

Mediation Chain Generation in Pervasive Environments

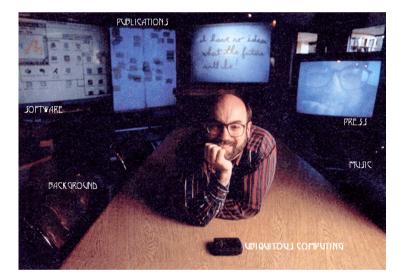
Jiri HARAZIM

harazim@mail.muni.cz

Supervisors:

RNDr. Radek Ošlejšek, Ph. D.

Prof. Philippe Lalanda


- Introduction
- State of the Art
- Problematic Challenges and Related Work
- Background: Creating Pervasive Applications
- Proposition
- Implementation
- Validation
- Conclusion and Future Work

Introduction

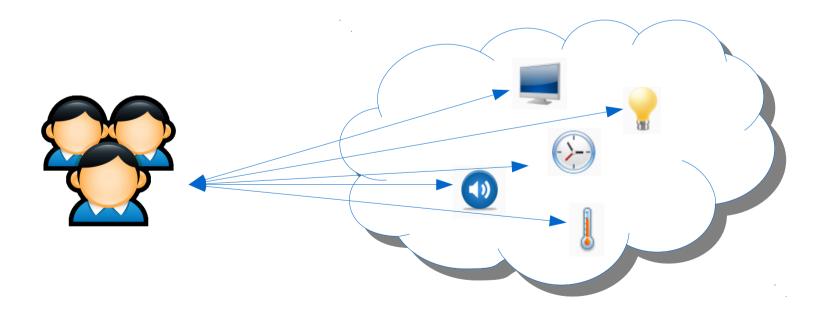
- State of the Art
- Problematic Challenges and Related Work
- Background: Creating Pervasive Applications
- Proposition
- Implementation
- Validation
- Conclusion and Future Work

Pervasive (ubiquitous) Computing

"Ubiquitous computing names the third wave in computing, just now beginning. First were mainframes, each shared by lots of people. Now we are in the personal computing era, person and machine staring uneasily at each other across the desktop. Next comes ubiquitous computing, or the age of calm technology, when technology recedes into the background of our lives."

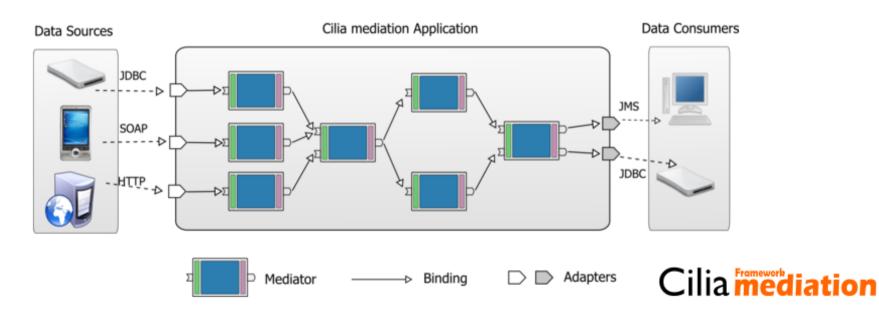
Mark Weiser (1952-1999)

Pervasive (ubiquitous) Computing


Thre are three main categories of devices: small, hand-size and large

Pervasive Environment

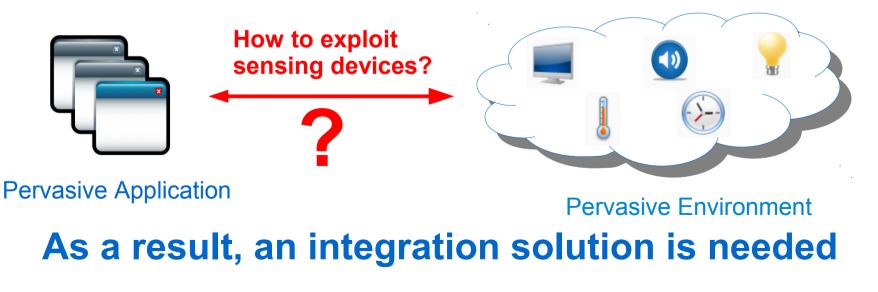
Pervasive Environment consists of computing devices integrated into everyday objects


Freely shared, multi-purpose devices integrated into everyday objects used by users in different contexts.

Mediation & Mediation Chain

Mediation consists of

- Data Collecting
- Synchronization
- Mediation Logic Execution (i.e. data transformations)
- Routing and Delivery via Mediation Chain

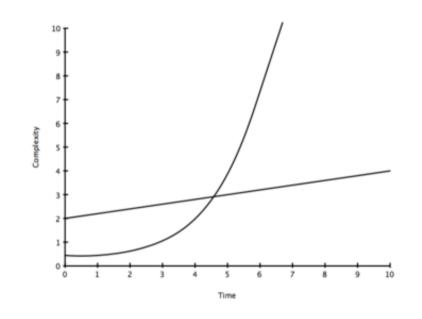


22. 11. 2012 Jiri HARAZIM: Mediation Chain Generation in Pervasive Environments

Motivation

When building pervasive applications, it is necessary to exploit sensing devices in pervasive environment, but:

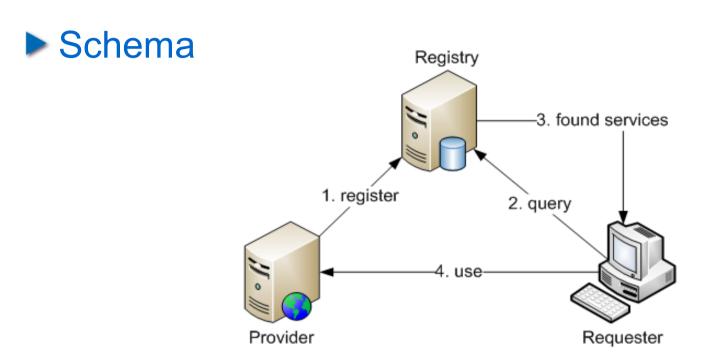
- Sensing devices have heterogeneous interfaces
- Devices often produce different data (different unit, time interval, format, ...)


22. 11. 2012 Jiri HARAZIM: Mediation Chain Generation in Pervasive Environments

- Introduction
- State of the Art
- Problematic Challenges and Related Work
- Background: Creating Pervasive Applications
- Proposition
- Implementation
- Validation
- Conclusion and Future Work

State of the Art

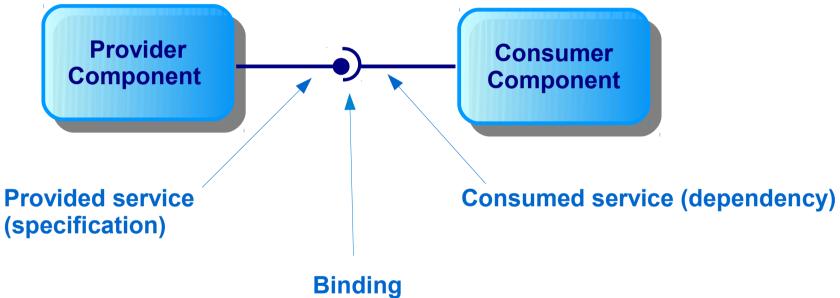
New challenges...


- Complexity
- Dynamism
- Heterogenity

... bring new solutions:

- Component-Based Software Engineering
- Service-Oriented Computing
- Mediation

Service-Oriented Computing



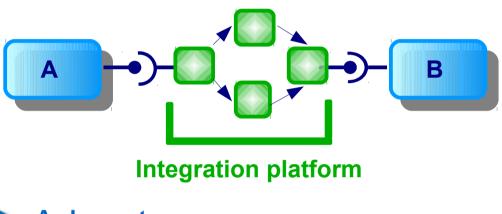
Advantages

- Loose-coupling: only service contract is shared
- Late-binding: on-demand binding
- Evolution: a provider can be replaced

22. 11. 2012 Jiri HARAZIM: Mediation Chain Generation in Pervasive Environments

Service-Oriented Components

(performed at runtime by framework)


Integration

Proxy based integration

Advantages

- Separation of concerns
- Disadvantages
 - Lack of modularity
 - Lack of composition

Platform-based integration

- Advantages
 - Composition of transformations
 - Modular
- Disadvantages
 - Complex, hard to introspect

- Introduction
- State of the Art
- Problematic Challenges and Related Work
- Background: Creating Pervasive Applications
- Proposition
- Implementation
- Validation
- Conclusion and Future Work

Problematic Challenges

Integration issues of devices in pervasive environment:

- Data Representation (i.e. different units)
- Dynamism (devices may appear or disappear anytime)
- Configuration (amount of manual configuration)
- Timing aspects (data aggregation, sync vs async)

Related Work

PervML

- Generation of code from several models
- Doesn't address heterogeneity

SStream

- Considers data from sensors as tuples
- Interpretation of data is delegated on the client

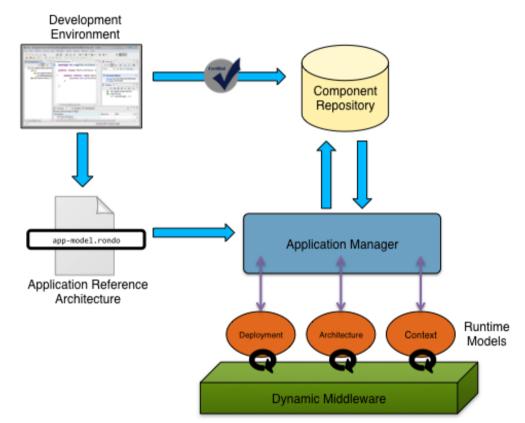
EEML

- Extensible Environment Markup Language
- Flexible scheme for representation of data from sensing devices
- Used in Cosm project

DynaMo

- Dynamic Multimodal Interface
- Integration based on proxies, semantic and type of data

22. 11. 2012 Jiri HARAZIM: Mediation Chain Generation in Pervasive Environments


- Introduction
- State of the Art
- Problematic Challenges and Related Work
- Background: Creating Pervasive Applications
- Proposition
- Implementation
- Validation
- Conclusion and Future Work

Rondo Framework

Global scheme: Model-Driven approach of Rondo

Framework for defining and dynamically assembling service-oriented components

22. 11. 2012 Jiri HARAZIM: Mediation Chain Generation in Pervasive Environments

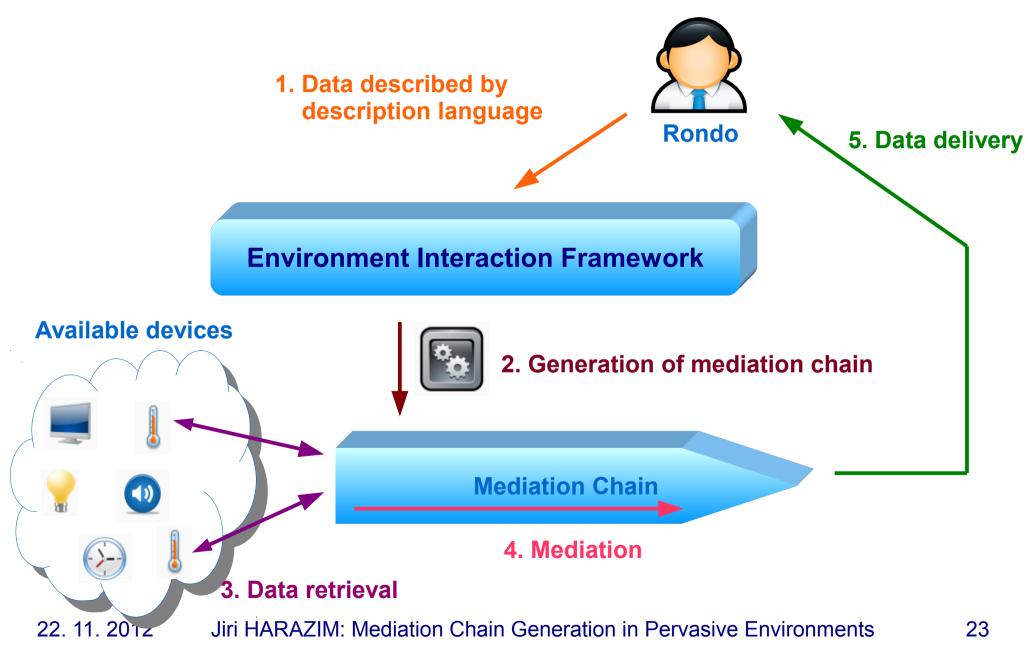
Background: Creating Pervasive Applications

Aspects of pervasive applications addressed by Rondo:

- Discoverability
- Context (i.e. User's location)
- Dynamic Adaptability
- Composability
- Rondo is essentially functional today
- Components need to express high-level dependencies to the data produced by devices.

Goal of this work

- Propose smarter integration of sensing devices in the Rondo approach by generating mediation flow from high-level description that:
 - Hides the complexity of heterogeneous devices
 - Provides unified access to underlying devices
 - Provides unified data
 - Provides additional capabilities (transformations)


- Introduction
- State of the Art
- Problematic Challenges and Related Work
- Background: Creating Pervasive Applications
- Proposition
- Implementation
- Validation
- Conclusion and Future Work

Proposal

Incorporate concept of Semantic Tag

- Human-understandable semantic expression associated with various devices: humidity, presence, temperature, illuminance etc.
- Extend the Rondo language by mediation concept
 - Uses expressive filter (RFC#1960) applicable on data
 - Contract of Mediator: tries to translate data before filtering (i.e. (location=livingroom) but device may produce location=living-room or room-04 although they denote the same location)
- Use Cilia as underlying component model in the generation phase
 - Enables dynamism, modularity, follows EAI patterns

Environment Interaction Framework

Description Language

- Consists of tag & filter
- Tag denotes the semantic meaning of data that is collected in environment.
 - Emphasis on semantic aspect instead of form of data
 - For example: "temperature", "humidity", "illuminance", "sensed-presence-of-human" etc.
- Filter influences generation of mediation chain
 - Incorporates mediators to enable transformation
 - By chaining mediators it is possible to obtain quite complex behaviour

- Introduction
- State of the Art
- Problematic Challenges and Related Work
- Background: Creating Pervasive Applications
- Proposition
- Implementation
- Validation
- Conclusion and Future Work

Implementation

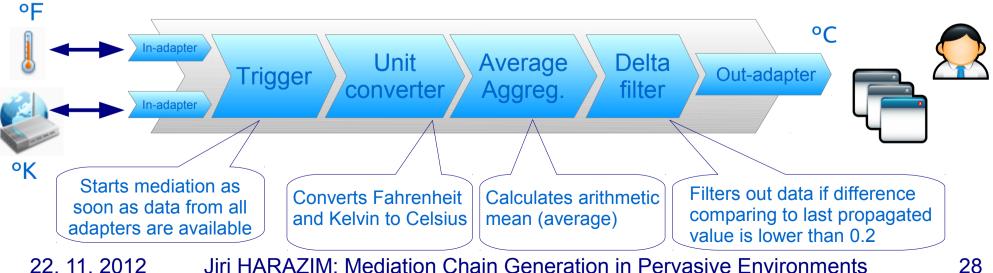
EIF

- Available as a service with simple and intuitive API
- 3 OSGi bundles (API, Controller and Cilia-Components)
- 20 Cilia components for additional transformations
- Independent from underlying technologies

Used technologies

- Cilia Mediation Framework
- Apache iPOJO
- Apache Maven
- JScience library

- Introduction
- State of the Art
- Problematic Challenges and Related Work
- Background: Creating Pervasive Applications
- Proposition
- Implementation
- Validation
- Conclusion and Future Work


Validation

Validation

Scenario based on real use-case brought by ADELE tested on iCASA: Digital House Simulator

Scenario

Human's presence in the house triggers actions (switches on/off light, air-condition etc.) based on certain conditions that are retrieved from sensing devices via EIF (such as time, illuminance and temperature)

iCASA House Simulator

Devices for: Home (All)

Device Name	Location		Usable *	Fault	Details
Kitchen Thermometer Sensor	kitchen	•	deactivated -	no 👻	
Bedroom Thermometer Sensor	bedroom	•	activated -	no -	
Kitchen Lamp	kitchen	•	activated -	no 👻	
Livingroom Hi-Fi	livingroom	•	activated -	no 👻	
Bathroom Lamp	bathroom	•	activated -	no -	
Livingroom Thermometer Sensor	livingroom	•	activated -	no 👻	
Bedroom Thermometer Sensor	bathroom	•	activated -	no 👻	
Livingroom Halogen Lamp	livingroom	•	activated -	no 👻	
Bedroom Halogen Lamp	bedroom	•	deactivated -	no 👻	

Applications

Simulated Users

Device List

O Simulated Time & Date

Bedroom Halogen Lamp 🛛 🗙	Livingroom Thermometer Sensor	×	Livingroom Halogen Lamp X
Serial Number: Elektro-Halogen4000-985614-65891-78	Serial Number: SekuSensor-AAA-20119915-F		Serial Number: Elektro-Halogen4000-453147-08234-88
Fault NO	Temperature 296.15	- 1	Fault NO
State deactivated	Fault NO	- 1	State activated
	State activated		

22. 11. 2012 Jiri HARAZIM: Mediation Chain Generation in Pervasive Environments

Validation

Validation in practice

- Verified against validation scenario
- Tested with various combinations of mediators
- Exploited advanced features such as unit conversions
- Full integration with all sensing devices in iCASA such as thermometers, presence sensors, noise sensors, illuminance sensors and power-consumption sensors

iCASA: Digital House Simulator

Conclusion and Future Work

Conclusion

- Generates mediation chain and provides additional transformations of sensed data
- Simplifies the development of pervasive applications (the simplest mediation chain can be created and started in only 2 lines of code)
- EIF will be integrated in Rondo Framework

Future Work

- Integration into Domain-Specific Language in Rondo
- Extend description language and enable hierarchical data
- Two-way interaction with environment
- More components (triggers & mediators)

22. 11. 2012 Jiri HARAZIM: Mediation Chain Generation in Pervasive Environments

References

- Hansmann, Uwe. *Pervasive Computing: The Mobile World*.
- Ebling R. Maria, Baker Mary. *Pervasive Tabs, Pads, and Boards: Are We There Yet?*
- Krakowiak Sacha. *Middleware Architecture with Patterns and Frameworks*.
- Crnkovic Ivica, Vulgarakis Aneta, Chaudron R. V. Michel. A Classification Framework for Software Component Models.
- Gugen Levent, Labbe Cyril, Roncancio Claudia, Olive Vincent. Sstream: A Model for Representing Sensor Data and Sensor Queries.
- Haque Design + Research Ltd.. Extensible Environments Markup Language: EEML.
- Avouac Pierre-Alain, Lalanda Philippe, Nigay Laurence. Service-Oriented Autonomic Multimodal Interaction in a Pervasive Environment.
- Hall S. Richard, Pauls Karl, McCulloch Stuart, Savage David. OSGi in action. Creating modular applications in Java.
- Isbell Douglas, Hardin Mary, Underwood Joan. MARS CLIMATE ORBITER TEAM FINDS LIKELY CAUSE OF LOSS.
- Cervantes Humberto, Donsez Didier, Touseau Lionel. An Architecture Description Language for Dynamic Sensor-Based Applications.
- Solis Ignacio, Obraczka Katia. The Impact of Timing in Data Aggregation for Sensor Networks.

22. 11. 2012 Jiri HARAZIM: Mediation Chain Generation in Pervasive Environments

Questions?

The End

Thank you for your attention!

Implemented Transformations

Implemented Cilia components for mediation can be combined and chained to obtain desired behaviour.

► 3 triggers

10 processors (aggregators, statistical ops., converter ..): Average Aggregator, Delta filter, Forward processor, Max Aggregator, Min Aggregator, Min filter, Max filter, OlderThanFilter, Sum Aggregator filter, Unit converter

6 + 1 adapters

Sources

Pics:

http://www.google.cz/search?um=1&hl=cs&client=opera&rls=cs

http://www.google.cz/search? um=1&hl=cs&client=opera&rls=cs&channel=suggest&biw= 1440&bih=729&tbm=isch&sa=1&q=smartphone&oq=smart phone&gs_l=img.3..0l10.23774.25655.0.26360.10.6.0.4.4. 0.130.479.5j1.6.0...0.0...1c.1.AeK0LEiyUoU

http://en.wikipedia.org/wiki/Mark_Weiser