Modal & temporal logic

Juraj Jurco

December 2, 2013

Masaryk University, Faculty of Informatics adopted by Juraj Jurco from slides of Rajeev Gore

Kripke Semantics for Logical Consequence

Given some model $\langle W, R, \vartheta \rangle$ and some $w \in W$, we compute the truth value of a non-atomic formula by recursion on its shape:

$$\begin{array}{ll} \vartheta(w,\langle\rangle\varphi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \vartheta(v,\varphi) = \mathbf{t} \text{ for some } v \in W \text{ with } wRv \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(w,[]\varphi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \vartheta(v,\varphi) = \mathbf{t} \text{ for every } v \in W \text{ with } wRv \\ \mathbf{f} & \text{otherwise} \end{array} \right. \end{array}$$

Example: If $W = \{w_0, w_1, w_2\}$ and $R = \{(w_0, w_1), (w_0, w_2)\}$ and $\vartheta(w_1, p_3) = t$ then $\langle W, R, \vartheta \rangle$ is a Kripke model as pictured below:

$$\begin{array}{ccccc}
w_1 & \vartheta(w_0, \langle \rangle p_3) & = & \mathbf{t} \\
\vartheta(w_0, []p_3) & = & \mathbf{f} \\
\vartheta(w_1, []p_1) & = & \mathbf{t} \\
\vartheta(w_1, []\neg p_1) & = & \mathbf{t} \\
\vartheta(w_0, \langle \rangle []p_1) & = & \mathbf{t}
\end{array}$$

Intuition: truth of modalities depends on underlying R (not truth functional)

Modal & temporal logic - examples

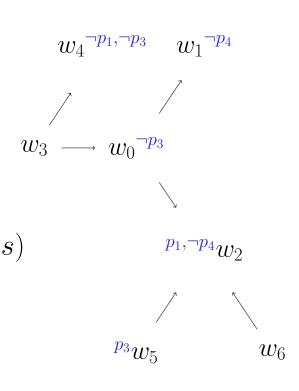
$$W = \{w_0, w_1, w_2, w_3, w_4, w_5, w_6\},\$$

$$R = \{(w_0, w_1), (w_0, w_2), (w_3, w_0),\$$

$$(w_3, w_4), (w_5, w_2), (w_6, w_2)\}$$

$$\vartheta$$
 – set by graph

$$(w_4, \langle \rangle []p_2) = f;$$
 (no following world exists)
 $(w_0, \langle \rangle []\neg p_1) = t;$
 $(w_3, \langle \rangle []\neg p_4) = t;$ (true for w_4, w_0)
 $(w_0, [] \langle \rangle p_1) = f;$ (false for w_1, w_2)
 $(w_3, \langle \rangle p_3) = f;$



Let $\mathcal K$ be the class of all Kripke models, and $\mathcal M=\langle W,R,\vartheta\rangle$ a Kripke model Let $\mathcal K$ be the class of all Kripke frames and let $\mathcal F$ be a Kripke frame Let Γ be a set of formulae, and φ be a formula

Forces	We say	We write	When	\bullet $\not ert arphi$
in a world	w forces $arphi$	$w \Vdash \varphi$	$\vartheta(w,\varphi) = \mathbf{t}$	$\vartheta(w,\varphi) = \mathbf{f}$
in a model	${\mathcal M}$ forces $arphi$	$\mathcal{M} \Vdash \varphi$	$\forall w \in W.w \Vdash \varphi$	$\exists w \in W.w \not \Vdash \varphi$
in a frame	${\mathfrak F}$ forces $arphi$	$\mathfrak{F} \Vdash arphi$	$\forall \vartheta. \langle \mathfrak{F}, \vartheta \rangle \Vdash \varphi$	$\exists \vartheta. \langle \mathfrak{F}, \vartheta \rangle \not \Vdash \varphi$

Classicality: either $\bullet \Vdash \varphi$ or else $\bullet \not\Vdash \varphi$ holds for $\bullet \in \{w, \mathcal{M}, \mathfrak{F}\}$

Exercise: Work out the negation of each fully e.g. $\mathcal{M} \not \models \varphi$ is $\exists w \in W.w \Vdash \neg \varphi$

Either $w \Vdash \varphi$ or else $w \Vdash \neg \varphi$ holds

(Lemma 1)

But this does not apply to all: e.g. either $\mathcal{M} \Vdash \varphi$ or else $\mathcal{M} \Vdash \neg \varphi$ is rarely true.

 $W \Vdash \varphi$ meaning "every frame built out of given W forces φ " is not interesting

Lecture 5: Tense and Temporal Logics

Tense Logics: interpret $[]\varphi$ as " φ is true always in the future".

W represents moments of time

R captures the flow of time

Temporal Logics: similar, but use a more expressive binary modality $\varphi \mathcal{U} \psi$ to capture " φ is true at all time points from now until ψ becomes true".

Shall look at Syntax, Semantics, Hilbert and Tableau Calculi.

Tense Logics: Syntax and Semantics

Atomic Formulae: $p := p_0 \mid p_1 \mid p_2 \mid \cdots$

Formulae: $\varphi ::= p \mid \neg \varphi \mid \langle F \rangle \varphi \mid [F] \varphi \mid \langle P \rangle \varphi \mid [P] \varphi \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi$

Boolean connectives interpreted as for modal logic.

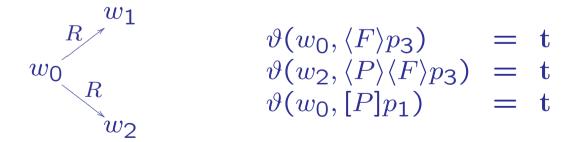
Given some Kripke model $\langle W, R, \vartheta \rangle$ and some $w \in W$, we compute the truth value of a non-atomic formula by recursion on its shape:

$$\begin{array}{ll} \vartheta(w,\langle F\rangle\varphi) & = & \left\{ \begin{array}{l} \mathbf{t} & \text{if } \vartheta(v,\varphi) = \mathbf{t} \text{ at some } v \in W \text{ with } wRv \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(w,[F]\varphi) & = & \left\{ \begin{array}{l} \mathbf{t} & \text{if } \vartheta(v,\varphi) = \mathbf{t} \text{ at every } v \in W \text{ with } wRv \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(w,\langle P\rangle\varphi) & = & \left\{ \begin{array}{l} \mathbf{t} & \text{if } \vartheta(v,\varphi) = \mathbf{t} \text{ at some } v \in W \text{ with } vRw \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(w,[P]\varphi) & = & \left\{ \begin{array}{l} \mathbf{t} & \text{if } \vartheta(v,\varphi) = \mathbf{t} \text{ at every } v \in W \text{ with } vRw \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(w,[P]\varphi) & = & \left\{ \begin{array}{l} \mathbf{t} & \text{if } \vartheta(v,\varphi) = \mathbf{t} \text{ at every } v \in W \text{ with } vRw \\ \mathbf{f} & \text{otherwise} \end{array} \right. \end{array}$$

Tense Logics: Syntax and Semantics

$$\begin{array}{ll} \vartheta(w,\langle F\rangle\varphi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \text{if } \vartheta(v,\varphi) = \mathbf{t} \text{ at some } v \in W \text{ with } wRv \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(w,[F]\varphi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \text{if } \vartheta(v,\varphi) = \mathbf{t} \text{ at every } v \in W \text{ with } wRv \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(w,\langle P\rangle\varphi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \text{if } \vartheta(v,\varphi) = \mathbf{t} \text{ at some } v \in W \text{ with } vRw \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(w,[P]\varphi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \text{if } \vartheta(v,\varphi) = \mathbf{t} \text{ at every } v \in W \text{ with } vRw \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(w,[P]\varphi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \text{if } \vartheta(v,\varphi) = \mathbf{t} \text{ at every } v \in W \text{ with } vRw \\ \mathbf{f} & \text{otherwise} \end{array} \right. \end{array}$$

Example: If $W = \{w_0, w_1, w_2\}$ and $R = \{(w_0, w_1), (w_0, w_2)\}$ and $\vartheta(w_1, p_3) = t$ then $\langle W, R, \vartheta \rangle$ is a Kripke model as pictured below:



Modal & temporal logic - examples

$$W = \{w_0, w_1, w_2, w_3, w_4, w_5, w_6\},\$$

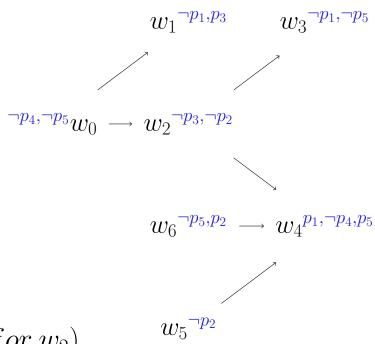
$$R = \{(w_0, w_1), (w_0, w_2), (w_2, w_3),\$$

$$(w_2, w_4), (w_6, w_4), (w_5, w_4)\}$$

 ϑ – set by graph

$$(w_4, [P]p_2) = f;$$

 $(w_2, \langle P \rangle \langle F \rangle p_3) = t;$
 $(w_4, \langle P \rangle [F]p_1) = t;$ (true for w_5, w_6)
 $(w_4, \langle P \rangle [P]p_4) = t;$ (true for $w_5, w_6;$ false for w_2)
 $(w_0, [F] \langle F \rangle p_5) = f;$ (true for $w_2;$ false for w_1)



Different Models of Time

Arbitrary Time: $\mathbf{K_t}$

Reflexive Time: $\varphi \to \langle F \rangle \varphi$ Transitive Time: $\langle F \rangle \langle F \rangle \varphi \to \langle F \rangle \varphi$

Dense Time: $\langle F \rangle \varphi \to \langle F \rangle \langle F \rangle \varphi$ Never Ending Time: $[F] \varphi \to \langle F \rangle \varphi$

Backward Linear: $\langle F \rangle \langle P \rangle \varphi \rightarrow \langle P \rangle \varphi \vee \varphi \vee \langle F \rangle \varphi$

Forward Linear: $\langle P \rangle \langle F \rangle \varphi \rightarrow \langle F \rangle \varphi \vee \varphi \vee \langle P \rangle \varphi$

Tableau Calculi also exist but require even more complex loop detection often called "dynamic blocking".

Discrete $\langle \mathbb{Z}, < \rangle$, Rational $\langle \mathbb{Q}, < \rangle$, Real $\langle \mathbb{R}, < \rangle$ linear and non-reflexive models of time also possible: see Goldblatt.

Tableau-like calculi exist: see Mosaic Method

PLTL: Propositional Linear Temporal Logic

Atomic Formulae: $p := p_0 \mid p_1 \mid p_2 \mid \cdots$

Formulae: $\varphi ::= p \mid \neg \varphi \mid \bigoplus \varphi \mid [F] \varphi \mid \langle F \rangle \varphi \mid \varphi \mathcal{U} \psi \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \varphi \rightarrow \varphi$

Boolean connectives interpreted as for modal logic.

Linear Time Kripke Model: $\langle S, \sigma, R, \vartheta \rangle$

S: non-empty set of states

 σ : $\mathbb{N} \to S$ enumerates S as sequence $\sigma_0, \sigma_1, \cdots$ with repetitions when S finite

 $\vartheta: S \times Atm \mapsto \{\mathbf{t}, \mathbf{f}\}$

R: is a binary relation over S

Condition: $R = \sigma^*$ (R is the reflexive and transitive closure of σ)

Semantics of PLTL

$$\begin{array}{lll} \vartheta(s_i, \oplus \varphi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \text{if } \vartheta(s_{i+1}, \varphi) = \mathbf{t} \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(s_i, \langle F \rangle \varphi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \text{if } \vartheta(s_j, \varphi) = \mathbf{t} \text{ for some } j \geq i \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(s_i, [F] \varphi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \text{if } \vartheta(s_j, \varphi) = \mathbf{t} \text{ for all } j \geq i \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(s_i, \varphi \mathcal{U} \psi) & = & \left\{ \begin{array}{ll} \mathbf{t} & \text{if } \exists k \geq i. \vartheta(s_k, \psi) = \mathbf{t} \ \& \ \forall j.i \leq j < k \Rightarrow \vartheta(s_j, \varphi) = \mathbf{t} \\ \mathbf{f} & \text{otherwise} \end{array} \right. \end{array}$$

$$s_i$$
 s_{i+1} \cdots s_{j} \cdots s_k $p\mathcal{U}_q$ $p, \neg q$ \cdots $p, \neg q$ \cdots q

Note: when $k \neq i$, the state s_k is the first state after s_i where q is true.

Semantics of PLTL

$$\begin{array}{lll} \vartheta(s_i, \oplus \varphi) & = & \left\{ \begin{array}{l} \mathbf{t} & \text{if } \vartheta(s_{i+1}, \varphi) = \mathbf{t} \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(s_i, \langle F \rangle \varphi) & = & \left\{ \begin{array}{l} \mathbf{t} & \text{if } \vartheta(s_j, \varphi) = \mathbf{t} \text{ for some } j \geq i \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(s_i, [F] \varphi) & = & \left\{ \begin{array}{l} \mathbf{t} & \text{if } \vartheta(s_j, \varphi) = \mathbf{t} \text{ for all } j \geq i \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ \vartheta(s_i, \varphi \mathcal{U} \psi) & = & \left\{ \begin{array}{l} \mathbf{t} & \text{if } \exists k \geq i. \vartheta(s_k, \psi) = \mathbf{t} \ \& \ \forall j.i \leq j < k \Rightarrow \vartheta(s_j, \varphi) = \mathbf{t} \\ \mathbf{f} & \text{otherwise} \end{array} \right. \\ s_i & s_{i+1} & \cdots & s_j & \cdots & s_k \end{array} \\ \neg(p \mathcal{U}q), \neg q & \neg q & \cdots & \neg q & q \text{ is always false, or} \\ \neg(p \mathcal{U}q) & \neg q & \cdots & \neg p, \neg q & \cdots & q & p \text{ false before } q \text{ true} \end{array}$$

Note: when $k \neq i$, the state s_k is the first state after s_i where q is true. And p is false in some s_i before state s_k .

Modal & temporal logic - examples

$$W = \{w_{1...5}\}; R \& \vartheta - Set by graph$$

$$p, \neg q, s w_1 \longrightarrow p, \neg q w_2 \longrightarrow p, \neg q w_3 \longrightarrow \neg p, \neg q w_4 \longrightarrow q, s w_5$$

$$\vartheta(w_1, \neg q \mathcal{U} \neg p) = t$$

$$\vartheta(w_1, \neg q\mathcal{U}s) = t$$

$$\vartheta(w_1, \neg s\mathcal{U}q) = f$$

$$\vartheta(w_2, \oplus \oplus \oplus s) = t$$

$$\vartheta(w_1, \oplus \oplus \oplus \neg p\mathcal{U}q) = t$$

Lecture 6: Fix-point Logics

PLTL: linear time temporal logic

CTL: computation tree logic

PDL: propositional dynamic logic

LCK: logic of common knowledge

Look at CTL but using only one relation R rather than $R = \sigma^*$