit comparator grows exponentially, on order of 2^{n}, when comparator is realized as a two-level sum of products
- A two-level sum-of-products realization is possible only for small values of n (4 or less)
- For larger values of n, compiler may synthesize a set of smaller comparator modules, along the lines of 74×85 and 74×682 parts, whose outputs may be cascaded or combined to create larger comparison result

Table 5: Verilog module with functionality similar to 74×85 magnitude comparator.

```
module Vr74x85(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);
    input [3:0] A, B;
    input AGTBIN, ALTBIN, AEQBIN;
    output AGTBOUT, ALTBOUT, AEQBOUT;
    reg AGTBOUT, ALTBOUT, AEQBOUT;
    always @ (A or B or AGTBIN or ALTBIN or AEQBIN)
        if (A == B)
            begin AGTBOUT = AGTBIN; ALTBOUT = ALTBIN; AEQBOUT = AEQBIN; end
        else if (A > B)
            begin AGTBOUT = 1'b1; ALTBOUT = 1'b0; AEQBOUT = 1'b0; end
        else
            begin AGTBOUT = 1'b0; ALTBOUT = 1'b1; AEQBOUT = 1'b0; end
endmodule
\begin{tabular}{|c|c|c|}
\hline & \(74 \times 85\) & \\
\hline 2 & ALTBIN ALTBOUT & 7 \\
\hline 3 & AEQBIN AEQBOUT & \\
\hline 4 & AGTBIN AGTBOUT & \\
\hline 10 & A0 & \\
\hline 9 & B0 & \\
\hline 12 & A1 & \\
\hline 11 & B1 & \\
\hline 13 & A2 & \\
\hline 14 & B2 & \\
\hline 15 & & \\
\hline 1 & B3 & \\
\hline & B3 & \\
\hline
\end{tabular}
```

- Module of Tab. 5 does not perform an explicit check for $A<B$, to avoid synthesizing another comparator
- If we missed this optimization and included $\mathrm{A}<\mathrm{B}$ check, it is necessary also to include a final else statement (Tab. 6)
- Without final else clause, compiler will infer a latch to hold previous value of each cascading output if none of logic paths through always block assigned a value to that output

Table 6: Verilog comparator module with three explicit comparisons.

```
module Vr74x85s(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);
    input [3:0] A, B;
    input AGTBIN, ALTBIN, AEQBIN;
    output AGTBOUT, ALTBOUT, AEQBOUT;
    reg AGTBOUT, ALTBOUT, AEQBOUT;
    always @ (A or B or AGTBIN or ALTBIN or AEQBIN)
        if (A == B)
            begin AGTBOUT = AGTBIN; ALTBOUT = ALTBIN; AEQBOUT = AEQBIN; end
        else if (A > B)
            begin AGTBOUT = 1'b1; ALTBOUT = 1'b0; AEQBOUT = 1'b0; end
        else if (A < B)
            begin AGTBOUT = 1'b0; ALTBOUT = 1'b1; AEQBOUT = 1'b0; end
        else
            begin AGTBOUT = 1'bx; ALTBOUT = 1'bx; AEQBOUT = 1'bx; end
endmodule
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{\(74 \times 85\)} & \\
\hline 2 & & & \\
\hline 3 & &  & \\
\hline 4 & AGTBIN & AGTBOUT & \\
\hline 10 & A0 & & \\
\hline 9 & B0 & & \\
\hline 12 & A1 & & \\
\hline 11 & B1 & & \\
\hline 13 & A2 & & \\
\hline 14 & A2 & & \\
\hline 15 & B2 & & \\
\hline 1 & A3 & & \\
\hline 1 & B3 & & \\
\hline
\end{tabular}
```


Comparators in Verilog

Table 7: Verilog comparator module with cascading from more to less significant stages.

```
module Vr74x85r(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);
    input [3:0] A, B;
    input AGTBIN, ALTBIN, AEQBIN;
    output AGTBOUT, ALTBOUT, AEQBOUT;
    reg AGTBOUT, ALTBOUT, AEQBOUT;
    always @ (A or B or AGTBIN or ALTBIN or AEQBIN)
        if (AGTBIN)
            begin AGTBOUT = 1'b1; ALTBOUT = 1'b0; AEQBOUT = 1'b0; end
        else if (ALTBIN)
            begin AGTBOUT = 1'b0; ALTBOUT = 1'b1; AEQBOUT = 1'b0; end
        else if (AEQBIN)
            begin
                AGTBOUT = (A > B) ? 1'b1 : 1'b0 ;
                AEQBOUT = (A == B) ? 1'b1 : 1'b0;
                ALTBOUT = ~AGTBOUT & ~ AEQBOUT;
            end
        else
            begin AGTBOUT = 1'bx; ALTBOUT = 1'bx; AEQBOUT = 1'bx; end
endmodule
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{\(74 \times 85\)} & \\
\hline 2 & ALTBIN & ALTBOUT & \\
\hline 3 & AEQBIN & AEQBOUT & 6 \\
\hline 4 & AGTBIN & Agtbout & 5 \\
\hline 10 & A0 & & \\
\hline 9 & B0 & & \\
\hline 12 & A1 & & \\
\hline 11 & B1 & & \\
\hline 13 & A2 & & \\
\hline 14 & B2 & & \\
\hline 15 & A3 & & \\
\hline 1 & B3 & & \\
\hline
\end{tabular}
```

- With a series of if-else statements, compiler synthesizes priority logic
- It checks the first condition, and only then the second, and so on
- We can use a case statement instead

Table 8: Verilog comparator module using a case statement.

```
module Vr74x85rc(A, B, AGTBIN, ALTBIN, AEQBIN, AGTBOUT, ALTBOUT, AEQBOUT);
    input [3:0] A, B;
    input AGTBIN, ALTBIN, AEQBIN;
    output AGTBOUT, ALTBOUT, AEQBOUT;
    reg AGTBOUT, ALTBOUT, AEQBOUT;
    always @ (A or B or AGTBIN or ALTBIN or AEQBIN)
        case ({AGTBIN, ALTBIN, AEQBIN})
            3'b100: begin AGTBOUT = 1'b1; ALTBOUT = 1'b0; AEQBOUT = 1'b0; end
            3'b010: begin AGTBOUT = 1'b0; ALTBOUT = 1'b1; AEQBOUT = 1'b0; end
            3'b001: begin
                    AGTBOUT = (A > B) ? 1'b1 : 1'b0 ;
                    AEQBOUT = (A == B) ? 1'b1 : 1'b0;
                    ALTBOUT = ~AGTBOUT & ~AEQBOUT;
                    end
        default: begin AGTBOUT = 1'bx; ALTBOUT = 1'bx; AEQBOUT = 1'bx; end
        endcase
endmodule
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{\(74 \times 85\)} & \\
\hline 2 & ALTBIN & ALTBOUT & 7 \\
\hline 3 & & & 6 \\
\hline 4 & AEQBIN & AEQBOUT & 5 \\
\hline 10 & AGTBIN & AGTBOUT & \\
\hline 9 & & & \\
\hline 12 & & & \\
\hline 11 & A1 & & \\
\hline 13 & B & & \\
\hline 14 & A2 & & \\
\hline 15 & B2 & & \\
\hline 1 & A3 & & \\
\hline 1 & B3 & & \\
\hline
\end{tabular}
```

Table 9: Verilog comparator module using continuous assignments.

Adders, Subtractors, and ALUs

- The same addition rules and therefore the same adders are used for both unsigned and two's-complement numbers
- An adder can perform subtraction as addition of minuend and complemented subtrahend
- But we can also build subtractor circuits that perform subtraction directly
- ALUs perform addition, subtraction, or any of several other operations according to an operation code supplied to device
- A half adder adds two 1-bit operands X and Y , producing a 2-bit sum

$$
\begin{aligned}
H S & =X \oplus Y \\
& =X \cdot Y^{\prime}+X^{\prime} \cdot Y \\
C O & =X \cdot Y
\end{aligned}
$$

($H S=$ half sum, and $C O=$ carry-out)

- To add operands with more than one bit, we must provide for carries between bit positions
- Building block for this operation is called a full adder

$$
\begin{aligned}
S & =X \oplus Y \oplus C I N \\
& =X \cdot Y^{\prime} \cdot C^{\prime} N^{\prime}+X^{\prime} \cdot Y \cdot C I N^{\prime}+X^{\prime} \cdot Y^{\prime} \cdot C I N+X \cdot Y \cdot C I N \\
\text { COUT } & =X \cdot Y+X \cdot C I N+Y \cdot C I N
\end{aligned}
$$

Figure 14: Full adder: (a) gate-level circuit diagram; (b) logic symbol; (c) alternate logic symbol suitable for cascading.

- A ripple adder is a cascade of n full-adder stages, each of which handles one bit, to add two n-bit binary words

Figure 15: A 4-bit ripple adder.

- c_{0} is normally set to 0
- A ripple adder is slow
- In worst case, a carry must propagate from least significant full adder to most significant one
- E.g., adding $11 \ldots 11$ and $00 \ldots 01$
- Total worst-case delay

$$
t_{A D D}=t_{X Y \text { Cout }}+(n-2) \cdot t_{\text {CinCout }}+t_{\text {CinS }}
$$

- $t_{X Y C o u t}$: delay from X or Y to COUT in least significant stage
- $t_{\text {CinCout }}$: delay from CIN to COUT in middle stages
- $t_{\text {Cins }}$: delay from CIN to S in most significant stage
- Binary subtraction is performed similar to binary addition, but using borrows ($b_{\text {in }}$ and $b_{\text {out }}$) between steps, and producing a difference bit d
- When subtracting y from x

$$
\begin{gathered}
x \geq y+b_{\text {in }} \longrightarrow b_{\text {out }}=0 \\
x<y+b_{\text {in }} \longrightarrow b_{\text {out }}=1 \\
d=x-y-b_{\text {in }}+2 b_{\text {out }}
\end{gathered}
$$

Table 10: Binary subtraction table.

$b_{\text {in }}$	x	y	$b_{\text {out }}$	d
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

Adders, Subtractors, and ALUs: Subtractors

- Logic equations for a full subtractor

$$
\begin{gathered}
D=X \oplus Y \oplus B I N \\
B O U T=X^{\prime} \cdot Y+X^{\prime} \cdot B I N+Y \cdot B I N
\end{gathered}
$$

- Manipulating logic equations above

$$
\begin{aligned}
B O U T & =X^{\prime} \cdot Y+X^{\prime} \cdot B I N+Y \cdot B I N \\
B O U T^{\prime} & =\left(X+Y^{\prime}\right) \cdot\left(X+B I N^{\prime}\right) \cdot\left(Y^{\prime}+B I N^{\prime}\right) \\
& =X \cdot Y^{\prime}+X \cdot B I N^{\prime}+Y^{\prime} \cdot B I N^{\prime} \\
D & =X \oplus Y \oplus B I N \\
& =X \oplus Y^{\prime} \oplus B I N^{\prime}
\end{aligned}
$$

- Comparing with equations for a full adder, we can build a full subtractor from a full adder
- Any n-bit adder circuit can be made to function as a subtractor by complementing subtrahend and treating carry-in and carry-out signals as borrows with opposite active level

Figure 16: Subtractor design using adders: (a) full adder; (b) full subtractor; (c) interpreting 74×999 as a full subtractor; (d) ripple subtractor.

- A faster adder than ripple can be built by obtaining each sum output $s_{i}=x_{i} \oplus y_{i} \oplus c_{i}$ with just two levels of logic
- This can be accomplished by expanding c_{i} in terms of $x_{0}-x_{i-1}$, $y_{0}-y_{i-1}$, and c_{0}
- More complexity is introduced by expanding XORs
- We can keep XORs and design c_{i} logic using ideas of carry lookahead

Figure 17: Structure of one stage of a carry-lookahead adder.

- Adder stage i is said to generate a carry if it produces a $c_{i+1}=1$ independent of inputs on $x_{0}-x_{i-1}, y_{0}-y_{i-1}$, and c_{0}
- This happens when both of addend bits of that stage are 1

$$
g_{i}=x_{i} \cdot y_{i}
$$

- Adder stage i is said to propagate carries if it produces a $c_{i+1}=1$ in presence of an input combination of $x_{0}-x_{i-1}, y_{0}-y_{i-1}$, and c_{0} that causes a $c_{i}=1$
- This happens when at least one of addend bits of that stage is 1

$$
p_{i}=x_{i}+y_{i}
$$

- Carry output of a stage can be written as

$$
c_{i+1}=g_{i}+p_{i} \cdot c_{i}
$$

- To eliminate carry ripple, we recursively expand c_{i} term for each stage and multiply out to obtain a two-level AND-OR expression

$$
\begin{aligned}
c_{1} & =g_{0}+p_{0} \cdot c_{0} \\
c_{2} & =g_{1}+p_{1} \cdot c_{1} \\
& =g_{1}+p_{1} \cdot\left(g_{0}+p_{0} \cdot c_{0}\right) \\
& =g_{1}+p_{1} \cdot g_{0}+p_{1} \cdot p_{0} \cdot c_{0} \\
c_{3} & =g_{2}+p_{2} \cdot c_{2} \\
& =g_{2}+p_{2} \cdot\left(g_{1}+p_{1} \cdot g_{0}+p_{1} \cdot p_{0} \cdot c_{0}\right) \\
& =g_{2}+p_{2} \cdot g_{1}+p_{2} \cdot p_{1} \cdot g_{0}+p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0} \\
c_{4} & =g_{3}+p_{3} \cdot c_{3} \\
& =g_{3}+p_{3} \cdot\left(g_{2}+p_{2} \cdot g_{1}+p_{2} \cdot p_{1} \cdot g_{0}+p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}\right) \\
& =g_{3}+p_{3} \cdot g_{2}+p_{3} \cdot p_{2} \cdot g_{1}+p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0}+p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}
\end{aligned}
$$

Hence, "Carry Lookahead Logic" in Fig. 17 has three levels of delay; one for generate and propagate signals, and two for SOPs shown

- 74×283 uses carry-lookahead technique

Figure 18: Traditional logic symbol for the 74×283 4-bit binary adder.

- 74×283
- It produces g_{i}^{\prime} and p_{i}^{\prime}, since inverting gates are faster
- Manipulating half-sum equation

$$
\begin{aligned}
h s_{i} & =x_{i} \oplus y_{i} \\
& =x_{i} \cdot y_{i}^{\prime}+x_{i}^{\prime} \cdot y_{i} \\
& =x_{i} \cdot y_{i}^{\prime}+x_{i} \cdot x_{i}^{\prime}+x_{i}^{\prime} \cdot y_{i}+y_{i} \cdot y_{i}^{\prime} \\
& =\left(x_{i}+y_{i}\right) \cdot\left(x_{i}^{\prime}+y_{i}^{\prime}\right) \\
& =\left(x_{i}+y_{i}\right) \cdot\left(x_{i} \cdot y_{i}\right)^{\prime} \\
& =p_{i} \cdot g_{i}^{\prime}
\end{aligned}
$$

Thus, an AND gate with an inverted input is used instead of an XOR gate to create each half-sum bit

- 74×283
- It creates carry signals using an INVERT-OR-AND structure (\equiv AND-OR-INVERT), which has same delay as a single inverting gate

$$
c_{i+1}=g_{i}+p_{i} \cdot c_{i}=p_{i} \cdot g_{i}+p_{i} \cdot c_{i}=p_{i} \cdot\left(g_{i}+c_{i}\right)
$$

(p_{i} is always 1 when g_{i} is 1)

$$
\begin{aligned}
c_{1}= & p_{0} \cdot\left(g_{0}+c_{0}\right) \\
c_{2}= & p_{1} \cdot\left(g_{1}+c_{1}\right) \\
= & p_{1} \cdot\left(g_{1}+p_{0} \cdot\left(g_{0}+c_{0}\right)\right) \\
= & p_{1} \cdot\left(g_{1}+p_{0}\right) \cdot\left(g_{1}+g_{0}+c_{0}\right) \\
c_{3}= & p_{2} \cdot\left(g_{2}+c_{2}\right) \\
= & p_{2} \cdot\left(g_{2}+p_{1} \cdot\left(g_{1}+p_{0}\right) \cdot\left(g_{1}+g_{0}+c_{0}\right)\right) \\
= & p_{2} \cdot\left(g_{2}+p_{1}\right) \cdot\left(g_{2}+g_{1}+p_{0}\right) \cdot\left(g_{2}+g_{1}+g_{0}+c_{0}\right) \\
c_{4}= & p_{3} \cdot\left(g_{3}+c_{3}\right) \\
= & p_{3} \cdot\left(g_{3}+p_{2} \cdot\left(g_{2}+p_{1}\right) \cdot\left(g_{2}+g_{1}+p_{0}\right) \cdot\left(g_{2}+g_{1}+g_{0}+c_{0}\right)\right) \\
= & p_{3} \cdot\left(g_{3}+p_{2}\right) \cdot\left(g_{3}+g_{2}+p_{1}\right) \cdot\left(g_{3}+g_{2}+g_{1}+p_{0}\right) \\
& \cdot\left(g_{3}+g_{2}+g_{1}+g_{0}+c_{0}\right)
\end{aligned}
$$

Figure 19: Logic diagram for the 74×283 4-bit binary adder.

Adders, Subtractors, and ALUs: MSI Adders

- Propagation delay from C0 input to C4 output of '283 is very short, same as two inverting gates
- As a result, fast group-ripple adders with more than four bits can be made by cascading carry outputs and inputs of '283s
- Total propagation delay from C0 to C16 in Fig. 20 is same as that of eight inverting gates

Figure 20: A 16-bit group-ripple adder.

Adders, Subtractors, and ALUs: MSI ALUs

- An arithmetic and logic unit (ALU) is a combinational circuit that can perform any of a number of different arithmetic and logical operations on a pair of b-bit operands
- The operation to be performed is specified by a set of function-select inputs

Table 11: Functions performed by the 74×181 4-bit ALU.

Inputs				Function	
S3	S2	S1	S0	$M=0$ (arithmetic)	$M=1$ (logic)
0	0	0	0	$F=A$ minus 1 plus CIN	$F=A^{\prime}$
0	0	0	1	$F=A \cdot B$ minus 1 plus CIN	$F=A^{\prime}+B^{\prime}$
0	0	1	0	$F=A \cdot B^{\prime}$ minus 1 plus $C I N$	$F=A^{\prime}+B$
0	0	1	1	$F=1111$ plus $C 1 N$	$F=1111$
0	1	0	0	$F=A$ plus $\left(A+B^{\prime}\right)$ plus CIN	$F=A^{\prime} \cdot B^{\prime}$
0	1	0	1	$F=A \cdot B$ plus $\left(A+B^{\prime}\right)$ plus $C I N$	$F=B^{\prime}$
0	1	1	0	$F=A$ minus B minus 1 plus CIN	$F=A \oplus B^{\prime}$
0	1	1	1	$F=A+B^{\prime}$ plus CIN	$F=A+B^{\prime}$
1	0	0	0	$F=A$ plus $(A+B)$ plus CIN	$F=A^{\prime} \cdot B$
1	0	0	1	$F=A$ plus B plus CIN	$F=A \oplus B$
1	0	1	0	$F=A \cdot B^{\prime}$ plus $(A+B)$ plus $C 1 N$	$F=B$
1	0	1	1	$F=A+B$ plus CIN	$F=A+B$
1	1	0	0	$F=A$ plus A plus CIN	$F=0000$
1	1	0	1	$F=A \cdot B$ plus A plus $C I N$	$F=A \cdot B^{\prime}$
1	1	1	0	$F=A \cdot B^{\prime}$ plus A plus $C I N$	$F=A \cdot B$
1	1	1	1	$F=A$ plus CIN	$F=A$

Figure 21: Logic symbol for
the 74×181 4-bit ALU.

Figure 22: Logic symbols for 4-bit ALUs: (a) 74×381; (b) 74×382.

Table 12: Functions performed by the 74×381 and 74×382 4-bit ALUs.

Inputs			
S2	S1	S0	
0	0	0	$F=0000$
0	0	1	$F=B$ minus A minus 1 plus $C I N$
0	1	0	$F=A$ minus B minus 1 plus $C I N$
0	1	1	$F=A$ plus B plus $C I N$
1	0	0	$F=A \oplus B$
1	0	1	$F=A+B$
1	1	0	$F=A \cdot B$
1	1	1	$F=1111$

- '381 provides group-carry-lookahead outputs while '382 provides ripple carry and overflow outputs
- '181 and '381 provide group-carry-lookahead outputs that allow multiple ALUs to be cascaded without rippling carries between 4-bit groups
- Like 74×283, ALUs use carry lookahead to produce carries internally
- However, they also provide G_L and P_L outputs that are carry-lookahead signals for entire 4-bit group
- G_L output is asserted if ALU produces a carry-out whether or not there is a carry-in

$$
G_{-} L=\left(g_{3}+p_{3} \cdot g_{2}+p_{3} \cdot p_{2} \cdot g_{1}+p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0}\right)^{\prime}
$$

- P_L output is asserted if ALU produces a carry-out if there is a carry-in

$$
P_{-} L=\left(p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0}\right)^{\prime}
$$

- When ALUs are cascaded, group-carry-lookahead outputs may be combined in just two levels of logic to produce carry input to each ALU
- A lookahead carry circuit performs this operation

Figure 23: Logic symbol for the 74×182 lookahead carry circuit.

Figure 24: A 16-bit ALU using group-carry lookahead.

- '182's carry equations
- '182 realizes each of these equations with one level of delay-an INVERT-OR-AND gate

$$
c_{i+1}=g_{i}+p_{i} \cdot c_{i}=\left(g_{i}+p_{i}\right) \cdot\left(g_{i}+c_{i}\right)
$$

$$
\begin{aligned}
C 1= & (G 0+P 0) \cdot(G 0+C 0) \\
C 2= & (G 1+P 1) \cdot(G 1+G 0+P 0) \cdot(G 1+G 0+C 0) \\
C 3= & (G 2+P 2) \cdot(G 2+G 1+P 1) \cdot(G 2+G 1+G 0+P 0) \\
& \cdot(G 2+G 1+G 0+C 0)
\end{aligned}
$$

- When more than four ALUs are cascaded, they may be partitioned into "supergroups," each with its own '182
- E.g., a 64-bit adder would have four supergroups, each containing four ALUs and a '182
- G_L and P_L outputs of each '182 can be combined in a next-level '182, since they indicate whether the supergroup generates or propagates carries

$$
\begin{aligned}
G_{-} L= & ((G 3+P 3) \cdot(G 3+G 2+P 2) \cdot(G 3+G 2+G 1+P 1) \\
& \cdot(G 3+G 2+G 1+G 0))^{\prime} \\
P_{-} L= & (P 0 \cdot P 1 \cdot P 2 \cdot P 3)^{\prime}
\end{aligned}
$$

Adders, Subtractors, and ALUs: Adders in Verilog

- Verilog has built-in addition $(+)$ and subtraction (-) operators for bit vectors
- Bit vectors are considered to be unsigned or two's-complement signed numbers
- Actual addition or subtraction operation is exactly the same for either interpretation of bit vectors
- Since exactly the same logic circuit is synthesized for either interpretation, Verilog compiler does not need to know how we are interpreting bit vectors
- Only handling of carry, borrow, and overflow conditions differs by interpretation, and that is done separately from addition or subtraction itself

Table 13: Verilog program with addition of both signed and unsigned numbers.

```
module Vradders(A, B, C, D, S, T, OVFL, COUT);
    input [7:0] A, B, C, D;
    output [7:0] S, T;
    output OVFL, COUT;
    // S and OVFL -- signed interpretation
    assign S = A + B;
    assign OVFL = (A[7]==B[7]) && (S[7]!=A[7]);
    // T and COUT -- unsigned interpretation
    assign {COUT, T} = C + D;
endmodule
```


Figure 25: Two ways to synthesize a selectable addition: (a) two adders and a selectable sum; (b) one adder with selectable inputs.

Adders, Subtractors, and ALUs: Adders in Verilog

- Addition and subtraction are expensive in terms of number of gates required
- Most Verilog compilers attempt to reuse adder blocks whenever possible
- Tab. 14 is a Verilog module that includes two different additions
- Fig. 25(a) shows a circuit that might be synthesized
- However, many compilers are smart enough to use approach (b)
- An n-bit 2-input multiplexer is smaller than an n-bit adder

Table 14: Verilog module that allows adder sharing.

```
module Vraddersh(SEL, A, B, C, D, S);
    input SEL;
    input [7:0] A, B, C, D;
    output [7:0] S;
    reg [7:0] S;
    always @ (SEL, A, B, C, D)
        if (SEL) S = A + B;
        else S = C + D;
endmodule
```

Table 15: Alternate version of Tab. 14, using a continuous-assignment statement.

```
module Vraddersc(SEL, A, B, C, D, S);
    input SEL;
    input [7:0] A, B, C, D;
    output [7:0] S;
    assign S = (SEL) ? A + B : C + D;
endmodule
```

- A typical compiler should synthesize the same circuit for either module of Tab. 14 or 15

Adders, Subtractors, and ALUs: Adders in Verilog

Table 16: An 8-bit 74×381-like ALU.

```
module Vr74x381(S, A, B, CIN, F, G_L, P_L);
    input [2:0] S;
    input [7:0] A, B;
    input CIN;
    output [7:0] F;
    output G_L, P_L;
    reg [7:0] F;
    reg G_L, P_L, GG, GP;
    reg [7:0] G, P;
    integer i;
    always 0 (S or A or B or CIN or G or P or GG or GP) begin
        for (i = 0; i <= 7; i = i + 1) begin
            G[i] = A[i] & B[i];
            P[i] = A[i] | B[i];
        end
        GG = G[0]; GP = P[0];
        for (i = 1; i<= 7; i = i + 1) begin
            GG = G[i] | (GG & P[i]);
            GP = P[i] & GP;
        end
        G_L = ~GG; P_L = ~ GP;
        case (S)
            3'd0: F = 8'b0;
            3'd1: F = B - A - 1 + CIN;
            3'd2: F = A - B - 1 + CIN;
            3'd3: F = A + B + CIN;
            3'd4: F = A - B;
            3'd5: F = A | B;
            3'd6: F = A & B;
            3'd7: F = 8'b11111111;
            default: F = 8'b0;
        endcase
    end
endmodule
```


Inputs			
S2	S1	S0	
0	0	0	$F=0000$
0	0	1	$F=B$ minus A minus 1 plus $C I N$
0	1	0	$F=A$ minus B minus 1 plus $C I N$
0	1	1	$F=A$ plus B plus $C I N$
1	0	0	$F=A \oplus B$
1	0	1	$F=A+B$
1	1	0	$F=A \cdot B$
1	1	1	$F=1111$

References

John F. Wakerly, Digital Design: Principles and Practices (4th Edition), Prentice Hall, 2005.

