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Kripke Semantics for Logical Consequence

Given some model (W, R, ) and some w € W, we compute the truth value of
a non-atomic formula by recursion on its shape:

,

o t 9(v,p) =t for some v € W with wRv
I(w, () = <> f otherwise

o t 9(v,p) =t forevery v € W with wRv
d(w, llg) = f otherwise

\

Example: It W = {wo, w1, wQ} and R = {(’wo, wl), (’wo, ’wz)} and
P (w1,p3) =t then (W, R, ) is a Kripke model as pictured below:

w1 r49(,w07<>p3) =t

B d(wo, [lpz) = f

wo_ I(wy, [lp1) = ¢

~ I(wy, []-p1) = ¢

w2 I(wo, (Mlp1) = t
Intuition: truth of modalities depends on underlying R (not truth functional)

Introduction to Modal and Temporal Logics 6 December 2007 9



Modal & temporal logic - examples

W — {’U]Q, wy, W2, W3, W4, Ws, w6}7
R = {(wo, wy), (wo, ws), (w3, wp),

(w3, wy), (w5, wa), (we, wa) } Y /

¥ — set by graph

\
(wy, () [Ip2) = f; (no following world exists) PP,
(wo, () [|=p1) = y
(w3, () | 7pa) = (tm@ for wy, wy) § \w
(wo, [| () p1) = f; (false for wi,ws) ws 6
(w?n <> p3) — f



Semantic Forcing Relation [ and its negation [}/
Let IC be the class of all Kripke models, and M = (W, R, ¥) a Kripke model
Let K be the class of all Kripke frames and let § be a Kripke frame

Let I" be a set of formulae, and ¢ be a formula

Forces We say We write When o lf ©
inaworld | w forces ¢ w k¢ Hw,p) =t Hw,p) =f
iInamodel | Mforcesyp | MIFp | YVwe Wwlke | dJwe Wwlf o
in a frame | F forces ¢ S| V.G DHIFp | F9.E,9) IFe

Classicality: either o I ¢ or else e | © holds for ¢ € {w, M, F}

Exercise: Work out the negation of each fully e.g. M I ¢ is dJw € W.w IF —p
Either w |- ¢ or else w |F = holds (Lemma 1)
But this does not apply to all: e.g. either M |- © or else M |- = Is rarely true.

W I ¢ meaning “every frame built out of given W forces ¢” is not interesting
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Lecture 5: Tense and Temporal Logics
Tense Logics: interpret []p as “¢ is true always in the future”.
W represents moments of time
R captures the flow of time

Temporal Logics: similar, but use a more expressive binary modality ¢ /1) to
capture “p is true at all time points from now until ¢) becomes true”.

Shall look at Syntax, Semantics, Hilbert and Tableau Calculi.
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Tense Logics: Syntax and Semantics
Atomic Formulae: p ::=pg | p1 | p2 | - -

Formulae: ¢ :=p [ ¢ | (F)¢ | [Fle | (P)e | [Ple oA loVele—p

Boolean connectives interpreted as for modal logic.

Given some Kripke model (W, R, ) and some w € W, we compute the truth
value of a non-atomic formula by recursion on its shape:

9w, (Fp) = E gtﬁgrj\;v??e: t at some v € W with wRwv
9w, [Flo) = E gtﬁgrj\;v??e: t at every v € W with wRv
9(w, (P)p) = f 1{3 ic]:tﬁgrjv’v??e: t at some v € W with v Rw
9(w, [Plp) = f 1{ ic]:tﬁgr)v,v??e: t at every v € W with v Rw

Va
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Tense Logics: Syntax and Semantics

N\

. t if9(v,p) =t atsome v € W with wRwv

I(w, (F)p) = f otherwise
(¢ if Y (v, ) =t atevery v € W with wRwv

d(w, [Flp) = f otherwise
o I t ifd(v,p) =t atsome v € W with v Rw

I(w, (P)p) = f otherwise
o f t ifd(v,p) =t ateveryv € W with v Rw

d(w, [Plp) = f otherwise

\

Example: It W = {wo, w1, wQ} and R = {(’wo, wl), (’wo, ’wz)} and
P (w1,p3) = t then (W, R, ) is a Kripke model as pictured below:

w1q
B d(wo, (F)pz) =t
wo_ P(wo, (P)(F)p3) = t
\w2 9(wo, [P]p1) =t
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Modal & temporal logic - examples

W — {’U]Q, wy, W2, W3, W4, Ws, w6}7
R — {(wo, wl), (w07 w2)7 (U]Q, w?))?

(w2, wy), (w6, wy), (w5, wy) } e e

wl_‘plvp?) wg_‘plv_'p5

_‘p47_'p5w0 N w2_‘p37_'p2

AN

¥ — set by graph

(wy, [Plp2) = f; we PP s qu P TPP
(ws, (P) (F) ps) = t

(i, (P) [Flpr) =t (true for wy ) 7

(wy, (P) [Plps) = t; (true for ws,ws; false for ws) ws

(



Different Models of Time
Arbitrary Time: K¢
Reflexive Time: ¢ — (F)y Transitive Time: (F)(F)p — (F)p
Dense Time: (Fo — (F){F)p Never Ending Time: [Flp — (F)p
Backward Linear: (F){P)py — (P)p V o V (F)y
Forward Linear: (P){F)p — (F)p V ¢ V (P)p

Tableau Calculi also exist but require even more complex loop detection often
called “dynamic blocking”.

Discrete (Z, <) , Rational (Q, <), Real (R, <) linear and non-reflexive models
of time also possible: see Goldblatt.

Tableau-like calculi exist; see Mosaic Method
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PLTL: Propositional Linear Temporal Logic
Atomic Formulae: p ::=pg | p1 | p2 | - -

Formulae: ¢ :=p | —p | Dy | [Fle [ (F)e | U |oANe Vo le —o@

Boolean connectives interpreted as for modal logic.

Linear Time Kripke Model: (S, o, R, )

S: non-empty set of states

o. N — S enumerates S as sequence oq, 01, - - - With repetitions when S finite
v S x Atm — {t, f}

R: is a binary relation over S

Condition: R = o* (R is the reflexive and transitive closure of o)
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Semantics of PLTL

o = =
Koo = |} e
Hulrle) = | lied = T
V(s pUY) = <\ ;’, gtﬁ];rvz\/i;.eﬁ(smw =t&Vji<j<k=0(sj,p) =t
S; Sit1 Ce S S Sk
pUg DP,Qq - PG oo q

Note: when k # i, the state s, is the first state after s; where q is true.
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Semantics of PLTL

oo B9 = | f omenige |
) = {1 s =21
Kol = |} o) =2
s = {§ LAE 0= B < =
S; Si41 .- Sj .. S
-(pUg),~¢ 7T - —q ... g qis always false, or
~(ptq) 4 -+ TP, .-+ q  pfalse before g true

Note: when k # i, the state s, Is the first state after s; where q is true. And p is
false in some s; before state sy.
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Modal & temporal logic - examples

W ={w_5}; R & v — Set by graph

pv_'Q7Sw1 - p’_‘qu N pa_‘qru)?) - _‘pv_'qruJ4 [N Q75w5



Lecture 6: Fix-point Logics
PLTL: linear time temporal logic
CTL: computation tree logic
PDL.: propositional dynamic logic
LCK: logic of common knowledge

Look at CTL but using only one relation R rather than R = o*
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