
www.buslab.orgPB173

PB173 - Tématický vývoj aplikací v 
C/C++ (podzim 2012)

Skupina: Aplikovaná kryptografie a bezpečné 
programování

https://minotaur.fi.muni.cz:8443/pb173_crypto

Petr Švenda, svenda@fi.muni.cz
Konzultace: G201, Pondělí 16-16:50



www.buslab.orgPB173

Optimization steps

1. Do not optimize prematurely - write clean 
and correct code first!

2. When code works, find performance 
bottleneck and remove it

3. Document optimization and test it 
thoroughly



www.buslab.orgPB173

Performance measurement - manual

� Manual speed measure
1. Measure time before target operation
2. Execute operation
3. Measure time after target operation
4. Compute and print difference

clock_t elapsed = -clock();
aes256_encrypt_ecb(&ctx, buf);
elapsed += clock();



www.buslab.orgPB173

Manual measurement – possible problems

� It is time consuming
● additional code, manually inserted
● less readable, error prone (use DEBUG macro)

� Precision
● some function returns time in seconds (e.g., time())

● short operations will take 0
● prefer functions returning result in ms or CPU ticks

● e.g., clock()
● check documentation for real precision

● run operation multiple times (e.g., 1000x) 
● and divide the resulting time by that factor



www.buslab.orgPB173

Manual measurement – possible problems 

� Additional unintended overhead may screw the 
results
● one-time initialization of objects
● cache usage, disk swap
● garbage collection (not in C/C++)

� Need to know the probable bottleneck in advance
● timing code is inserted manually
● you are selecting what you like to measure
● time consuming to localize bottleneck



www.buslab.orgPB173

Automatic measurement - profiling

� Automatic tool to measure time and memory used
� “Time” spend in specific function
� How often a function is called
� Call tree
● what function called actual one
● based on real code execution (condition jumps) 

� Many other statistics, depend on the tools



www.buslab.orgPB173

MS Visual Studio Profiler

� Analyze->Launch Performance Wizard

� Profiling method: CPU Sampling
● check periodically what is executed on CPU
● accurate, low overhead  

� Profiling method: Instrumentation
● automatically inserts special accounting code
● will return exact function call counter
● (may affect performance timings a bit)

● additional code present

� May require admin privileges (will ask)



www.buslab.orgPB173

MS VS Profiler – results (Summary)

� Where to start the optimization work?



www.buslab.orgPB173

MS VS Profiler – results (Functions)

� Result given in number of sampling hits
● meaningful result is % of total time spend in function

� Inclusive sampling
● samples hit in function or its children
● aggregate over call stack for given function

� Exclusive sampling
● samples hit in exclusively in given function
● usually what you want

● fraction of time spend in function code (not in 
subfunctions)



www.buslab.orgPB173

MS VS Profiler – results (Functions)

Doubleclick to move into 
Function Details view



www.buslab.org

46 % of time spend in gf_alog function

� How to speed up gf_alog function?

PB173



www.buslab.org

aestab.c

PB173

AES_RETURN aes_init(void)
{ uint_32t i, w;

#if defined(FF_TABLES)

uint_8t pow[512], log[256];

if(init)
return EXIT_SUCCESS;

/*  log and power tables for GF(2^8) finite field with
WPOLY as modular polynomial - the simplest primitive
root is 0x03, used here to generate the tables

*/

i = 0; w = 1;
do
{

pow[i] = (uint_8t)w;
pow[i + 255] = (uint_8t)w;
log[w] = (uint_8t)i++;
w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0);

}
while (w != 1);

// ...



www.buslab.orgPB173

MS VS Profiler – save results

�You can save results and compare later
�To check the real impact of your 

optimization
�Don’t forget to eventually stop the  

optimization ☺



www.buslab.orgPB173

Memory consumption profiling

� MSVS Profiler does not provide for native apps
● unfortunately
● available for managed code

� Visual Studio is detecting memory leaks!
● run program in debug mode (possibly without any 

breakpoint)
● let it finish and watch Output pane

� Valgrind -v --leak-check=full
� Write your own new and delete
● and log the allocated/freed memory



www.buslab.orgPB173

Optimizing crypto



www.buslab.orgPB173

Optimizing crypto

� Clever tricks both on design and implementation
● optimization of both algorithm and mode used
● see aestab.h and aesopt.h for example (Gladman)

� Possibility for pre-computation
● code itself: macros, templates, static arrays
● pre-computed tables

● AES optimized with large tables
● table lookup only implementation (AES/DES)
● see http://cr.yp.to/aes-speed.html

● pre-computed key stream (if mode supports)
● key stream in advance, then simple xor



www.buslab.orgPB173

Parallelization of operations

� Speedup by parallel execution
� Purpose build hardware
● cryptographic coprocessors
● e.g., fast modulo exponentiation

� Using multiple CPU cores
● multiple threads running
● http://msdn.microsoft.com/en-us/library/69644x60%28v=VS.80%29.aspx

● use so-called worker threads



www.buslab.orgPB173

Parallelization of modes

� Assume that algorithm itself is sufficiently 
optimized

� Algorithm is used in some mode
● e.g., block encryption modes (ECB, CBC…)

� We need parallelizable modes! 
● CBC encryption is not parallelizable 

● (decryption is – why?)

� Counter (CTR) mode



www.buslab.orgPB173

Counter (CTR) mode for encryption

� Mode approved by NIST (US standardization)
● http://csrc.nist.gov/publications/nistpubs/800-

38a/sp800-38a.pdf

� Designed for confidentiality with parallelization 
and pre-computation in mind

� Key stream is produced by iterated encryption of 
the incremental counter
● counter is incremented for each new block
● key stream is then xored to message
● key stream(== counter) must not repeat with same 

key



www.buslab.orgPB173

Counter (CTR) mode for encryption

http://www.mindspring.com/~dmcgrew/ctr-security.pdf



www.buslab.orgPB173

Practical assignment - analysis

� Produce detailed speed estimation for:
● data package preparation
● license preparation  
● package access

� Which function(s) is consuming most of the CPU?
● provide a list with %

� How fast the package with 1MB, 10MB and 
100MB can be prepared when required?
● assume that your program is already running 
● give time in miliseconds



www.buslab.orgPB173

Practical assignment (2)

� Implement encryption of data packets with CTR 
mode (privacy only, not MAC)
● pre-compute key stream (e.g., 100MB in RAM array)
● use parallel threads to prepare key stream

● number of available cores is parameter for function
● (at least one thread required ;))

� Document performance gains
● speed before and after the optimization
● account correctly for key stream pre-computation


