PB173 - Tématický vývoj aplikací v C/C++ (podzim 2012)

Skupina: Aplikovaná kryptografie a bezpečné programování

https://minotaur.fi.muni.cz:8443/pb173_crypto

Petr Švenda, svenda@fi.muni.cz Konzultace: G.201, Pondělí 16-16:50

Some cryptography trivia

Symmetric vs. asymmetric cryptography

- Both can be used to do most of the tasks
 - you often have choice with some limitations
 - there are exceptions and some uses impractical
- Symmetric cryptography
 - both communicating parties shares same single key
 - advantage: fast, short key lengths (~16B)
 - disadvantages: one party can mimic other one
- Asymmetric cryptography
 - one party A generates private and public key
 - what is encrypted by private can be decrypted by public and vice versa
 - private is kept secret to A, public is distributed to all other B
 - advantage: B cannot mimic A (digital signatures)
 - disadvantages: slow, long keys (>128B)

DES and AES

Both are

- symmetric cryptography algorithms
- and block ciphers
- DES, from 1976
 - 8 bytes block, 56 bits key
 - insecure key length (DES cracker)
 - 3DES special mode for DES, still secure, but slow
 - 112/168bits key, Encrypt(Decrypt(Encrypt(M)))
- AES, from 2002
 - 16 bytes block, 128 256 bits key
 - secure, fast, prefer to DES

Block vs. stream cipher

- Stream ciphers produces key stream
 - generate key stream long enough
 - can be produced in parts, e.g., few bytes
 - xor key stream with data in per byte manner
 - can pre-compute stream for data bursts
 - key is not data-dependent
 - be aware of key stream reuse
- Block cipher process input data in blocks
 - take one block (typically 16 bytes)
 - encrypt the block (e.g., by AES or DES)
 - take next block and repeat again
 - Counter mode can simulate stream cipher via block cipher

Mode of cipher usage - ECB

- ECB (Electronic Code Book mode)
 - used for block ciphers
 - processing of one block does not influence others
- Main problem
 - same data with same key result in same ciphertext
 - attacker can build code book

Electronic Codebook (ECB) mode encryption

Mode of cipher usage - CBC

- CBC (Cipher Back Chaining mode)
 - used for block ciphers
 - previous cipher block is xored with next plaintext
 - prefer before ECB
- Problem
 - Initialization vector must be somehow shared
 - (random first block `

Cipher Block Chaining (CBC) mode encryption

Cryptographic hash functions

- Function transforming long input M into fixed output D
 - 1. fast to compute D from M
 - 2. infeasible to find M from D
 - 3. infeasible to find for given M another M' with same resulting D
 - 4. infeasible to find any pair M' != M with same resulting D

8/17

MD5, SHA-1, SHA-2, SHA-3

• MD5

- 128 bits output
- collision exists and can be found in few seconds!!
- insecure, do not use
- SHA-1
 - 160 bits output
 - not broken yet, but will be in close future
- SHA-2
 - 225 512 bits output
 - secure, prefer to SHA-1
- SHA-3
 - new competition just running, 5 candidates remain
 - http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

MAC vs. digital signature

- Both provide robust protection against data modification
- MAC is based on symmetric cryptography
 - Message authentication code
 - both parties must know same secret key
 - protection only against external attacker
 - typically encrypt then MAC (MAC over ciphertext)
- Digital signatures on asymmetric cryptography
 - only one party knows private key
 - others can just verify it

Rozdělení do týmů

- 2-3 osoby
- Společná práce, ale každý prezentuje svůj přínos
 - prezentace na každém dalším cvičení
 - resp. za 14 dni při absenci
- Rozdělení teď!
 - TODO týmy

Commented homework

- Commented codes available in IS repository
- Learn from others

Digital Rights Management (DRM)

Practical assignment

- Create specification for DRM architecture
- Functional requirements
 - involved parties and logical entities
 - format of data packets exchanged between parties
 - requirements for storage of data
- Security requirements
 - what keys will be used (symmetric/asymmetric)
 - who own which key?
 - algorithms, modes and key lengths used
 - who will have access to what data?