
System Design

Lecture 7

1 Chapter 7 Design and implementation

Outline

 Introduction to system design

 Design for dependability

 Design for security

 Design for performance, modifiability, testability and

usability

 UML Class Diagram in Design

 Design classes

 Design relationships

2 Chapter 7 Design and implementation

© Clear View Training 2010 v2.6 3

Introduction to System Design

Lecture 7/Part 1

© Clear View Training 2010 v2.6 4

Design purpose

 Decide how the system's functions are to be

implemented and how non-functional requirements are

to be ensured

 Decide on strategic design issues such as persistence,

distribution etc.

 Create policies to deal with tactical design issues

© Clear View Training 2010 v2.6 5

Design model

 Design model is a refinement of an analysis model to
such a degree that it can be implemented

 In MDD design models include all implementation details and
can be automatically translated into code

 In OO design models:

 All attributes are completely specified including type, visibility
and default values

 Analysis operations become fully specified operations (methods)
with a return type and parameter list

 Many new classes are added to include implementation details,
such as utility classes, middleware classes or GUI classes

 Design models are programming-language specific

 Multiple inheritance, templates, nested classes, collections

© Clear View Training 2010 v2.6 6

 A design model may contain 10 to 100 times as many
classes as the analysis model

 The analysis model helps us to see the big picture without
getting lost in implementation details

We need to maintain both models if:

 It is a big system (>200 design classes)

 It has a long expected lifespan

 It is a strategic system

 We are outsourcing construction of the system

We can make do with only a design model if:

 It is a small system

 It has a short lifespan

 It is not a strategic system

Analysis vs. design model

Design best practices

 A system design consists of a collection of decisions that

help to control different attributes of software quality.

 The design aims to ensure achievement of system functionality,

but whenever there are different ways to achieve the

functionality, the impact of each design decision on software

quality becomes the issue.

Quality-driven design decisions are often known as

tactics, which isolate and describe design best practices

with respect to a specific quality attribute.

 Design patterns are a specific and very popular

example.

7 Chapter 7 Design and implementation

Design patterns

 A design pattern is a way of reusing abstract knowledge

about a problem and its solution.

 A pattern is a description of the problem and the essence

of its solution.

 It should be sufficiently abstract to be reused in different

settings.

 Pattern descriptions usually make use of object-oriented

characteristics such as inheritance and polymorphism.

8 Chapter 7 Design and implementation

Pattern elements

 Name

 A meaningful pattern identifier.

 Problem description.

 Solution description.

 Not a concrete design but a template for a design solution that

can be instantiated in different ways.

 Consequences

 The results and trade-offs of applying the pattern.

9 Chapter 7 Design and implementation

The Observer pattern

 Name

 Observer.

 Description

 Separates the display of object state from the object itself.

 Problem description

 Used when multiple displays of state are needed.

 Solution description

 See slide with UML description.

 Consequences

 Optimisations to enhance display performance are impractical.

10 Chapter 7 Design and implementation

Multiple displays using the Observer pattern

11 Chapter 7 Design and implementation

A UML model of the Observer pattern

12 Chapter 7 Design and implementation

Design problems

 To use patterns in your design, you need to recognize

that any design problem you are facing may have an

associated pattern that can be applied.

 Tell several objects that the state of some other object has

changed (Observer pattern).

 Tidy up the interfaces to a number of related objects that have

often been developed incrementally (Façade pattern).

 Provide a standard way of accessing the elements in a

collection, irrespective of how that collection is implemented

(Iterator pattern).

 Allow for the possibility of extending the functionality of an

existing class at run-time (Decorator pattern).

13 Chapter 7 Design and implementation

Design for non-functional qualities

 Design patterns help us to implement specific

functionality while maintaining high code quality

 Respect of design patterns improves system maintainability

What if also other non-functional qualities are of high

importance?

 Are there any “patterns” for dependability, performance,

security, etc.?

 The rest of this lecture discusses such “patterns”.

14 Chapter 7 Design and implementation

Design for Dependability

Lecture 7/Part 2

15 Chapter 13 Dependability Engineering

Topics covered

 Dependable processes

 How the use of dependable processes leads to dependable

systems

 Redundancy and diversity

 Fundamental approaches to achieve fault tolerance.

 Dependable systems architectures

 Architectural patterns for software fault tolerance

Chapter 13 Dependability Engineering 16

Software dependability

 In general, software customers expect all software to be

dependable. However, for non-critical applications, they

may be willing to accept some system failures.

 Some applications (critical systems) have very high

dependability requirements and special software

engineering techniques may be used to achieve this.

 Medical systems

 Telecommunications and power systems

 Aerospace systems

17 Chapter 13 Dependability Engineering

Dependability achievement

 Fault avoidance

 The system is developed in such a way that human error is
avoided and thus system faults are minimised.

 The development process is organised so that faults in the
system are detected and repaired before delivery to the
customer.

 Fault detection

 Verification and validation techniques are used to discover and
remove faults in a system before it is deployed.

 Fault tolerance

 The system is designed so that faults in the delivered software
do not result in system failure.

18 Chapter 13 Dependability Engineering

Dependable processes for fault avoidance

 To ensure a minimal number of software faults, it is

important to have a well-defined, repeatable software

process.

 A well-defined repeatable process is one that does not

depend entirely on individual skills; rather can be

enacted by different people.

 Regulators use information about the process to check if

good software engineering practice has been used.

 For fault detection, it is clear that the process activities

should include significant effort devoted to verification

and validation.

19 Chapter 13 Dependability Engineering

Static fault detection and its costs

20 Chapter 13 Dependability Engineering

Dynamic fault detection tactics

 Ping/echo. One component issues a ping and expects

to receive back an echo, within a predefined time, from

the component under scrutiny.

 Heartbeat (dead man timer). In this case one

component emits a heartbeat message periodically and

another component listens for it. If the heartbeat fails, the

originating component is assumed to have failed and a

fault correction component is notified.

 Exceptions. One method for recognizing faults is to

encounter an exception, which is raised when one of the

fault classes is recognized.

21
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Fault tolerance

 In critical situations, software systems must be
fault tolerant.

 Fault tolerance is required where there are high
availability requirements or where system failure costs
are very high.

 Fault tolerance means that the system can continue in
operation in spite of software failure.

 Even if the system has been proved to conform to its
specification, it must also be fault tolerant as there may
be specification errors or the validation may be incorrect.

22 Chapter 13 Dependability Engineering

Diversity and redundancy

 Redundancy

 Keep more than 1 version of a critical component available so
that if one fails then a backup is available.

 E.g. switch to backup servers automatically if failure occurs.

 Diversity

 Provide the same functionality in different ways so that they will
not fail in the same way.

 E.g. different servers may be implemented using different
operating systems (e.g. Windows and Linux).

 However, adding diversity and redundancy adds
complexity and this can increase the chances of error.

 Some engineers advocate simplicity and extensive V & V is a
more effective route to software dependability.

23 Chapter 13 Dependability Engineering

Dependable system architectures

 Dependable systems architectures are used in situations

where fault tolerance is essential. These architectures

are generally all based on redundancy and diversity.

 Examples of situations where dependable architectures

are used:

 Flight control systems, where system failure could threaten the

safety of passengers

 Reactor systems where failure of a control system could lead to

a chemical or nuclear emergency

 Telecommunication systems, where there is a need for 24/7

availability.

Chapter 13 Dependability Engineering 24

Fault tolerance and recovery tactics (1)

 Voting. Processes running on redundant processors

each take equivalent input and compute a simple output

value that is sent to a voter to choose non-deviant result.

 Active redundancy (hot restart). All redundant

components respond to events in parallel. Consequently,

they are all in the same state. The response from only

one component is used (usually the first to respond), and

the rest are discarded.

 Passive redundancy (warm restart/dual redundancy/

triple redundancy). One component (the primary)

responds to events and informs the other components

(the standbys) of state updates they must make.
25

© Software Architecture in Practice
by L. Bass, P. Clements and R. Kazman

Fault tolerance and recovery tactics (2)

 Spare. A standby spare computing platform is configured

to replace many different failed components. It must be

rebooted to the appropriate software configuration and

have its state initialized when a failure occurs.

 Shadow operation. A previously failed component may

be run in "shadow mode" for a short time to make sure

that it mimics the behavior of the working components

before restoring it to service.

 Checkpoint/rollback. A checkpoint is a recording of a

consistent state created either periodically or in response

to specific events, to which the system can be restored.

26
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

N-version programming pattern

 Combines different dependability tactics

Multiple versions of a software system carry out

computations at the same time.

 There should be an odd number of versions involved, typically 3.

 The versions should be designed and implemented by different

teams, since it is assumed that different teams are unlikely to

make the same mistakes.

 The results are compared using a voting system and the

majority result is taken to be the correct result.

 Approach derived from the notion of triple-modular

redundancy, as used in hardware systems.

Chapter 13 Dependability Engineering 27

N-version programming

28 Chapter 13 Dependability Engineering

Self-monitoring architectures

Multi-channel architectures with diverse SW and HW in

each channel.

 The same computation is carried out on each channel and the

results compared.

 The system monitors its own operations and takes action if

inconsistencies are detected.

Chapter 13 Dependability Engineering 29

Protection systems

 A specialized system that is associated with some other

control system, which can take emergency action if a

failure occurs.

 System to stop a train if it passes a red light

 System to shut down a reactor if temperature/pressure are too

high

 Protection systems are redundant because they include

monitoring and control capabilities that replicate those in

the control software.

 Protection systems should be diverse and use different

technology from the control software.

Chapter 13 Dependability Engineering 30

Dependable programming

Good programming practices can be adopted that help

reduce the incidence of program faults.

 These programming practices support

 Fault avoidance

 Fault detection

 Fault tolerance

 Dependable programming tactics will be detailed in the

next lecture where we discuss the Implementation stage.

Chapter 13 Dependability Engineering 31

Key points

 Dependability in a program can be achieved by avoiding the

introduction of faults, by detecting and removing faults before

system deployment, and by including fault tolerance facilities.

 The use of redundancy and diversity in hardware, software

processes and software systems is essential for the development of

dependable systems.

 The use of a well-defined, repeatable process is essential if faults in

a system are to be minimized.

 Dependable system architectures are system architectures that are

designed for fault tolerance. Architectural styles that support fault

tolerance include protection systems, self-monitoring architectures

and N-version programming.

Chapter 13 Dependability Engineering 32

Design for Security

Lecture 7/Part 3

Chapter 14 Security Engineering 33

Topics covered

 Architectural design

 Design guidelines for security

 Guidelines that help you design a secure system

 System survivability

 Allow the system to deliver essential services when under attack

Chapter 14 Security Engineering 34

Architectural design

 Two fundamental issues have to be considered when

designing an architecture for security.

 Protection

• How should the system be organised so that critical assets can be

protected against external attack?

 Distribution

• How should system assets be distributed so that the effects of a

successful attack are minimized?

 These are potentially conflicting

 If assets are distributed, then they are more expensive to protect.

If assets are protected, then usability and performance

requirements may be compromised.

Chapter 14 Security Engineering 35

Protection

 Platform-level protection

 Top-level controls on the platform on which a system runs.

 Application-level protection

 Specific protection mechanisms built into the application itself

e.g. additional password protection.

 Record-level protection

 Protection that is invoked when access to specific information is

requested

 These lead to a layered protection architecture

Chapter 14 Security Engineering 36

A layered protection architecture

Chapter 14 Security Engineering 37

Distribution

 Distributing assets means that attacks on one system do

not necessarily lead to complete loss of system service

 Each platform has separate protection features and may

be different from other platforms so that they do not

share a common vulnerability

 Distribution is particularly important if the risk of denial of

service attacks is high

Chapter 14 Security Engineering 38

Distributed assets in an equity trading

system

Chapter 14 Security Engineering 39

Security tactics

 Security tactics encapsulate good practice in secure

systems design

 Security tactics serve two purposes:

 They raise awareness of security issues in a software

engineering team. Security is considered when design decisions

are made.

 They can be used as the basis of a review checklist that is

applied during the system validation process.

 Tactics described here are applicable during software

specification and design

Chapter 14 Security Engineering 40

Tactics for secure systems engineering

Security tactics

Base security decisions on an explicit security policy

Avoid a single point of failure

Fail securely

Balance security and usability

Log user actions

Use redundancy and diversity to reduce risk

Validate all inputs

Compartmentalize your assets

Design for deployment

Design for recoverability

Chapter 14 Security Engineering 41

Design guidelines 1-3

 Base decisions on an explicit security policy

 Define a security policy for the organization that sets out the

fundamental security requirements that should apply to all

organizational systems.

 Avoid a single point of failure

 Ensure that a security failure can only result when there is more

than one failure in security procedures. For example, have

password and question-based authentication.

 Fail securely

 When systems fail, for whatever reason, ensure that sensitive

information cannot be accessed by unauthorized users even

although normal security procedures are unavailable.

Chapter 14 Security Engineering 42

Design guidelines 4-6

 Balance security and usability

 Try to avoid security procedures that make the system difficult to

use. Sometimes you have to accept weaker security to make the

system more usable.

 Log user actions

 Maintain a log of user actions that can be analyzed to discover

who did what. If users know about such a log, they are less likely

to behave in an irresponsible way.

 Use redundancy and diversity to reduce risk

 Keep multiple copies of data and use diverse infrastructure so

that an infrastructure vulnerability cannot be the single point of

failure.

Chapter 14 Security Engineering 43

Design guidelines 7-10

 Validate all inputs

 Check that all inputs are within range so that unexpected inputs

cannot cause problems.

 Compartmentalize your assets

 Organize the system so that assets are in separate areas and

users only have access to the information that they need rather

than all system information.

 Design for deployment

 Design the system to avoid deployment problems

 Design for recoverability

 Design the system to simplify recoverability after a successful

attack.
Chapter 14 Security Engineering 44

System survivability

 Survivability is an emergent system property that reflects

the systems ability to deliver essential services whilst it is

under attack or after part of the system was damaged

 Survivability analysis

and should be part of

the security

engineering

process

Chapter 14 Security Engineering 45

Survivability strategies

 Resistance

 Avoiding problems by building capabilities into the system to
resist attacks

 Recognition

 Detecting problems by building capabilities into the system to
detect attacks and failures and assess the resultant damage

 Recovery

 Tolerating problems by building capabilities into the system to
deliver services whilst under attack

Chapter 14 Security Engineering 46

Key points

 Design for security involves architectural design,
following good design practice and minimising the
introduction of system vulnerabilities

 General security guidelines sensitize designers to
security issues and serve as review checklists

 System survivability reflects the ability of a system to
deliver services whilst under attack or after part of the
system has been damaged.

Chapter 14 Security Engineering 47

Design for Performance, Modifiability, Testability

and Usability

Lecture 7/Part 4

48
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Outline

 Performance tactics

 Resource demand

 Resource management

 Resource arbitration

 Modifiability tactics

 Localize changes

 Prevention of ripple effect

 Defer binding time

 Testability tactics

 Manage input/output

 Internal monitoring

 Usability tactics

49

© Software Architecture in Practice
by L. Bass, P. Clements and R. Kazman

Performance tactics – Resource demand

 Reduce the resources required for processing an event

stream.

 Increase computational efficiency.

 Reduce computational overhead.

 Reduce the number of events processed.

 Manage event rate.

 Control frequency of sampling.

 Control the use of resources.

 Bound execution times.

 Bound queue sizes.

50
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Performance tactics – Resource

management

 Introduce concurrency. If requests can be processed in

parallel, the blocked time can be reduced.

Maintain multiple copies of either data or

computations. The purpose of replicas is to reduce the

contention that would occur if all computations took

place on a central server.

 Increase available resources. Faster processors,

additional processors, additional memory, and faster

networks all have the potential for reducing latency.

51
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Performance tactics – Resource arbitration

 The selection of optimal scheduling strategy for each

resource influences optimal resource usage, minimizes

the number of resources used, minimizes latency,

maximizes throughput, prevents starvation, and so forth.

 A scheduling policy conceptually has two parts: a

priority assignment and dispatching.

 All scheduling policies assign priorities.

 In some cases the assignment is as simple as first-in/first-out.

 In other cases, it can be tied to the deadline of the request or its

semantic importance.

52
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Modifiability tactics – Localize modifications

Maintain semantic coherence. The goal is to ensure

that all the responsibilities in a module work together

without excessive reliance on other modules.

Generalize the module. Making a module more general

allows it to compute a broader range of functions on

input.

 Limit possible options. Modifications, especially within

a product line, may be far ranging and hence affect

many modules. Restricting the possible options will

reduce the effect of these modifications.

53
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Modifiability tactics – Prevent ripple effects

 A ripple effect from a modification is the necessity of

making changes to modules not directly affected by it.

 For instance, if module A is changed to accomplish a particular

modification, then module B is changed only because of the

change to module A. B has to be modified because it depends,

in some sense, on A.

 Hide information. Information hiding is the

decomposition of the responsibilities for an entity (a

system or some decomposition of a system) into smaller

pieces and choosing which information to make private

and which to make public.

54
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Modifiability tactics – Prevent ripple effects

Maintain existing interfaces. If B depends on the name

and signature of an interface of A, maintaining this

interface and its syntax allows B to remain unchanged.

 Restrict communication paths. Restrict the modules

with which a given module shares data via data

production and consumption.

 Use an intermediary. If B has any type of dependency

on A other than semantic, it is possible to insert an

intermediary between B and A that manages activities

associated with the dependency.

55
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Modifiability tactics – Defer binding time

 Runtime registration supports plug-and-play operation

at the cost of additional overhead to manage the

registration. Publish/subscribe registration, for example,

can be implemented at either runtime or load time.

 Configuration files are intended to set parameters at

startup.

 Polymorphism allows late binding of method calls.

 Component replacement allows load time binding.

 Adherence to defined protocols allows runtime binding

of independent processes.

56
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Testability tactics – Manage input/output

 Record/playback. The information crossing an interface

during normal operation is saved in some repository and

represents output from one component and input to

another.

 Separate interface from implementation. Separating

the interface from the implementation allows substitution

of implementations for various testing purposes.

 Specialize access routes/interfaces. Having

specialized testing interfaces allows the capturing or

specification of variable values for a component through

a test harness as well as independently from its normal

execution.
57

© Software Architecture in Practice
by L. Bass, P. Clements and R. Kazman

Testability tactics – Internal monitoring

 Built-in monitors. The component can maintain state,

performance load, capacity, security, or other information

accessible through an interface.

 This interface can be a permanent interface of the

component or it can be introduced temporarily via an

instrumentation technique such as aspect-oriented

programming or preprocessor macros.

 A common technique is to record events when

monitoring states have been activated.

58
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Usability tactics – Design-time tactics

 Separate the user interface from the rest of the

application. Localizing expected changes is the

rationale for semantic coherence.

 Since the user interface is expected to change frequently

both during the development and after deployment,

maintaining the user interface code separately will

localize changes to it.

59
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Usability tactics – Runtime tactics

 Maintain a model of the task. The task model is used to determine

context so the system can have some idea of what the user is

attempting and provide various kinds of assistance.

 For example, knowing that sentences usually start with capital letters

would allow an application to correct a lower-case letter in that position.

 Maintain a model of the user. The model determines the user's

knowledge of the system, the user's behavior in terms of expected

response time, and other aspects specific to a user or a class of

users.

 For example, maintaining a user model allows the system to pace

scrolling so that pages do not fly past faster than they can be read.

 Maintain a model of the system. The model determines the

expected system behavior so that appropriate feedback can be

given to the user.

60
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Quality conflicts

Within complex systems, quality attributes can never be

achieved in isolation.

 The achievement of any one will have an effect, sometimes

positive and sometimes negative, on the achievement of others.

 For example, almost every quality attribute negatively

affects performance.

 Portability. The main technique for achieving portable software is

to isolate system dependencies, which introduces overhead into

the system's execution, typically as process or procedure

boundaries, and this hurts performance.

 Reliability. Redundancy together with a voting schema delays

system response.

© Software Architecture in Practice
by L. Bass, P. Clements and R. Kazman

61

Quality conflicts

 It is not possible for any system to be optimized for all of

these attributes.

 The quality plan should therefore define the most

important quality attributes for the software that is being

developed.

 The plan should also include a definition of the quality

assessment process, an agreed way of assessing

whether some quality, such as maintainability or

robustness, is present in the product.

62
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

UML Class Diagram in Design

Lecture 7/Part 5

63 © Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 64

What are design classes?

 Design classes are classes whose specifications have been
completed to such a degree that they can be implemented

 Specifies an actual piece of code

 Design classes arise from analysis classes:

 Remember – analysis classes arise from the problem domain only

 A refinement of analysis classes to include implementation details

 All attributes are completely specified including type, visibility and
default values

 Analysis operations become fully specified operations (methods) with a
return type and parameter list

 Design classes arise from the solution domain

 Utility classes – String, Date, Time etc.

 Middleware classes – database access, comms etc.

 GUI classes – Applet, Button etc.

© Clear View Training 2010 v2.6 65

Anatomy of a design class

 A design class must have:

 A complete set of operations
including parameter lists, return
types, visibility, exceptions, set and
get operations, constructors and
destructors

 A complete set of attributes
including types and default values

BankAccount

-name:String

-number:String

-balance:double = 0

+BankAccount(name:String, number:String)

+deposit(m:double):void

+withdraw(m:double):boolean

+calculateInterest():double

+getName():String

+setName(n:String):void

+getAddress():String

+setAddress(a:String):void

+getBalance():double

BankAccount

name

number

balance

deposit()

withdraw()

calculateInterest()

analysis design

«trace»

constructor

© Clear View Training 2010 v2.6 66

Well-formed design classes

 Design classes must have the following characteristics to be

“well-formed”:

 Complete and sufficient

 Primitive

 High cohesion

 Low coupling

How do the users of your classes

see them?

Always look at your classes from

their point of view!

MyClass

© Clear View Training 2010 v2.6 67

 Completeness:

 Users of the class will make assumptions from the class name
about the set of operations that it should make available

 For example, a BankAccount class that provides a withdraw()
operation will be expected to also provide a deposit()
operation!

 Sufficiency:

 A class should never surprise a user – it should contain
exactly the expected set of features, no more and no less

 Primitiveness:

 Operations should be designed to offer a single primitive,
atomic service

 A class should never offer more ways of doing the same thing:

• This is confusing to users of the class, leads to maintenance
burdens and can create consistency problems

The public

members of a

class define a

"contract" between

the class its clients

Completeness, sufficiency and primitiveness

© Clear View Training 2010 v2.6 68

High cohesion, low coupling

 High cohesion:

 Each class should have a set of operations that support the

intent of the class, no more and no less

 Each class should model a single abstract concept

 If a class needs to have many responsibilities, then some

of these should be implemented by “helper” classes. The
class then delegates to its helpers

 Low coupling:

 A particular class should be associated with just enough

other classes to allow it to realise its responsibilities

 Only associate classes if there is a true semantic link

between them

 Never form an association just to reuse a fragment of code

in another class!

 Use aggregation rather than inheritance (next slide)

HotelBean

CarBean

HotelCarBean

this example comes

from a real system!

What’s wrong with it?

© Clear View Training 2010 v2.6 69

Aggregation vs. inheritance

 Inheritance gives you fixed

relationships between

classes and objects

 You can’t change the class

of an object at runtime

 There is a fundamental

semantic error here. Is an

Employee just their job or

does an Employee have a

job?

Employee

Manager Programmer

john:Programmer

«instantiate»

1. How can we promote john?

2. Can john have more than one job?

© Clear View Training 2010 v2.6 70

A better solution…

 Using aggregation we

get the correct

semantics:

 An Employee has a

Job

 With this more flexible

model, Employees

can have more than

one Job

just change this link at

runtime to promote john!

Job

Manager Programmer

john:Employee

Employee

:Programmer

«instantiate»

:Manager

«instantiate»

«instantiate»

0..* 0..*

© Clear View Training 2010 v2.6 71

Multiple inheritance

 Sometimes a class may have

more than one superclass

 The "is kind of" and

substitutability principles must

apply for all of the classifications

Multiple inheritance is sometimes

the most elegant way of

modelling something. However:

 Not all languages support it

(e.g. Java)

 It can always be replaced by single

inheritance and delegation

Alarm

AutoDialler

Dialler

IActivate

in this example the AutoDialler

sounds an alarm and rings the

police when triggered - it is

logically both a kind of Alarm and

a kind of Dialler

© Clear View Training 2010 v2.6 72

With inheritance we get two things:

 Interface – the public operations of the base classes

 Implementation – the attributes, relationships, protected and
private operations of the base classes

With interface realization we get exactly one thing:

 Interface – a set of public operations, attributes and relationships
that have no implementation

Use inheritance when we want to inherit implementation.

Use interface realization when we want to define a contract.

Inheritance vs. interface realization

© Clear View Training 2010 v2.6 73

Templates

 Up to now, we have had to specify the types of all
attributes, method returns and parameters. However,
this can be a barrier to reuse

 Consider:

BoundedIntArray

size:int

elements[]:int

addElement(e:int):void

getElement(i:int):int

BoundedFloatArray

size:int

elements[]:float

addElement(e:float):void

getElement(i:int):float

BoundedStringArray

size:int

elements[]:String

addElement(e:String):void

getElement(i:int):String

spot the difference!

etc.

© Clear View Training 2010 v2.6 74

Template syntax

 Template instantiation - the template parameters are
bound to actual values to create new classes based on
the template:

 If the type of a parameter is not specified then the
parameter defaults to being a classifier

 Parameter names are local to the template – two
templates do not have relationship to each other just
because they use the same parameter names!

 Explicit binding is preferred as it allows named
instantiations

BoundedArray

elements[size]:T

addElement(e:T):void

getElement(i:int):T

T, size:int=10

StringArray

elements[10]:String

addElement(e:String):void

getElement(i:int):String

IntArray

elements[100]:int

addElement(e:int):void

getElement(i:int):int

«bind»<T->String>

«bind»<T->int, size->100>

template parameters

template

explicit binding

(the instantiation is named)

default value

BoundedArray<T->float, size->10>

implicit binding

(the instantiation is anonymous)

elements[10]:float

addElement(e:float):void

getElement(i:int):float

© Clear View Training 2010 v2.6 75

 Templates and multiple inheritance should only be used

in design models where those features are available in

the target language:

language templates multiple inheritance

C# Yes No

Java Yes No

C++ Yes Yes

Smalltalk No No

Visual Basic No No

Python No Yes

Templates & multiple inheritance

© Clear View Training 2010 v2.6 76

Nested classes

 A nested class is a class defined inside another class

 It is encapsulated inside the namespace of its containing class

 Nested classes tend to be design artifacts

 Nested classes are only accessible by:

 their containing class

 objects of that their containing class

Frame

HelloFrame MouseMonitor

MouseAdapter

anchor icon

containment

relationship

© Clear View Training 2010 v2.6 77

Key points (design classes)

 Design classes come from:

 A refinement of analysis classes (i.e. the business domain)

 From the solution domain

 Design classes must be well-formed:

 Complete and sufficient

 Primitive operations

 High cohesion

 Low coupling

 Don’t overuse inheritance

 Use inheritance for "is kind of"

 Use aggregation for "is role played by"

 Multiple inheritance should be used sparingly (mixins)

 Use interfaces rather than inheritance to define contracts

 Use templates and nested classes only where the target language
supports them

© Clear View Training 2010 v2.6 78

Design relationships

 Refining analysis associations to design associations
involves several procedures:

 refining associations to aggregation or composition relationships
where appropriate

 implementing one-to-many associations

 implementing many-to-one associations

 implementing many-to-many associations

 implementing bidirectional associations

 implementing association classes

 All design associations must have:

 navigability

 multiplicity on both ends

© Clear View Training 2010 v2.6 79

Aggregation and composition

 In analysis, we often use unrefined associations. In design,

these can become aggregation or composition relationships

We must also add navigability, multiplicity and role names

A B

A B A B

«trace» «trace»

{xor}

Analysis

Design

aggregation composition

© Clear View Training 2010 v2.6 80

Aggregation and composition

Some objects are strongly

related like a tree and

its leaves

Some objects are weakly

related like a computer and

its peripherals

Aggregation Composition

UML defines two types of association:

© Clear View Training 2010 v2.6 81

Aggregation semantics

 The aggregate can sometimes exist independently of the parts,

sometimes not

 The parts can exist independently of the aggregate

 The aggregate is in some way incomplete if some of the parts are missing

 It is possible to have shared ownership of the parts by several aggregates

Computer Printer
0..1 0..*

whole or

aggregate
part

aggregation is a whole–part relationship

A Computer may be attached to 0 or more

Printers

At any one point in time a Printer is

connected to 0 or 1 Computer

Over time, many Computers may use a given

Printer

The Printer exists even if there are no

Computers

The Printer is independent of the Computer

aggregation

© Clear View Training 2010 v2.6 82

Transitive and asymmetric

A B C

Aggregation (and composition) are transitive

If C is a part of B and B is a part of A, then C is a part of A

Product

*

*
Aggregation (and composition) are asymmetric

An object can never be part of itself!

a:Product

b:Product c:Product

d:Product

cycles

are NOT

allowed

reflexive

aggregation

© Clear View Training 2010 v2.6 83

1..*

Aggregation hierarchy

HomeComputer

CPU

RAM HardDrive FloppyDrive CDRom SoundCard GraphicsCard

* 1 1 1

Monitor Speaker Keyboard Mouse

1 1 1 1 2

1

connectedTo

1
1

connectedTo 1

2

© Clear View Training 2010 v2.6 84

Composition semantics

 The parts belong to exactly 1 whole at a time

 The composite has sole responsibility for the disposition of all its
parts. This means responsibility for their creation and destruction

 If the composite is destroyed, it must either destroy all its parts, OR
give responsibility for them over to some other object

 Composition is transitive and asymmetric

Mouse Button
1 1..4

composition is a strong form of aggregation

composite part
composition

always 1

The buttons have no independent

existence. If we destroy the mouse,

we destroy the buttons. They are an

integral part of the mouse

Each button can belong to exactly 1

mouse

© Clear View Training 2010 v2.6 85

Composition and attributes

 Attributes are in effect composition relationships

between a class and the classes of its attributes

 Attributes should be reserved for primitive data types

(int, String, Date etc.) and not references to other

classes

© Clear View Training 2010 v2.6 86

• Many-to-one relationships in
analysis imply shared ownership
and are refined to aggregations

• One-to-one associations in analysis
usually imply single ownership and
usually refine to compositions

A B
1 1

A B
1 1

«trace»

roleName

1 to 1

A B
* 1

A B
* 1

«trace»

roleName

many to 1

analysis

design

1 to 1 and many to 1 associations

© Clear View Training 2010 v2.6 87

1 to many associations

 To refine 1-to-many associations we
introduce a collection (class)

 Collection classes instances store a collection
 of object references to objects of the target

 A collection class always has methods for:

 Adding an object to the collection

 Removing an object from the collection

 Retrieving an object reference in the collection

 Traversing the collection

 Collection classes are typically supplied in
libraries that come as part of the
implementation language

 In Java we find collections in the java.util library

A B
1 *

A B

1 *

Vector
1 1

«trace»

source target

© Clear View Training 2010 v2.6 88

Collection semantics

 You can specify collection semantics by using association end
properties:

property pair

{unordered, nonunique}

{unordered, unique}

{ordered, unique}

{ordered, nonunique}

Bag

Set (default)

OrderedSet

Sequence

OCL collection

property

{ordered}

{unordered}

{unique}

{nonunique}

Elements in the collection are maintained in a strict order

There is no ordering of the elements in the collection

Elements in the collection are all unique an object appears in the collection once

Duplicate elements are allowed in the collection

semantics

A B
1 *

{ordered, unique}

© Clear View Training 2010 v2.6 89

Many to many associations

 There is no commonly used OO

language that directly supports

many-to-many associations

We must reify such associations

into design classes

 Again, we must decide which

side of the association should

have primacy and use

composition, aggregation and

navigability accordingly

Task Resource * *

Allocation Task Resource
1 * 1 *

«trace»

this side has primacy

© Clear View Training 2010 v2.6 90

Bi-directional associations

 There is no commonly used OO

language that directly supports bi-

directional associations

We must resolve each bi-

directional associations into two

unidirectional associations

 Again, we must decide which side

of the association should have

primacy and use composition,

aggregation and navigability

accordingly

A B
1 *

A B

1 *

1 *

«trace»

this side has primacy

© Clear View Training 2010 v2.6 91

Association classes

 There is no commonly

used OO language that

directly supports

association classes

 Refine all association

classes into a design class

 Decide which side of the

association has primacy

and use composition,

aggregation and

navigability accordingly

Company Person
* *

Job

salary:double

Company Person
Job

salary:double

* * 1 1

«trace»

{each Person can only have one

job with a given Company}

this side

has primacy

© Clear View Training 2010 v2.6 92

Key points (design relationships)

 In this section we have seen how we take the incompletely specified

associations in an analysis model and refine them to:

 Aggregation

• Whole-part relationship

• Parts are independent of the whole

• Parts may be shared between wholes

• The whole is incomplete in some way without the parts

 Composition

• A strong form of aggregation

• Parts are entirely dependent on the whole

• Parts may not be shared

• The whole is incomplete without the parts

 One-to-many, many-to-many, bi-directional associations and

association classes are refined in design

