
Course Summary and Outline of Advanced

Software Engineering Techniques

Lecture 13

1

Topics covered

 Covered techniques of software engineering

 Outline of advanced techniques

 Covered UML diagrams

 Advanced UML modeling

What comes next?

2

Covered Techniques of Software Engineering

Lecture 13/Part 1

3

Software process models

 Software engineering

 Software process activities

 Software specification.

 Software analysis and design.

 Software implementation.

 Software validation.

 Software evolution.

 Software process models

 The waterfall model.

 Incremental development.

 Reuse-oriented software engineering

 Chapter 2 Software Processes 4

Requirements engineering

 Requirements and their types

 User vs. system requirements

 Functional vs. non-functional requirements

 Requirements specification

 Requirements engineering process

 Requirements elicitation and analysis

 Requirements validation

 Requirements management

Focused on functional requirements mainly

5 Chapter 4 Requirements engineering

Non-functional Requirements Engineering

 Non-functional requirements classification

 Non-functional requirements implementation

 Product requirements

 Availability, Reliability, Safety, Security

 Performance, Modifiability, Testability, Usability

 Organisational requirements

 Development requirements

 Operational requirements

 Environmental requirements

 External requirements

 Legislative requirements
Chapter 4 Requirements engineering 6

Analysis and Design

 Software analysis and design

 System context

 Architectural design

 Analysis and design models

 Structured vs. object-oriented methods

 Principles

 Notations

 Methods

Chapter 7 Design and implementation 7

Object-Oriented Analysis

 Role of the UML in OO analysis

 Objects and classes

 Finding analysis classes

 Relationships between objects and classes

 Inheritance and polymorphism

© Clear View Training 2010 v2.6 8

Structured Analysis

 Yourdon Modern Structured Analysis (YMSA)

 Context diagram (CD)

 Data flow diagram (DFD)

 Data modelling

 Entity relationship diagram (ERD)

 Normalization and database design

© Jiří Sochor, Jaroslav Ráček 9

System Design

 Design patterns

 Design for dependability

 Dependable processes

 Redundancy and diversity

 Dependable systems architectures

 Design for security

 Design guidelines for security

 System survivability

 Design for performance, modifiability, testability and

usability

10 Chapter 7 Design and implementation

Architectural design

 Architectural design decisions

 Architectural patterns

 Model-view-controller

 Layered architecture

 Repository architecture

 Client-server architecture

 Pipe-and-filter architecture

 Application architectures

11 Chapter 6 Architectural design

Implementation

 Implementation issues

 Reuse

 Configuration management

 Host-target development

 Open-source development

 Programming guidelines

12 Chapter 7 Design and implementation

13

User Interface Design

History and motivation

Human limits

Designing user interface

 Fundamental UI design principles

 Prominent positions on screen

Evaluating user interface

Examples

© Z. Eichler, B. Bühnová 13

Testing, Verification and Validation

 Validation and verification

 Static analysis

 Verification and formal methods

 Model checking

 Automated static analysis

 Testing and its stages

 Development testing

 Release testing

 User testing

 Testing of non-functional properties

14 Chapter 8 Software testing

Operation, Maintenance and System

Evolution

 Evolution processes

 Change processes for software systems

 Program evolution dynamics

 Understanding software evolution

 Software maintenance

 Making changes to operational software systems

 Legacy system management

 Making decisions about software change

15 Chapter 9 Software evolution

Software Development Management

 Project management

 Project planning

 Scheduling

 Software pricing

 Risk management

 Risk identification

 Risk analysis

 Risk planning

 Risk monitoring

 People management

 Motivation

 Teamwork
16 Chapter 22 Project management

Outline of Advanced Techniques

Lecture 13/Part 2

17

Software reuse

 In most engineering disciplines, systems are designed

by composing existing components that have been used

in other systems.

 Software engineering has been more focused on original

development but it is now recognised that to achieve

better software, more quickly and at lower cost, we need

a design process that is based on systematic software

reuse.

 There has been a major switch to reuse-based

development over the past 10 years.

Chapter 16 Software reuse

Component-based software engineering

 Component-based software engineering (CBSE) is an
approach to software development that relies on the
reuse of entities called ‘software components’.

 It emerged from the failure of object-oriented
development to support effective reuse. Single object
classes are too detailed and specific.

 CBSE essentials:

 Independent components specified by their interfaces.

 Component standards to facilitate component integration.

 Middleware that provides support for component inter-

operability.

 A development process that is geared to reuse.

19 Chapter 17 Software reuse

Distributed systems

 Virtually all large computer-based systems are now

distributed systems.

“… a collection of independent computers that appears to the user

as a single coherent system.”

 Distributed systems issues

 Distributed systems are more complex than systems that run on

a single processor.

 Complexity arises because different parts of the system are

independently managed as is the network.

 There is no single authority in charge of the system so top-

down control is impossible.

Service-oriented architectures

 A means of developing distributed systems where the

components are stand-alone services

 Services may execute on different computers from

different service providers

 Standard protocols have been developed to support

service communication and information exchange

 Benefits of SOA:

 Services can be provided locally or outsourced to ext. providers

 Services are language-independent

 Investment in legacy systems can be preserved

 Inter-organisational computing is facilitated through simplified

information exchange

21 Chapter 19 Service-oriented architecture

Embedded systems

 Computers are used to control a wide range of systems

from simple domestic machines, through games

controllers, to entire manufacturing plants.

 Their software must react to events generated by the

hardware and, often, issue control signals in response to

these events.

 The software in these systems is embedded in system

hardware, often in read-only memory, and usually

responds, in real time, to events from the system’s

environment.

 Issues of safety and reliability may dominate the

system design.

Chapter 20 Embedded systems

Aspect-oriented software development

 An approach to software development based around a

relatively new type of abstraction - an aspect.

 Used in conjunction with other approaches - normally

object-oriented software engineering.

 Aspects encapsulate functionality that cross-cuts and

co-exists with other functionality.

 Aspects include a definition of where they should be

included in a program as well as code implementing

the cross-cutting concern.

23
Chapter 21 Aspect-oriented software

engineering

Covered UML Diagrams

Lecture 13/Part 3

24

UML in Software Development

 System modeling

 External perspective models

 Use case diagram

 Structural perspective models

 Class diagram, Object diagram, Component diagram, Package

diagram, Deployment diagram, Composite structure diagram

 Interaction perspective models

 Sequence diagram, Communication diagram, Interaction

overview diagram, Timing diagram

 Behavioral perspective models

 Activity diagram, State diagram

 © Clear View Training 2010 v2.6 25

UML Use Case Diagram

 Use Case modelling

 System boundary – subject

 Use cases

 Actors

 Textual Use Case specification

 Branching with IF

 Repetition with FOR and WHILE

 Alternative flows

 Advanced Use Case modelling

 Actor generalisation

 Use case generalisation

 «include»

 «extend»
© Clear View Training 2010 v2.6 26

© Clear View Training 2010 v2.6 27

UML Activity Diagram

 Activity diagrams can model flows of activities using:

 Activities and connectors

 Activity partitions

 Action nodes

• Call action node

• Send signal/accept event action node

• Accept time event action node

 Control nodes

• Decision and merge

• Fork and join

 Object nodes

• Input and output parameters

• Pins

 Interaction overview diagrams as their advanced
feature

UML Class Diagram

 Analytical vs. Design class model

 Objects and classes

 Relationships between objects and classes

 Links

 Associations

 Aggregation and composition

 Dependencies

 Inheritance and polymorphism

© Clear View Training 2010 v2.6 28

UML Interaction Diagrams

 There are four types of interaction diagram:

 Sequence diagrams – emphasize time-ordered sequence of

message sends

 Communication diagrams – emphasize the structural

relationships between lifelines

 Interaction overview diagrams – show how complex behavior

is realized by a set of simpler interactions

 Timing diagrams – emphasize the real-time aspects of an

interaction

© Clear View Training 2010 v2.6 29

UML Packages

 Packages are the UML way of grouping modeling

elements

 There are dependency and generalisation relationships

between packages

 The package structure of the analysis model defines the

logical system architecture

© Clear View Training 2010 v2.6 30

UML Component Diagram

 Interfaces specify a named set of public features:

 They define a contract that classes and subsystems may realise

 Programming to interfaces rather than to classes reduces

dependencies between the classes and subsystems in our

model

 Programming to interfaces increases flexibility and extensibility

 Design subsystems and interfaces allow us to:

 Componentize our system

 Define an architecture

© Clear View Training 2010 v2.6 31

UML Deployment Diagram

 The descriptor form deployment diagram

 Allows you to show how functionality represented by artefacts is

distributed across nodes

 Nodes represent types of physical hardware or execution

environments

 The instance form deployment diagram

 Allows you to show how functionality represented by artefact

instances is distributed across node instances

 Node instances represent actual physical hardware or execution

environments

© Clear View Training 2010 v2.6 32

© Clear View Training 2010 v2.6 33

UML State Diagram

 Behavioral state machines

 Protocol state machines

 States

 Actions, exit and entry actions, activities

 Transitions

 Guard conditions, actions

 Events

 Call, signal, change and time

 Composite states

 Simple and orthogonal composite states

Advanced UML Modeling

Lecture 13/Part 4

34

Advanced Activity diagrams

 Connectors

 Interruptible activity regions

 Exception handling

 Expansion nodes

 Signals and events

 Streaming

 Advanced object flow features

Multicast and multireceive

 Parameters

© Clear View Training 2010 v2.6 35

Advanced Interaction diagrams

 Timing diagram

 Interaction overview diagram

© Clear View Training 2010 v2.6 36

Advanced State diagrams

 Composite states

 Submachine states

 Submachine communication

 History

© Clear View Training 2010 v2.6 37

Object constraint language (OCL)

 The Object Constraint Language (OCL) is a declarative

language for describing rules that apply to UML models.

 The OCL is a precise text language that provides constraint and

object query expressions.

 OCL statements are constructed in four parts:

 a context that defines the limited situation in which the

statement is valid

 a property that represents some characteristics of the context

(e.g., if the context is a class, a property might be an attribute)

 an operation (e.g., arithmetic, set-oriented) that manipulates or

qualifies a property, and

 keywords (e.g., if, then, else, and, or, not, implies) that are used

to specify conditional expressions.
© Clear View Training 2010 v2.6 38

UML Profiles

 A UML profile provides a generic extension mechanism

for customizing UML models for particular domains and

platforms.

 Extension mechanisms allow refining standard semantics in strictly

additive manner, so that they can't contradict standard semantics.

 Profiles are defined using stereotypes, tag definitions,

and constraints that are applied to specific model

elements, such as Classes, Attributes, and Activities.

 A Profile is a collection of such extensions that

collectively customize UML for a particular domain (e.g.,

aerospace, healthcare, financial) or platform (J2EE,

.NET).

39

What Comes Next?

Lecture 13/Part 5

40

Course finalization

 Seminar projects

 Assessment, “Úspěšné absolvování cvičení “ IS notebook

 Exam

 Number of exam dates

 Reservation/cancelation policies

 Legth of the exam

 Form of the exam – test part and UML modelling part

 Results and their viewing

Opinion poll

 This is the first year of this course

 Do not forget to give us your feedback! 

41

Follow-up and related courses

 PA103 Objektové metody návrhu informačních systémů

 PA102 Technologie informačních systémů I, II

 PV167 Projekt z objektového návrhu inf. systémů

 PA104 Vedení týmového projektu

 PV207 Business Process Management

 PV165 Procesní řízení

 PV045 Management informačního systému

 PA189 Agile Management in IT

 PV028 Aplikační informační systémy

42

Follow-up and related courses

 PV043 Informační systémy podniků

 PV230 Podnikové portály

 PV019 Geografické informační systémy I, II

 PV058 Informační systémy ve veřejné a státní správě

 PV213 Enterprise Information Systems in Practice

 PV098 Řízení implementace IS

 PB168 Základy databázových a informačních systémů

 PB114 Datové modelování I

 SSME Courses

43

Thanks

Thank you for your attention

and good luck with the exam!

Chapter 4 Requirements engineering 44

