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Outline 

 Introduction to system design 

 Design for dependability 

 Design for security 

 Design for performance, modifiability, testability and 

usability 

 

 UML Class Diagram in Design 

 Design classes 

 Design relationships 

 

2 Chapter 7 Design and implementation 



© Clear View Training 2010 v2.6 3 

Introduction to System Design 

Lecture 7/Part 1 
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Design purpose 

 Decide how the system's functions are to be 

implemented and how non-functional requirements are 

to be ensured 

 Decide on strategic design issues such as persistence, 

distribution etc. 

 Create policies to deal with tactical design issues 
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Design model 

 Design model is a refinement of an analysis model to 
such a degree that it can be implemented 

 In MDD design models include all implementation details and 
can be automatically translated into code 

 In OO design models: 

 All attributes are completely specified including type, visibility 
and default values 

 Analysis operations become fully specified operations (methods) 
with a return type and parameter list 

 Many new classes  are added to include implementation details, 
such as utility classes, middleware classes or GUI classes 

 Design models are programming-language specific 

 Multiple inheritance, templates, nested classes, collections 
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 A design model may contain 10 to 100 times as many 
classes as the analysis model 

 The analysis model helps us to see the big picture without 
getting lost in implementation details 

We need to maintain both models if: 

 It is a big system ( >200 design classes) 

 It has a long expected lifespan 

 It is a strategic system 

 We are outsourcing construction of the system 

We can make do with only a design model if: 

 It is a small system 

 It has a short lifespan 

 It is not a strategic system  

Analysis vs. design model 



Design best practices 

 A system design consists of a collection of decisions that 

help to control different attributes of software quality.  

 The design aims to ensure achievement of system functionality, 

but whenever there are different ways to achieve the 

functionality, the impact of each design decision on software 

quality becomes the issue.  

Quality-driven design decisions are often known as 

tactics, which isolate and describe design best practices 

with respect to a specific quality attribute. 

 Design patterns are a specific and very popular 

example. 
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Design patterns 

 A design pattern is a way of reusing abstract knowledge 

about a problem and its solution. 

 A pattern is a description of the problem and the essence 

of its solution. 

 It should be sufficiently abstract to be reused in different 

settings. 

 Pattern descriptions usually make use of object-oriented 

characteristics such as inheritance and polymorphism. 
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Pattern elements 

 Name 

 A meaningful pattern identifier. 

 Problem description. 

 Solution description. 

 Not a concrete design but a template for a design solution that 

can be instantiated in different ways. 

 Consequences 

 The results and trade-offs of applying the pattern. 
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The Observer pattern 

 Name 

 Observer. 

 Description 

 Separates the display of object state from the object itself. 

 Problem description 

 Used when multiple displays of state are needed. 

 Solution description 

 See slide with UML description. 

 Consequences 

 Optimisations to enhance display performance are impractical. 
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Multiple displays using the Observer pattern  

11 Chapter 7 Design and implementation 



A UML model of the Observer pattern  
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Design problems 

 To use patterns in your design, you need to recognize 

that any design problem you are facing may have an 

associated pattern that can be applied.  

 Tell several objects that the state of some other object has 

changed (Observer pattern). 

 Tidy up the interfaces to a number of related objects that have 

often been developed incrementally (Façade pattern). 

 Provide a standard way of accessing the elements in a 

collection, irrespective of how that collection is implemented 

(Iterator pattern). 

 Allow for the possibility of extending the functionality of an 

existing class at run-time (Decorator pattern). 
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Design for non-functional qualities 

 Design patterns help us to implement specific 

functionality while maintaining high code quality 

 Respect of design patterns improves system maintainability 

What if also other non-functional qualities are of high 

importance? 

 Are there any “patterns” for dependability, performance, 

security, etc.? 

 The rest of this lecture discusses such “patterns”. 
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Design for Dependability 

Lecture 7/Part 2 

15 Chapter 13 Dependability Engineering 



Topics covered 

 Dependable processes 

 How the use of dependable processes leads to dependable 

systems 

 Redundancy and diversity 

 Fundamental approaches to achieve fault tolerance. 

 Dependable systems architectures 

 Architectural patterns for software fault tolerance 
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Software dependability 

 In general, software customers expect all software to be 

dependable. However, for non-critical applications, they 

may be willing to accept some system failures. 

 Some applications (critical systems) have very high 

dependability requirements and special software 

engineering techniques may be used to achieve this. 

 Medical systems 

 Telecommunications and power systems 

 Aerospace systems 
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Dependability achievement 

 Fault avoidance 

 The system is developed in such a way that human error is 
avoided and thus system faults are minimised. 

 The development process is organised so that faults in the 
system are detected and repaired before delivery to the 
customer. 

 Fault detection 

 Verification and validation techniques are used to discover and 
remove faults in a system before it is deployed. 

 Fault tolerance 

 The system is designed so that faults in the delivered software 
do not result in system failure. 
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Dependable processes for fault avoidance 

 To ensure a minimal number of software faults, it is 

important to have a well-defined, repeatable software 

process. 

 A well-defined repeatable process is one that does not 

depend entirely on individual skills; rather can be 

enacted by different people. 

 Regulators use information about the process to check if 

good software engineering practice has been used. 

 For fault detection, it is clear that the process activities 

should include significant effort devoted to verification 

and validation. 
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Static fault detection and its costs 
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Dynamic fault detection tactics 

 Ping/echo. One component issues a ping and expects 

to receive back an echo, within a predefined time, from 

the component under scrutiny.  

 Heartbeat (dead man timer). In this case one 

component emits a heartbeat message periodically and 

another component listens for it. If the heartbeat fails, the 

originating component is assumed to have failed and a 

fault correction component is notified.  

 Exceptions. One method for recognizing faults is to 

encounter an exception, which is raised when one of the 

fault classes is recognized. 
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Fault tolerance 

 In critical situations, software systems must be  
fault tolerant.  

 Fault tolerance is required where there are high 
availability requirements or where system failure costs 
are very high. 

 Fault tolerance means that the system can continue in 
operation in spite of software failure. 

 Even if the system has been proved to conform to its 
specification, it must also be fault tolerant as  there may 
be specification errors or the validation may be incorrect. 
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Diversity and redundancy 

 Redundancy 

 Keep more than 1 version of a critical component available so 
that if one fails then a backup is available. 

 E.g. switch to backup servers automatically if failure occurs. 

 Diversity 

 Provide the same functionality in different ways so that they will 
not fail in the same way. 

 E.g. different servers may be implemented using different 
operating systems (e.g. Windows and Linux). 

 However, adding diversity and redundancy adds 
complexity and this can increase the chances of error. 

 Some engineers advocate simplicity and extensive V & V is a 
more effective route to software dependability. 
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Dependable system architectures 

 Dependable systems architectures are used in situations 

where fault tolerance is essential. These architectures 

are generally all based on redundancy and diversity. 

 Examples of situations where dependable architectures 

are used: 

 Flight control systems, where system failure could threaten the 

safety of passengers 

 Reactor systems where failure of a control system could lead to 

a chemical or nuclear emergency 

 Telecommunication systems, where there is a need for 24/7 

availability. 
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Fault tolerance and recovery tactics (1) 

 Voting. Processes running on redundant processors 

each take equivalent input and compute a simple output 

value that is sent to a voter to choose non-deviant result.  

 Active redundancy (hot restart). All redundant 

components respond to events in parallel. Consequently, 

they are all in the same state. The response from only 

one component is used (usually the first to respond), and 

the rest are discarded.  

 Passive redundancy (warm restart/dual redundancy/ 

triple redundancy). One component (the primary) 

responds to events and informs the other components 

(the standbys) of state updates they must make.  
25 

© Software Architecture in Practice  
by L. Bass, P. Clements and R. Kazman 



Fault tolerance and recovery tactics (2) 

 Spare. A standby spare computing platform is configured 

to replace many different failed components. It must be 

rebooted to the appropriate software configuration and 

have its state initialized when a failure occurs.  

 Shadow operation. A previously failed component may 

be run in "shadow mode" for a short time to make sure 

that it mimics the behavior of the working components 

before restoring it to service. 

 Checkpoint/rollback. A checkpoint is a recording of a 

consistent state created either periodically or in response 

to specific events, to which the system can be restored. 
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N-version programming pattern 

 Combines different dependability tactics 

Multiple versions of a software system carry out 

computations at the same time.  

 There should be an odd number of versions involved, typically 3. 

 The versions should be designed and implemented by different 

teams, since it is assumed that different teams are unlikely to 

make the same mistakes. 

 The results are compared using a voting system and the 

majority result is taken to be the correct result. 

 Approach derived from the notion of triple-modular 

redundancy, as used in hardware systems. 
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N-version programming  
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Self-monitoring architectures 

Multi-channel architectures with diverse SW and HW in 

each channel. 

 The same computation is carried out on each channel and the 

results compared. 

 The system monitors its own operations and takes action if 

inconsistencies are detected. 
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Protection systems 

 A specialized system that is associated with some other 

control system, which can take emergency action if a 

failure occurs. 

 System to stop a train if it passes a red light 

 System to shut down a reactor if temperature/pressure are too 

high 

 Protection systems are redundant because they include 

monitoring and control capabilities that replicate those in 

the control software. 

 Protection systems should be diverse and use different 

technology from the control software. 
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Dependable programming 

Good programming practices can be adopted that help 

reduce the incidence of program faults. 

 These programming practices support 

 Fault avoidance 

 Fault detection 

 Fault tolerance 

 Dependable programming tactics will be detailed in the 

next lecture where we discuss the Implementation stage. 
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Key points 

 Dependability in a program can be achieved by avoiding the 

introduction of faults, by detecting and removing faults before 

system deployment, and by including fault tolerance facilities. 

 The use of redundancy and diversity in hardware, software 

processes and software systems is essential for the development of 

dependable systems. 

 The use of a well-defined, repeatable process is essential if faults in 

a system are to be minimized.  

 Dependable system architectures are system architectures that are 

designed for fault tolerance. Architectural styles that support fault 

tolerance include protection systems, self-monitoring architectures 

and N-version programming. 
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Design for Security 

Lecture 7/Part 3 
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Topics covered 

 Architectural design 

 Design guidelines for security 

 Guidelines that help you design a secure system 

 System survivability 

 Allow the system to deliver essential services when under attack 
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Architectural design 

 Two fundamental issues have to be considered when 

designing an architecture for security. 

 Protection 

• How should the system be organised so that critical assets can be 

protected against external attack? 

 Distribution 

• How should system assets be distributed so that the effects of a 

successful attack are minimized? 

 These are potentially conflicting 

 If assets are distributed, then they are more expensive to protect. 

If assets are protected, then usability and performance 

requirements may be compromised. 
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Protection 

 Platform-level protection 

 Top-level controls on the platform on which a system runs. 

 Application-level protection 

 Specific protection mechanisms built into the application itself 

e.g. additional password protection. 

 Record-level protection 

 Protection that is invoked when access to specific information is 

requested 

 These lead to a layered protection architecture 
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A layered protection architecture  
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Distribution 

 Distributing assets means that attacks on one system do 

not necessarily lead to complete loss of system service 

 Each platform has separate protection features and may 

be different from other platforms so that they do not 

share a common vulnerability 

 Distribution is particularly important if the risk of denial of 

service attacks is high 
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Distributed assets in an equity trading 

system  
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Security tactics 

 Security tactics encapsulate good practice in secure 

systems design 

 Security tactics serve two purposes: 

 They raise awareness of security issues in a software 

engineering team. Security is considered when design decisions 

are made. 

 They can be used as the basis of a review checklist that is 

applied during the system validation process.  

 Tactics described here are applicable during software 

specification and design 

Chapter 14 Security Engineering 40 



Tactics for secure systems engineering  

Security tactics 

Base security decisions on an explicit security policy 

Avoid a single point of failure 

Fail securely 

Balance security and usability 

Log user actions 

Use redundancy and diversity to reduce risk 

Validate all inputs 

Compartmentalize your assets 

Design for deployment 

Design for recoverability 
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Design guidelines 1-3 

 Base decisions on an explicit security policy 

 Define a security policy for the organization that sets out the 

fundamental security requirements that should apply to all 

organizational systems. 

 Avoid a single point of failure 

 Ensure that a security failure can only result when there is more 

than one failure in security procedures. For example, have 

password and question-based authentication. 

 Fail securely 

 When systems fail, for whatever reason, ensure that sensitive 

information cannot be accessed by unauthorized users even 

although normal security procedures are unavailable. 
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Design guidelines 4-6 

 Balance security and usability 

 Try to avoid security procedures that make the system difficult to 

use. Sometimes you have to accept weaker security to make the 

system more usable. 

 Log user actions 

 Maintain a log of user actions that can be analyzed to discover 

who did what. If users know about such a log, they are less likely 

to behave in an irresponsible way. 

 Use redundancy and diversity to reduce risk 

 Keep multiple copies of data and use diverse infrastructure so 

that an infrastructure vulnerability cannot be the single point of 

failure. 
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Design guidelines 7-10 

 Validate all inputs 

 Check that all inputs are within range so that unexpected inputs 

cannot cause problems. 

 Compartmentalize your assets 

 Organize the system so that assets are in separate areas and 

users only have access to the information that they need rather 

than all system information. 

 Design for deployment 

 Design the system to avoid deployment problems 

 Design for recoverability 

 Design the system to simplify recoverability after a successful 

attack. 
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System survivability 

 Survivability is an emergent system property that reflects 

the systems ability to deliver essential services whilst it is 

under attack or after part of the system was damaged 

 Survivability analysis  

and should be part of  

the security  

engineering  

process 
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Survivability strategies 

 Resistance  

 Avoiding problems by building capabilities into the system to 
resist attacks 

 Recognition 

 Detecting problems by building capabilities into the system to 
detect attacks and failures and assess the resultant damage 

 Recovery 

 Tolerating problems by building capabilities into the system to 
deliver services whilst under attack 
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Key points 

 Design for security involves architectural design, 
following good design practice and minimising the 
introduction of system vulnerabilities 

 General security guidelines sensitize designers to 
security issues and serve as review checklists 

 System survivability reflects the ability of a system to 
deliver services whilst under attack or after part of the 
system has been damaged. 
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Design for Performance, Modifiability, Testability 

and Usability  

 

Lecture 7/Part 4 
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Outline 

 Performance tactics 

 Resource demand 

 Resource management 

 Resource arbitration 

 Modifiability tactics 

 Localize changes 

 Prevention of ripple effect 

 Defer binding time 

 Testability tactics 

 Manage input/output 

 Internal monitoring 

 Usability tactics 
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Performance tactics – Resource demand 

 Reduce the resources required for processing an event 

stream.  

 Increase computational efficiency.  

 Reduce computational overhead.  

 Reduce the number of events processed. 

 Manage event rate. 

 Control frequency of sampling.  

 Control the use of resources. 

 Bound execution times.  

 Bound queue sizes.  
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Performance tactics – Resource 

management 

 Introduce concurrency. If requests can be processed in 

parallel, the blocked time can be reduced.  

Maintain multiple copies of either data or 

computations. The purpose of replicas is to reduce the 

contention that would occur if all computations took 

place on a central server. 

 Increase available resources. Faster processors, 

additional processors, additional memory, and faster 

networks all have the potential for reducing latency.  
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Performance tactics – Resource arbitration 

 The selection of optimal scheduling strategy for each 

resource influences optimal resource usage, minimizes 

the number of resources used, minimizes latency, 

maximizes throughput, prevents starvation, and so forth.  

 A scheduling policy conceptually has two parts: a 

priority assignment and dispatching.  

 All scheduling policies assign priorities.  

 In some cases the assignment is as simple as first-in/first-out.  

 In other cases, it can be tied to the deadline of the request or its 

semantic importance.  
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Modifiability tactics – Localize modifications  

Maintain semantic coherence. The goal is to ensure 

that all the responsibilities in a module work together 

without excessive reliance on other modules.  

Generalize the module. Making a module more general 

allows it to compute a broader range of functions on 

input.  

 Limit possible options. Modifications, especially within 

a product line, may be far ranging and hence affect 

many modules. Restricting the possible options will 

reduce the effect of these modifications.  
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Modifiability tactics – Prevent ripple effects 

 A ripple effect from a modification is the necessity of 

making changes to modules not directly affected by it.  

 For instance, if module A is changed to accomplish a particular 

modification, then module B is changed only because of the 

change to module A. B has to be modified because it depends, 

in some sense, on A. 

 Hide information. Information hiding is the 

decomposition of the responsibilities for an entity (a 

system or some decomposition of a system) into smaller 

pieces and choosing which information to make private 

and which to make public. 
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Modifiability tactics – Prevent ripple effects 

Maintain existing interfaces. If B depends on the name 

and signature of an interface of A, maintaining this 

interface and its syntax allows B to remain unchanged. 

 Restrict communication paths. Restrict the modules 

with which a given module shares data via data 

production and consumption. 

 Use an intermediary. If B has any type of dependency 

on A other than semantic, it is possible to insert an 

intermediary between B and A that manages activities 

associated with the dependency. 
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Modifiability tactics – Defer binding time 

 Runtime registration supports plug-and-play operation 

at the cost of additional overhead to manage the 

registration. Publish/subscribe registration, for example, 

can be implemented at either runtime or load time. 

 Configuration files are intended to set parameters at 

startup. 

 Polymorphism allows late binding of method calls. 

 Component replacement allows load time binding. 

 Adherence to defined protocols allows runtime binding 

of independent processes. 
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Testability tactics – Manage input/output 

 Record/playback. The information crossing an interface 

during normal operation is saved in some repository and 

represents output from one component and input to 

another.  

 Separate interface from implementation. Separating 

the interface from the implementation allows substitution 

of implementations for various testing purposes.  

 Specialize access routes/interfaces. Having 

specialized testing interfaces allows the capturing or 

specification of variable values for a component through 

a test harness as well as independently from its normal 

execution.  
57 
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Testability tactics – Internal monitoring 

 Built-in monitors. The component can maintain state, 

performance load, capacity, security, or other information 

accessible through an interface.  

 This interface can be a permanent interface of the 

component or it can be introduced temporarily via an 

instrumentation technique such as aspect-oriented 

programming or preprocessor macros.  

 A common technique is to record events when 

monitoring states have been activated.  
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Usability tactics – Design-time tactics 

 Separate the user interface from the rest of the 

application. Localizing expected changes is the 

rationale for semantic coherence.  

 Since the user interface is expected to change frequently 

both during the development and after deployment, 

maintaining the user interface code separately will 

localize changes to it.  
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Usability tactics – Runtime tactics 

 Maintain a model of the task. The task model is used to determine 

context so the system can have some idea of what the user is 

attempting and provide various kinds of assistance.  

 For example, knowing that sentences usually start with capital letters 

would allow an application to correct a lower-case letter in that position. 

 Maintain a model of the user. The model determines the user's 

knowledge of the system, the user's behavior in terms of expected 

response time, and other aspects specific to a user or a class of 

users.  

 For example, maintaining a user model allows the system to pace 

scrolling so that pages do not fly past faster than they can be read. 

 Maintain a model of the system. The model determines the 

expected system behavior so that appropriate feedback can be 

given to the user.  
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Quality conflicts 

Within complex systems, quality attributes can never be 

achieved in isolation.  

 The achievement of any one will have an effect, sometimes 

positive and sometimes negative, on the achievement of others.  

 For example, almost every quality attribute negatively 

affects performance.  

 Portability. The main technique for achieving portable software is 

to isolate system dependencies, which introduces overhead into 

the system's execution, typically as process or procedure 

boundaries, and this hurts performance. 

 Reliability. Redundancy together with a voting schema delays 

system response. 
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Quality conflicts 

 It is not possible for any system to be optimized for all of 

these attributes.  

 The quality plan should therefore define the most 

important quality attributes for the software that is being 

developed.  

 The plan should also include a definition of the quality 

assessment process, an agreed way of assessing 

whether some quality, such as maintainability or 

robustness, is present in the product.  
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UML Class Diagram in Design 

Lecture 7/Part 5 
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What are design classes? 

 Design classes are classes whose specifications have been 
completed to such a degree that they can be implemented 

 Specifies an actual piece of code 

 Design classes arise from analysis classes: 

 Remember – analysis classes arise from the problem domain only 

 A refinement of analysis classes to include implementation details 

 All attributes are completely specified including type, visibility and 
default values 

 Analysis operations become fully specified operations (methods) with a 
return type and parameter list 

 Design classes arise from the solution domain 

 Utility classes – String, Date, Time etc. 

 Middleware classes – database access, comms etc. 

 GUI classes – Applet, Button etc. 
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Anatomy of a design class 

 A design class must have: 

 A complete set of operations 
including parameter lists, return 
types, visibility, exceptions, set and 
get operations, constructors and 
destructors 

 A complete set of attributes 
including types and default values 

BankAccount 

-name:String 

-number:String 

-balance:double = 0 

+BankAccount(name:String, number:String) 

+deposit(m:double):void 

+withdraw(m:double):boolean 

+calculateInterest():double 

+getName():String 

+setName(n:String):void 

+getAddress():String 

+setAddress(a:String):void 

+getBalance():double 

BankAccount 

name 

number 

balance 

deposit() 

withdraw() 

calculateInterest() 

analysis design 

«trace» 

constructor 
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Well-formed design classes 

 Design classes must have the following characteristics to be 

“well-formed”: 

 Complete and sufficient 

 Primitive 

 High cohesion  

 Low coupling 

How do the users of your classes 

see them?  

Always look at your classes from  

their point of view! 

MyClass 
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 Completeness: 

 Users of the class will make assumptions from the class name 
about the set of operations that it should make available 

 For example, a BankAccount class that provides a withdraw() 
operation will be expected to also provide a deposit() 
operation! 

 Sufficiency: 

 A class should never surprise a user – it should contain 
exactly the expected set of features, no more and no less 

 Primitiveness: 

 Operations should be designed to offer a single primitive, 
atomic service 

 A class should never offer more ways of doing the same thing: 

• This is confusing to users of the class, leads to maintenance 
burdens and can create consistency problems 

The public 

members of a 

class define a 

"contract" between 

the class its clients 

Completeness, sufficiency and primitiveness 
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High cohesion, low coupling 

 High cohesion: 

 Each class should have a set of operations that support the 

intent of the class, no more and no less 

 Each class should model a single abstract concept 

 If a class needs to have many responsibilities, then some 

of these should be implemented by “helper” classes. The 
class then delegates to its helpers 

 Low coupling: 

 A particular class should be associated with just enough 

other classes to allow it to realise its responsibilities 

 Only associate classes if there is a true semantic link 

between them 

 Never form an association just to reuse a fragment of code 

in another class! 

 Use aggregation rather than inheritance (next slide) 

HotelBean 

CarBean 

HotelCarBean 

this example comes 

from a real system! 

What’s wrong with it? 
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Aggregation vs. inheritance 

 Inheritance gives you fixed 

relationships between 

classes and objects 

 You can’t change the class 

of an object at runtime 

 There is a fundamental 

semantic error here. Is an 

Employee just their job or 

does an Employee have a 

job? 

Employee 

Manager Programmer 

john:Programmer 

«instantiate» 

1. How can we promote john? 

2. Can john have more than one job? 
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A better solution… 

 Using aggregation we 

get the correct 

semantics: 

 An Employee has a 

Job 

 With this more flexible 

model, Employees 

can have more than 

one Job 

just change this link at 

runtime to promote john! 

Job 

Manager Programmer 

john:Employee 

Employee 

:Programmer 

«instantiate» 

:Manager 

«instantiate» 

«instantiate» 

0..* 0..* 
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Multiple inheritance 

 Sometimes a class may have 

more than one superclass 

 The "is kind of" and 

substitutability principles must 

apply for all of the classifications 

Multiple inheritance is sometimes 

the most elegant way of 

modelling something. However: 

 Not all languages support it  

(e.g. Java) 

 It can always be replaced by single 

inheritance and delegation 

Alarm 

AutoDialler 

Dialler 

IActivate 

in this example the AutoDialler 

sounds an alarm and rings the 

police when triggered - it is 

logically both a kind of Alarm and 

a kind of Dialler 
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With inheritance we get two things: 

 Interface – the public operations of the base classes 

 Implementation – the attributes, relationships, protected and 
private operations of the base classes 

With interface realization we get exactly one thing: 

 Interface – a set of public operations, attributes and relationships 
that have no implementation 

Use inheritance when we want to inherit implementation. 

Use interface realization when we want to define a contract. 

Inheritance vs. interface realization 
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Templates 

 Up to now, we have had to specify the types of all 
attributes,  method returns and parameters. However, 
this can be a barrier to reuse 

 Consider: 

BoundedIntArray 

size:int 

elements[]:int 

addElement( e:int ):void 

getElement( i:int):int 

BoundedFloatArray 

size:int 

elements[]:float 

addElement( e:float ):void 

getElement( i:int):float 

BoundedStringArray 

size:int 

elements[]:String 

addElement( e:String ):void 

getElement( i:int):String 

spot the difference! 

etc. 
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Template syntax 

 Template instantiation - the template parameters are 
bound to actual values to create new classes based on 
the template: 

 If the type of a parameter is not specified then the 
parameter defaults to being a classifier  

 Parameter names are local to the template – two 
templates do not have relationship to each other just 
because they use the same parameter names! 

 Explicit binding is preferred as it allows named 
instantiations 

BoundedArray 

elements[size]:T 

addElement( e:T ):void 

getElement( i:int):T 

T, size:int=10 

StringArray 

elements[10]:String 

addElement( e:String ):void 

getElement( i:int):String 

IntArray 

elements[100]:int 

addElement( e:int ):void 

getElement( i:int):int 

«bind»<T->String> 

«bind»<T->int, size->100> 

template parameters 

template 

explicit binding 

(the instantiation is named) 

default value 

BoundedArray<T->float, size->10> 

implicit binding 

(the instantiation is anonymous) 

elements[10]:float 

addElement( e:float ):void 

getElement( i:int):float 
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 Templates and multiple inheritance should only be used 

in design models where those features are available in 

the target language: 

language templates multiple inheritance 

C# Yes No 

Java Yes No 

C++ Yes Yes 

Smalltalk No No 

Visual Basic No No 

Python No Yes 

Templates & multiple inheritance  
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Nested classes 

 A nested class is a class defined inside another class 

 It is encapsulated inside the namespace of its containing class 

 Nested classes tend to be design artifacts 

 Nested classes are only accessible by: 

 their containing class  

 objects of that their containing class 

Frame 

HelloFrame MouseMonitor 

MouseAdapter 

anchor icon 

containment 

relationship 
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Key points (design classes) 

 Design classes come from: 

 A refinement of analysis classes (i.e. the business domain) 

 From the solution domain 

 Design classes must be well-formed: 

 Complete and sufficient 

 Primitive operations 

 High cohesion 

 Low coupling 

 Don’t overuse inheritance 

 Use inheritance for "is kind of" 

 Use aggregation for "is role played by" 

 Multiple inheritance should be used sparingly (mixins) 

 Use interfaces rather than inheritance to define contracts 

 Use templates and nested classes only where the target language 
supports them 
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Design relationships 

 Refining analysis associations to design associations 
involves several procedures: 

 refining associations to aggregation or composition relationships 
where appropriate 

 implementing one-to-many associations 

 implementing many-to-one associations 

 implementing many-to-many associations 

 implementing bidirectional associations 

 implementing association classes 

 All design associations must have: 

 navigability 

 multiplicity on both ends 
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Aggregation and composition 

 In analysis, we often use unrefined associations. In design, 

these can become aggregation or composition relationships 

We must also add navigability, multiplicity and role names 

A B 

A B A B 

«trace» «trace» 

{xor} 

Analysis 

Design 

aggregation composition 
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Aggregation and composition 

Some objects are strongly  

related like a tree and  

its leaves 

Some objects are weakly  

related like a computer and  

its peripherals 

Aggregation Composition 

UML defines two types of association: 
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Aggregation semantics 

 The aggregate can sometimes exist independently of the parts, 

sometimes not 

 The parts can exist independently of the aggregate 

 The aggregate is in some way incomplete if some of the parts are missing 

 It is possible to have shared ownership of the parts by several aggregates 

Computer Printer 
0..1 0..* 

whole or 

aggregate 
part 

aggregation is a whole–part relationship 

A Computer may be attached to 0 or more 

Printers 

At any one point in time a Printer is 

connected to 0 or 1 Computer 

Over time, many Computers may use a given 

Printer 

The Printer exists even if there are no 

Computers 

The Printer is independent of the Computer 

aggregation 
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Transitive and asymmetric 

A B C 

Aggregation (and composition) are transitive 

If C is a part of B and B is a part of A, then C is a part of A 

Product 

* 

* 
Aggregation (and composition) are asymmetric 

An object can never be part of itself! 

a:Product 

b:Product c:Product 

d:Product 

cycles  

are NOT  

allowed 

reflexive 

aggregation 
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1..* 

Aggregation hierarchy 

HomeComputer 

CPU 

RAM HardDrive FloppyDrive CDRom SoundCard GraphicsCard 

* 1 1 1 

Monitor Speaker Keyboard Mouse 

1 1 1 1 2 

1 

connectedTo 

1 
1 

connectedTo 1 

2 
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Composition semantics 

 The parts belong to exactly 1 whole at a time 

 The composite has sole responsibility for the disposition of all its 
parts. This means responsibility for their creation and destruction 

 If the composite is destroyed, it must either destroy all its parts, OR 
give responsibility for them over to some other object 

 Composition is transitive and asymmetric 

 

Mouse Button 
1 1..4 

composition is a strong form of aggregation 

composite part 
composition 

always 1 

The buttons have no independent 

existence. If we destroy the mouse, 

we destroy the buttons. They are an 

integral part of the mouse 

Each button can belong to exactly 1 

mouse 
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Composition and attributes 

 Attributes are in effect composition relationships 

between a class and the classes of its attributes 

 Attributes should be reserved for primitive data types 

(int, String, Date etc.) and not references to other 

classes 
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• Many-to-one relationships in  
analysis imply shared ownership 
and are refined to aggregations 

• One-to-one associations in analysis 
usually imply single ownership and 
usually refine to compositions 

A B 
1 1 

A B 
1 1 

«trace» 

roleName 

1 to 1 

A B 
* 1 

A B 
* 1 

«trace» 

roleName 

many to 1 

analysis 

design 

1 to 1 and many to 1 associations 
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1 to many associations 

 To refine 1-to-many associations we  
introduce a collection (class) 

 Collection classes instances store a collection 
 of object references to objects of the target 

 A collection class always has methods for: 

 Adding an object to the collection 

 Removing an object from the collection 

 Retrieving an object reference in the collection 

 Traversing the collection 

 Collection classes are typically supplied in 
libraries that come as part of the  
implementation language 

 In Java we find collections in the java.util library 

A B 
1 * 

A B 

1 * 

Vector 
1 1 

«trace» 

source target 
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Collection semantics 

 You can specify collection semantics by using association end 
properties: 

property pair 

{unordered, nonunique} 

{unordered, unique} 

{ordered, unique} 

{ordered, nonunique} 

Bag 

Set (default) 

OrderedSet 

Sequence 

OCL collection 

property 

{ordered} 

{unordered} 

{unique} 

{nonunique} 

Elements in the collection are maintained in a strict order 

There is no ordering of the elements in the collection 

Elements in the collection are all unique an object appears in the collection once 

Duplicate elements are allowed in the collection 

semantics 

A B 
1 * 

{ordered, unique} 
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Many to many associations 

 There is no commonly used OO 

language that directly supports 

many-to-many associations 

We must reify such associations 

into design classes 

 Again, we must decide which 

side of the association should 

have primacy and use 

composition, aggregation and 

navigability accordingly 

Task Resource * * 

Allocation Task Resource 
1 * 1 * 

«trace» 

this side has primacy 
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Bi-directional associations 

 There is no commonly used OO 

language that directly supports bi-

directional associations 

We must resolve each bi-

directional associations into two 

unidirectional associations 

 Again, we must decide which side 

of the association should have 

primacy and use composition, 

aggregation and navigability 

accordingly 

A B 
1 * 

A B 

1 * 

1 * 

«trace» 

this side has primacy 
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Association classes 

 There is no commonly 

used OO language that 

directly supports 

association classes 

 Refine all association 

classes into a design class 

 Decide which side of the 

association has primacy 

and use composition, 

aggregation and 

navigability accordingly 

Company Person 
* * 

Job 

salary:double 

Company Person 
Job 

salary:double 

* * 1 1 

«trace» 

{each Person can only have one 

job with a given Company} 

this side  

has primacy 
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Key points (design relationships) 

 In this section we have seen how we take the incompletely specified 

associations in an analysis model and refine them to: 

 Aggregation 

• Whole-part relationship 

• Parts are independent of the whole 

• Parts may be shared between wholes 

• The whole is incomplete in some way without the parts 

 Composition 

• A strong form of aggregation 

• Parts are entirely dependent on the whole 

• Parts may not be shared 

• The whole is incomplete without the parts 

 One-to-many, many-to-many, bi-directional associations and 

association classes are refined in design 

 


