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Part I: Background 



General Model 

• A signature scheme consists of three (or more) 

related operations: 

– key pair generation produces a public/private key pair 

– signature operation produces a signature for a 

message with a private key 

– verification operation checks a signature with a public 

key 

• In a scheme with message recovery, verification 

operation recovers message from signature 

• In a scheme with appendix, both message and 

signature must be transmitted 



Trapdoor One-Way Functions 

• A one-way function f(x) is easy to compute but 

hard to invert: 

– easy: x  f(x) 

– hard: f(x)  x 

• A trapdoor one-way function has trapdoor 

information f-1 that makes it easy to invert: 

– easy: f(x), f-1  x = f-1(f(x)) 

• Many but not all signature schemes are based on 

trapdoor OWFs  



RSA Trapdoor OWF 

• The RSA function is 

f(x) = xe mod n 

 where n = pq, p and q are large random primes, 

and e is relatively prime to p-1 and q-1 

• This function is conjectured to be a trapdoor OWF 

• Trapdoor is 

f-1(x) = xd mod n 

 where d = e-1 mod lcm(p-1,q-1) 



Signatures with a Trapdoor OWF 

• Signature operation: 

s = s(M) = f-1(m(M)) 

– where m maps from message strings to f-1 inputs 

• may be randomized 

• invertible for signatures with message recovery 

• Verification operation (with appendix): 

f(s) =? m(M) 

• if randomized, f(s) ? m(M) 

• Verification operation (with message recovery): 

M = m-1(f(s)) 



Mapping Properties 

• Mapping should have similar properties to a hash 

function: 

– one-way: for random m, hard to find M s.t. m(M) = m 

– collision-resistant: hard to find M1, M2 s.t. m(M1) = m(M2) 

• For message recovery, a “redundancy” function 

• May also identify underlying algorithms 

– e.g., algorithm ID for underlying hash function 

• Should also interact well with trapdoor function 

– ideally, mapping should appear “random” 

 



Multiplicative Properties of RSA 

• RSA function is a multiplicative homomorphism: 

for all x, y, 

f (xy mod n) = f(x) f(y) mod n 

f-1(xy mod n) = f-1(x) f-1(y) mod n 

• More generally: 

f-1( xi mod n) =  (f-1(xi)) mod n 

• Property is exploited in most forgery attacks on 

RSA signatures, but also enhances recent 

security proofs 



Part II: Forgery and 

Provable Security 



Signature Forgery 

• A forgery is a signature computed without the 

signer’s private key 

• Forgery attacks may involve interaction with the 

signer: a chosen-message attack 

• Forgery may produce a signature for a specified 

message, or the message may be output with its 

signature (existential forgery) 



Multiplicative Forgery 

• Based on the multiplicative properties of the RSA 

function, if 

m(M) =  m(Mi)^ai mod n 

 then 

s(M) =  s(Mi)^ai mod n 

• Signature for M can thus be forged given the 

signatures for M1, …, Ml, under a chosen-message 

attack 



Small Primes Method 

• Suppose m(M) and m(M1), …, m(Ml) can be factored 

into small primes 

– Desmedt-Odlyzko (1986); Rivest (1991 in PKCS #1) 

• Then the exponents ai can be determined by 

relationships among the prime factorizations 

• Requires many messages if m maps to large 

integers, but effective if m maps to small integers 

• Limited applicability to example schemes 



Recent Generalization 

• Consider m(M), m(M1), …, m(Ml) mod n, and also 

allow a fixed factor 

– Coron-Naccache-Stern (1999) 

• Effective if m maps to small integers mod n times 

a fixed factor 

• Broader applicability to example schemes: 

– ISO 9796-2 [CNS99] 

– ISO 9796-1 [Coppersmith-Halevi-Jutla (1999)] 

– recovery of private key for Rabin-Williams variants 

[Joye-Quisquater (1999)] 



Integer Relations Method 

• What if the equation 

m(M) = f(t)  m(Mi)^ai 

 could be solved without factoring? 

• Effective for weak m: 

– ISO 9796-1 with three chosen messages [Grieu (1999)] 

 



Reduction Proofs 

• A reduction proof shows that inverting the 

function f “reduces” to signature forgery: given a 

forgery algorithm F, one can construct an 

inversion algorithm I 

• “Provable security”: 

– inversion hard   forgery hard 

• “Tight” proof closely relates hardness of 

problems 

 



Random Oracle Model 

• In the random oracle model, certain functions are 

considered “black boxes”: forgery algorithm 

cannot look inside 

– e.g., hash functions 

• Model enables reduction proofs for generic 

forgery algorithms — inversion algorithm embeds 

input to be inverted in oracle outputs 

• Multiplicative property can enhance the proof 



Part III: Example 

Signature Schemes 



Overview 

• Several popular approaches to RSA signatures 

• Approaches differ primarily in the mapping m 

• Some differences also in key generation 

• Some also support Rabin-Williams (even 

exponent) signatures 

 

• There are many other signature schemes based 

on factoring (e.g., Fiat-Shamir, GQ, Micali, GQ2); 

focus here is on those involving the RSA function 



Schemes with Appendix 

• Basic scheme 

• ANSI X9.31 

• PKCS #1 v1.5 

• Bellare-Rogaway FDH 

• Bellare-Rogaway PSS 



Basic Scheme 

• m(M) = Hash(M)  

• Pedagogical design 

• Insecure against multiplicative forgery for typical 

hash sizes 

• (Hopefully) not widely deployed 



ANSI X9.31 
(Digital Signatures Using Reversible Public-Key 

Cryptography for the Financial Services Industry, 1998) 

• m(M) = 6b bb … bb ba || Hash(M) || 3x cc 

 where x = 3 for SHA-1, 1 for RIPEMD-160 

• Ad hoc design 

• Resistant to multiplicative forgery 

– some moduli are more at risk, but still out of range 

• Widely standardized 

– IEEE P1363, ISO/IEC 14888-3 

– US NIST FIPS 186-1 

• ANSI X9.31 requires “strong primes” 



PKCS #1 v1.5 
(RSA Encryption Standard, 1991) 

• m(M) = 00 01 ff … ff 00 || HashAlgID || Hash(M) 

• Ad hoc design 

• Resistant to multiplicative forgery 

– moduli near 2k are more at risk, but still out of range 

• Widely deployed 

– SSL certificates 

– S/MIME 

• To be included in IEEE P1363a; PKCS #1 v2.0 

continues to support it 



ANSI X9.31 vs. PKCS #1 v1.5 

• Both are deterministic 

• Both include a hash function identifier 

• Both are ad hoc designs 

– both resist [CNS99]/[CHJ99] attacks 

• Both support RSA and RW primitives 

– see IEEE P1363a contribution on PKCS #1 signatures 

for discussion 

• No patents have been reported to IEEE P1363 or 

ANSI X9.31 for these mappings 



Bellare-Rogaway FDH 
(Full Domain Hashing, ACM CCCS ’93) 

• m(M) = 00 || Full-Length-Hash(m) 

• Provably secure design 

• To be included in IEEE P1363a 



Bellare-Rogaway PSS 
(Probabilistic Signature Scheme, Eurocrypt ’96) 

• m(M) = 00 || H  || G(H)  [salt || 00 … 00] 

 where H = Hash(salt, M), salt is random, and G is 

a mask generation function 

• Provably secure design 

• To be included in IEEE P1363a; ANSI X9.31 to be 

revised to include it 

 

Note: The format above is as specified in PKCS #1 v2.1 

d1, and is subject to change. 



FDH vs. PSS 

• FDH is deterministic, PSS is probabilistic 

• Both provably secure 

– same paradigm as Optimal Asymmetric Encryption 

Padding (OAEP) 

• PSS has tighter security proof, is less dependent 

on security of hash function 

• PSS-R variant supports message recovery, partial 

message recovery 

• PSS is patent pending (but generously licensed) 



Schemes with Message Recovery 

• Basic scheme 

• ISO/IEC 9796-1 

• ISO/IEC 9796-2 

• Bellare-Rogaway PSS-R 



Basic Scheme 

• m(M) = M 

• Another pedagogical design (“textbook RSA”) 

• Insecure against various forgeries, including 

existential forgery (M = f(s)) 

• Again, hopefully not widely deployed 

 



ISO/IEC 9796-1 
(Digital Signature Scheme Giving Message Recovery, 1991) 

• m(M) = s*(ml-1) s’(ml-2) ml-1 ml-2 

       s(ml-3) s(ml-4) ml-3 ml-4 ... 

      s(m3) s(m2) m3 m2 

      s(m1) s(m0) m0 6 

 where mi is the ith nibble of M and s*, s’ and s are 

fixed permutations 

• Ad hoc design with significant rationale 

• Not resistant to multiplicative forgery [CHJ99], 

[Grieu 1999] 

– may still be appropriate if applied to a hash value 

• Moderately standardized 



ISO/IEC 9796-2 
(Digital Signature Scheme Giving Message Recovery — 

Mechanisms Using a Hash Function, 1997) 

• m(M) = 4b bb bb …  bb ba || M || Hash(M) || bc 

 or 6a || M’ || Hash(M) || bc 

 where M’ is part of the message 

– this assumes modulus length is multiple of 8 

– general format allows hash algorithm ID 

• Ad hoc design 

– hash provides some structure 

• Not resistant to multiplicative forgery if hash 

value is 64 bits or less [CNS99] 

– may still be appropriate for larger hash values 

• Newly standardized 



Bellare-Rogaway PSS-R 
(Probabilistic Signature Scheme with Recovery, 1996) 

• m(M) = 00 || H  || G(H)  [salt || 00 … 01 || M] 

 where H = Hash(salt, M), salt is random, and G is 

a mask generation function 

• Provably secure design 

• To be included in IEEE P1363a; ISO/IEC 9796-2 to 

be revised to include it 

 

Note: The format above is as specified in IEEE P1363a D1, 

and is subject to change. 

 



Part IV: Standards 

Strategy 



Standards vs. Theory vs. Practice 

• ANSI X9.31 is widely standardized 

• PSS is widely considered secure 

• PKCS #1 v1.5 is widely deployed 

 

• How to harmonize? 

• (Related question for signature schemes with 

message recovery) 



Challenges 

• Infrastructure changes take time 

– particularly on the user side 

• ANSI X9.31 is more than just another encoding 

method, also specifies “strong primes” 

– a controversial topic 

• Many communities involved 

– formal standards bodies, IETF, browser vendors, 

certificate authorities 



Prudent Security 

• What if a weakness were found in ANSI X9.31 or 

PKCS #1 v1.5 signatures? 

– no proof of security, though designs are well motivated, 

supported by analysis 

– would be surprising — but so were vulnerabilities in 

ISO/IEC 9796-1,-2 

• PSS embodies “best practices,” prudent to 

improve over time 



Proposed Strategy 

• Short term (1-2 years): Support both PKCS #1 

v1.5 and ANSI X9.31 signatures for 

interoperability 

– e.g., in IETF profiles, FIPS validation 

• NIST intends to allow PKCS #1 v1.5 in FIPS 186-2 for 

an 18-month transition period 

• Long term (2-5 years): Move toward PSS 

– not necessarily, but perhaps optionally with “strong 

primes” 

– upgrade in due course — e.g., with AES algorithm, new 

hash functions 



Standards Work 

• IEEE P1363a will include PSS, PSS-R 

– also FDH, PKCS #1 v1.5 signatures 

• PKCS #1 v2.1 d1 includes it 

• ANSI X9.31 will be revised to include PSS 

• ISO/IEC 9796-2 will be revised to include PSS-R 

• Coordination is underway 



Conclusions 

• Several signature schemes based on RSA 

algorithm 

– varying attributes: standards, theory, practice 

• Recent forgery results on certain schemes, 

security proofs on others 

• PSS a prudent choice for long-term security, 

harmonization of standards 


