
www.buslab.orgPB173 1/29

PB173 - Tématický vývoj aplikac í v
C/C++ (podzim 2012)

Skupina: Aplikovaná kryptografie a bezpečné
programování

https://minotaur.fi.muni.cz:8443/pb173_crypto

Petr Švenda, svenda@fi.muni.cz
Konzultace: B420, Pondělí 13-13:50

www.buslab.orgPB173 2/29

Last assignment – status?

www.buslab.orgPB173 3/29

Practical assignment

� Download OpenSSL and PolarSSL library
● and check signature (gpg --verify)

� Write small project
● read, encrypt and hash supplied file, write into out file
● read, verify hash and decrypt file
● use AES-128 in CBC mode and HMAC with SHA2-512
● use PKCS#7 padding method for encryption (RFC

3852)

� Start with New Project+PolarSSL+AES

www.buslab.orgPB173 4/29

Portability and memory restrictions

www.buslab.orgPB173 5/29

Memory restrictions

� Size of the code vs. runtime memory requirements
� Depends on the target platform

● usually of little concern (RAM is big enough)
● sometimes critical factor for algorithms selection

● embedded devices, e.g., sensor nodes

� Algorithms usually provides possibility for optimization
● precomputed tables – speed vs. memory
● key schedule vs. on-the-fly key schedule
● optimizations may increase risk for side channel attacks

� Write correct code first, then optimize
● especially true in security

www.buslab.orgPB173 6/29

Portability – different operating systems

� Usually no problems with algorithms
● plain C code

� Problems with additional functionality
● read file, directory listing, user input, GUI
● often cannot be solved by standardized functions or POSIX
● abstract and separate platform-dependent functions

● move them into distinct modules
● easy to replace/extend for target platform later

� Data generated by your application should be portable
● ASN.1 encoding
● TLV encoding
● binary vs. text formats
● Base64 encoding

www.buslab.orgPB173 7/29

Portability – different hardware platforms

� Little vs. big endian architecture
● usually problem with bit-based operations
● e.g., bit rotation
● problem with interpretation of binary formats

� Highly optimized implementations
● e.g., Gladman
● may use architecture specific operations and behaviour
● multiple byte operations in single tick
● special representation of memory data
● may use macros heavily

www.buslab.orgPB173 8/29

Reference vs. optimized version

� Double meaning of “reference” word
● reference implementation from algorithm designers

(Rijndael)
● reference == code you should use

� Reference implementation (e.g., Rijndael)
● usually simple and understandable API
● lower performance
● may not protect against implementation attacks
● typical usage is as supplementary material to algorithm

description document
● is used to create test vectors

www.buslab.orgPB173 9/29

Reference vs. optimized version (2)

� Optimized version of algorithm
● same results as reference implementation
● portability usually impacted

� Techniques used
● pre-computed tables often
● may use whole size of the architecture registers

● e.g., AES is byte oriented, but x64 can perform eight xor of
single byte per tick

● may use special instruction of particular CPU
● may use specifics of target architecture (e.g., cache size)

� Typically for the production environment

www.buslab.orgPB173 10/29

Choosing the right length

www.buslab.orgPB173 11/29

Length of keys/block/hashes

� Choose length with some reserve
● many things can go wrong

� Choose algorithms with corresponding lengths
● key derivation by MD5 of keys for AES256?

� Do not protect keys distribution by keys with lower
entropy
● AES key encrypted by simple DES key

� Asymmetric keys length needs to be much longer
● space of possible values is not continuous

www.buslab.orgPB173 12/29

Comparable strengths of cryptosystems

Source:
NIST SP800

www.buslab.orgPB173 13/29

Recommended key sizes

Source:
NIST SP800

www.buslab.orgPB173 14/29

Symmetric key cryptography

� Key length for symmetric cryptography
● 80 bits not secure enough against brute-force
● always good to have some reserve for algorithm flaws

● flaw => key can be found faster then by brute-force
● AES-128 is still OK
● AES-256 do not have 256 bits of security

� Take your application needs into account!

www.buslab.orgPB173 15/29

Making the keys

� From what are you making the keys?
● password must have entropy equivalent to derived key
● e.g., AES-128 key derived from “hello” will not have

128 bits security

� What if you create two keys from one with 128
bits of entropy?

� Do you really have perfect random generator?
● 128 generated bits will not have 128 bits of entropy
● generate more bits and use hash function to condense

into 128 bits

www.buslab.orgPB173 16/29

Asymmetric cryptography

� RSA is still gold standard
● use (at least) 2048 bits keys
● 768 bits broken by brute-force
● special number with 1024 bits broken by brute-force
● 1024 bits not broken yet, but…

� Elliptic courve cryptography (ECC) seems cool
● But do you really need shorter keys?
● If really yes, then use it!
● Otherwise you will face harder portability, more coding

problems, lower level of code testiness etc.

www.buslab.orgPB173 17/29

Practical assignment

www.buslab.orgPB173 18/29

Practical assignment (1)

� Modify existing project
● user specifies input and output file
● use functions from OpenSSL library as DLL calls

● (static linking, dynamic linking)
● http://en.wikipedia.org/wiki/Dynamic-link_library
● http://en.wikipedia.org/wiki/Dynamic-

link_library#C_and_C.2B.2B_.28Microsoft_Visual_Dialect.29

● user specifies if OpenSSL DLL or build-in PolarSSL
methods will be used

www.buslab.orgPB173 19/29

Practical assignment (2)

� Write following simple unit tests (CxxTest)
● http://morison.biz/technotes/articles/23
● file not exists or cannot be read/written into
● encrypted blob was corrupted
● wrong decryption key was used
● test vectors for encryption and hashing

� Code will be used later in architecture
● will be used again and extended, so write it well

� Best practices
● http://blog.stevensanderson.com/2009/08/24/writing-great-unit-

tests-best-and-worst-practises/
● MinUnit http://www.jera.com/techinfo/jtns/jtn002.html

www.buslab.orgPB173 20/29

Questions?

