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Abstract. This work presents an optimized version of XMuSer, an ILP
based framework suitable to explore temporal patterns available in multi-
relational databases. XMuSer’s main idea consists of exploiting frequent
sequence mining, an efficient method to learn temporal patterns in the
form of sequences. XMuSer framework efficiency is grounded on a new
coding methodology for temporal data and on the use of a predictive
sequence miner. The frameworks selects and map the most interesting
sequential patterns into a new table, the sequence relation. In the last
step of our framework, we use an ILP algorithm to learn a classification
theory on the enlarged relational database that consists of the original
multi-relational database and the new sequence relation.

We evaluate our framework by addressing three classification problems
and map each one of three different types of sequential patterns: frequent,
closed or maximal. The experiments show that our ILP based framework
gains both from the descriptive power of the ILP algorithms and the
efficiency of the sequential miners.

1 Introduction

Multi-relational databases are widely used to represent and store data. A multi-
relational database is often composed of a target table and of a number of fact
tables. The target table will represent the main objects of interest (say, patients
in a medical domain); fact tables will represent the information being accumu-
lated about the entities in the target table (say, medical visits or drug usage in
the medical domain). We expect target tables to be relatively stable or to grow
slowly over time; in contrast, fact tables may grow quickly. Moreover, quite often
the information stored in fact tables is time-based and consists of sequences that
reflect the evolution of a phenomenon of interest. Referring back to the medi-
cal domain, a patient is subject to a sequence of examinations, where a set of
measurements, corresponding to results of different analyses, are taken.

In this work, we start from the hypothesis that the evolution of these mea-
surements, as encoded in the fact tables, may hold relevant information for the
diagnosis. The problem we address here is how best to explore such information?
More precisely, we focus on how to learn highly descriptive and accurate decision
models given multi-relational data with sequences.

In this paper we present a framework that allows us to explore multi-relational
datasets that have different types of temporal data, either sequence data or
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time-series data. On the one hand, we can benefit from computationally efficient
sequential miners such as cSpade [17] to find the most predictive sequential
patterns. On the other hand, we still have access to the original data and can take
advantage of the flexibility of Inductive Logic Programming (ILP) to learn in the
extended multi-relational dataset. Indeed, we argue that the first step provides
a good insight into the search space, and may enable XMuSer to perform better
than classical ILP based algorithms in large search spaces. We should observe
that the sequence miner and ILP learning algorithm are decoupled and we can
use a variety of sequential miners to find a constrained set of sequential patterns.

We name our framework XMuSer(eXtended MUlti-relational SEquential pat-
teRn knowledge learning). It executes in five steps. First, we encode the multi-
relational temporal data into a sequence database. In this new database each
example is a heterogeneous sequence that was built regarding both intra-table
and inter-table relations within the temporal data. In a second phase, we use a
sequence miner to find frequent and class predictive sequences in the sequence
database. By class predictive we mean sequential patterns that are frequent in at
least one class partition. In a third phase we use the chi-square statistic to sort
all sequential patterns. If needed, we introduce a strategy to select a constrained
subset of sequential patterns. The fourth phase maps back the top-k most in-
teresting sequential patterns by building a new relation, the sequence relation,
where each target example is characterized by the presence or absence of each
pattern. Finally, we apply an ILP algorithm to learn a theory from the enlarged
database, i.e. the union of the original database with the sequence relation.

We experimentally evaluate our methodology with two datasets, originally
introduced at PKDD Discovery Challenges, addressing three classification prob-
lems: Hepatitis, that records examination data from patients having hepatitis B
or C subtypes; and, Financial, that records bank accounts information.

The contributions of our work are therefore: 1. We introduce a framework to
explore heterogeneous sources of temporal data, either sequence data or time-
series data, stored in multi-relational database using propositional sequence min-
ers; 2. XMuSer ILP based framework is highly efficient and gains both from the
descriptive power of the ILP algorithms and the efficiency of the sequence min-
ers. We do not use classical aggregation strategies, like time windows, neither
neglect valuable logic-relational information; 3. We develop a new methodology
to translate any multi-relational temporal database into a sequence database.

In the next Section we present the main ideas of our work and present the
related work. In Section 3 we define concepts that will be useful to Section 4,
where we discuss in detail our framework. Next, in Section 5, we describe the
experimental setup and present and discuss the obtained results. At the end of
the paper, we give an overview of this work and present future research directions.

2 Methods and Related Work

In this section we present an overview of related work that inspired us and
contributed to the overall XMuSer framework.
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There exists a wide range of algorithms that can explore sequential data in
an efficient way. Agrawal and Srikant introduce the GSP algorithm [14], an al-
gorithm that generalizes the original sequential pattern mining problem. GSP
uses a candidate-generation strategy to find all frequent sequences, and uses a
lattice to generate all candidate sequences. Different from GSP, that uses hor-
izontal layout format, SPADE [18] algorithm uses vertical layout format where
each sequence in the lattice is associated with the idlist. This idlist is a list
of all example sequences containing the candidate sequence, the list contains a
set of pairs where each pair consists of both a sequence id(sid) and an event
identifier (usually the event time). To search for frequent patterns SPADE uses
candidate-generation strategy. To compute the support of each candidate pat-
tern of level l, the idlist ’s of sequences from level l − 1 are joined using a tem-
poral join. The support of each candidate pattern is the number of distinct sid
in the candidate idlist. Like GSP, SPADE uses Apriori property to prune the
search space. In real problems these algorithms usually find a huge number of
uninteresting sequence patterns. To solve this issue of sequential miners, algo-
rithms such as CloSpan [16], that returns a set of closed sequential patterns,
and SPIRIT [7] that constrains the search space using regular expressions were
developed. cSPADE [17] extends SPADE algorithm to find a constrained set of
sequential patterns. By using cSPADE we can find, among other, sequential pat-
terns predictive of one or more classes. The author observes that by using highly
predictive sequences as input to a propositional classifier we can get accuracy
gains that range from 10% to 50%.

A different approach, that is known to be successful, is to use post-processors,
filters, to select interesting patterns [6]. Some use sequential ad-hoc selection,
that are model unrelated, whereas others use wrapper filters, that select features
based on the induced models.

Algorithms that use Inductive Logic Programming (ILP) were the first ones to
explore successfully the richness of multi-relational data. The standard ILP algo-
rithm uses a greedy covering approach to induce a set of rules, often represented
as Prolog clauses, that together form a theory. There are different approaches to
generate the rule set. Algorithms like FOIL [13], Progol [9], and Aleph [15], use a
top-down refinement approach whereas others like GOLEM [10] use a bottom-up
strategy. ILP approaches have an enormous representational power but are often
criticized for lacking scalability [1]: ILP algorithms may not be very effective for
the large search spaces induced by sequence databases.

One approach to solve the above mentioned issue is to use propositionalization
with ILP [19]. The idea is to augment the descriptive power of the target table
by projecting clauses (new attributes) on the target table.

Even with recent progress on scalability there exists multi-relational data
which remains almost impossible to explore effectively by using only ILP based
approaches. As an example, intra-table and inter-table temporal patterns remain
hard to explore. One approach, followed by WARMR [4] is to use aggregation
methodologies, unfortunately losing relevant time information. In View Learn-
ing [3] we can define and use alternative views of the database, i.e., we can
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define new fields or tables. Such new fields or tables can also be highly useful in
learning, but still require searching a very large search space.

Other ILP based approaches develop specific techniques aimed at exploring
the space and time information available in multi-relational datasets. The works
of [8,5] introduce special purpose formalisms to find first-order sequential pat-
terns in multi-relational datasets but, by using ILP based search, they suffer
from traditional ILP limitations. To explore large spaces they must constrain
the search space or use heuristics, otherwise the problems will be intractable.
Thus, they may fail to find interesting patterns.

3 Preliminaries

We will start by defining the sequence mining problem and then we introduce
some concepts.

Let I = {i1, i2, . . . , in} be a set of items and e an event such that e ⊆ I.
A sequence is an ordered list of events e1e2 . . . em where each ei ⊆ I. Given
two sequences α = a1a2 . . . ak and β = b1b2 . . . bt, the sequence α is called a
subsequence of β if there exist integers 1 ≤ j1 < j2 < . . . < jk ≤ t such that
a1 ⊆ bj1 , a2 ⊆ bj2 , . . . , ak ⊆ bjk . A sequence database is a set of tuples (sid, α)
where sid is the sequence identification and α is a sequence. The count of a
sequence α in a sequence database D, denoted count(α,D), is the number of
sequences in D containing the α subsequence. The support of a sequence α is the
ratio between count(α,D) and the number of sequences in D. We denote support
of a sequence by support(α,D). Given a sequence database D and a minimum
support value λ, the problem of sequence mining is to find all subsequences in D
having at least a support value equal to λ. Each one of the obtained sequences
is also known as a frequent sequence.

We can also use sequence miners to find a constrained set of sequential pat-
terns. A frequent sequence α is a closed sequential pattern if there exists no
proper supersequence β having the same support as α. A frequent sequence α is
a maximal sequential pattern if it is not a subsequence of any other frequent se-
quence. The set of maximal sequential patterns is a subset of all closed sequential
patterns.

These two types of sequences can be obtained using two strategies. One is to
develop specialized algorithms that find a specific type of patterns, for instance
CloSpan [16] can find closed sequential patterns. The other way is to use a post-
processing strategy to select a subset of patterns among all frequent patterns.

For instance, to find the set of closed sequential patterns we can use the
following naive strategy: 1. Find all frequent sequences; 2. Sort descending all
sequential patterns according to each one support value and, as a second crite-
rion, sort using the length of each pattern; 3. Top-down searches the sorted set of
sequential patterns and, for each sequential pattern, eliminate all subsequences
having equal support value. In the end, the remaining patterns are the set of
closed sequential patterns.

To find all maximal sequential patterns we can use the following naive strat-
egy: 1. Find all frequent sequences; 2. Sort descending all sequential patterns
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according to their length; 3. Top-down searches the sorted set of sequential pat-
terns and, for each sequential pattern, eliminate all its subsequences that appear
after the given sequence. In the end, the remaining patterns are the set of max-
imal sequential patterns.

When addressing a classification problem we can explore predictive sequences,
sequential patterns that are frequent in at least one class partition. In such
problems a sequence miner takes as input a sequence database where each tuple
has an associated class label, (sid, α, class).

Such predictive patterns are valuable but some can have low discriminative
power. To select high discriminative sequential patterns we can use several tech-
niques from contrast set mining, emerging pattern mining or subgroup discov-
ery [11]. For instance, for each sequential pattern, we can compute the chi-square
statistic from a contingency table or compute the support difference across class
partitions. Using one of these strategies we can select valuable patterns from the
sequence database that could be useful at theory learning time [19].

To include such valuable information in the final classification model we can
map the most interesting sequential patterns [19]. Thus, we introduce the concept
of Sequence Relation and Enlarged Database.

Definition 1. (Sequence Relation and Enlarged Database) Consider a multi–
relational database r, a sequence database D coded from r, where each sequence
id equals the primary key of r’s target table. Also consider the set of sequential
patterns S obtained from solving the sequential mining problem. We define the
sequence relation, rsr , to be the set of tuples (sid, αB

1 , α
B
2 , . . . , α

B
n ) where sid

is the sequence id in D and αB
i is a binary attribute whose value is obtained

according to the projection of the sequential pattern αi in the sequence database.
The enlarged database is the database resulting from the union of the multi-
relational database and the sequence relation. Formally we define the enlarged
database as being Er = r ∪ rsr.

4 Algorithm Description

In this section we present XMuSer, a framework developed to explore multi-
relational temporal information, mainly heterogeneous sequential data. The main
idea of the algorithm is to explore work developed in the sequential pattern min-
ing field to include temporal information in the ILP learning process.

The framework has five main steps. In the first phase, if needed, we code the
temporal data into a sequence database. In the second phase, we run a sequence
miner to find all predictive sequential patterns. In the third phase, we sort the
predictive sequential patterns using the chi-square statistic. In the fourth phase,
we select the top-k most interesting sequential patterns and, for each example
in the target table, we build a relation where the example is characterized by
presence or absence of the k most interesting sequential patterns. Last, we learn
a theory on the enlarged database, where enlarged database is the union of the
original database with the new sequence relation.
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Algorithm 1. Framework pseudo-code

input : a multi-relational database r; two thresholds, λ, the sequence miner
support value, and k, the number of interesting patterns to map

output: a first-order classifier model

Sequence Coding1

s← SequenceCoding (r)
Find Frequent Sequential Patterns2

fspatterns ← SequenceMiner (s, λ)
Sort patterns according to some criterion3

fsrank ← rank (fspatterns)
Mapping top-k patterns4

rsr ← Mapping(rtargetExamples,fsrank,k)
Er ← r ∪ rsr
Learn a Theory with an ILP algorithm5

ILP Algorithm(Er)

Algorithm 1 presents the pseudo-code for XMuSer. Next, we explain each one
of the major components in self-contained subsections. Throughout, we follow
an illustrative example, a classification problem, presented in Figure 1. This
example is inspired on the relational Hepatitis dataset. The example has three
tables registering the follow-up of two patients. One of the tables is the target
table, named Patient, where each record describes each patient, identified by
a masked ID, and registers the class of each patient. The other two tables are
fact tables registering temporal blood analysis and urinalysis examinations. The
Blood Analysis table registers, for each patient, the examination date and the
patient’s RBC and WBC parameters. Table Urinalysis registers for each patient
the value of three parameters: alb, plt and ttp.

19741201P1

p l t=h igh

19750102

alb=normal

19760204

alb=normal

19780203

t tp=norma l

RBC=high WBC=normal RBC=high WBC=high

Fig. 1. Database Relations (top) and Patient One Event Sequence (bottom)
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Table 1. Sequence Database

ID Sequence Class

1 (9) (3 5 7 8) (7) (3 6) a

2 (3 4) (7) b

3 (1 5) (4) b

4 (3 5) (7) a

5 (5 8) (7) a

6 (4) b

Data Coding. Here we introduce the strategy that converts the multi-relational
temporal data into an amenable sequence database. The idea is for each exam-
ple in the multi-relational target table to find all associated relations that have
temporal records. Next, we sort all such records by time order. In this way we
obtain a chronological sequence of multiple events for each example. In Figure 1
we present one example event sequence. In this case, the sequence includes a
sequence of blood and urine analysis.

Next, and following time-order, we build an attribute-value sequence for each
example. As an example, for patient one we get (plt = high)(RBC = high,
WBC = normal, alb = normal, ttp = normal)(alb = normal)(RBC = high,
WBC = high). In this new sequence each item corresponds to all records reg-
istered at a given date/time. Then, we define a one-to-one coding map f :
Attributes× V alues −→ N. This mapping associates a unique number to each
attribute-value pair. In the example, we use the map to code the attribute-value
sequence into an integer number sequence. The definition of this map is done
according to the type of attributes in each database relation. For each discrete
attribute we find the range of attribute values and map each attribute-value pair
onto a unique integer value. This map is a three element tuple having the at-
tribute name, the attribute value and the unique integer number that identifies
the attribute-value. When dealing with continuous attributes, first we apply a
discretization strategy and then proceed as for discrete attributes. Discretization
will be problem and domain specific.

Table 1 shows the resulting sequence database: each sequence tuple corre-
sponds to an example in the target table and each subsequence corresponds to
all one-time events. Following the simple example, and defining the one-to-one
map f(rbc, low) = 1, f(rbc, normal) = 2, f(rbc, high) = 3, f(wbc, low) = 4,
f(wbc, normal) = 5, f(wbc, high) = 6, f(alb, normal) = 7, f(ttp, normal) = 8,
f(plt, high) = 9, patient one sequence of events is coded into the sequence
(9) (3 5 7 8) (7) (3 6).

After this preprocessing stage we get a sequence relation suitable to be used
by a sequence miner. In Table 1 we present a sequence database registering the
coded sequence of patients one and two and four other patients, that were not
present in the example database presented in Figure 1, but will be useful to
explain some steps of our algorithm. In the third column we show the labels of
each sequence, we have two classes, class a and class b.
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Table 2. Predictive Sequential Patterns found

Support Value

Predictive Sequential Patterns Overall Class a Class b Chi-square

(3) 3 2 1 0.667

(4) 3 0 3 6.000

(5) 4 3 1 3.000

(7) 4 3 1 3.000

(3)(7) 3 2 1 0.667

(5)(7) 3 3 0 6.000

(3 5) 2 2 0 3.000

Finding Frequent Sequential Patterns. To explore the sequence database
coded in the previous step we can fit any sequence miner.

Our first step is to run a sequence miner on the sequence database to find
predictive frequent sequences, the ones having, in at least one class partition,
a support value equal or higher than a user defined threshold. Following the
illustrative example, if we set the support value to 0.5 and run cSPADE algorithm
to find sequential patterns available in the sequence database, Table 1, we get
the sequential patterns presented in Table 2. The original cSPADE algorithm
outputs the support of each pattern. cSPADE outputs the overall support of
each pattern and the support of each pattern in each class partition. Moreover,
we slightly modify cSPADE to compute a measure of interest for each pattern.
Here, we set cSPADE to output the chi-square statistic for each pattern.

Considering the nature of the sequence miner, the type and the dimension of
problem being addressed we usually get a large number of sequential patterns
and some of these patterns can be redundant or uninteresting. To retain highly
interesting patterns and class correlated patterns we use the following strategy.

Sort Sequential Patterns. To select the most interesting patterns to build the
final classification model, we sort all the sequential patterns available in Table 2
using a metric. In this example, we sort the patterns according to the chi-square
statistic value. The k most interesting patterns (the top ones) will be used to
build the final classification model.

Mapping Back Interesting Sequences. In order to best explain our proce-
dure we present Table 3, the sequence relation that was obtained by applying
our mapping procedure on the example data. This table has four attributes, the
example ID and the three most interesting sequences.

Table 3. Sequence Relation

ID S1 S2 S3

1 true false true

2 false true false
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We develop a mapping strategy that maps each one of the selected sequential
patterns into a Boolean attribute and, portray this mapping as a new table.
This new table, named sequence relation, has an entry for each example on the
target table and has k+1 attributes: the top-k most interesting features and the
example ID, usually the target table primary key. To compute the value of each
attribute we use the information coded in the sequence database and subsequence
definition. We apply the following rule: If the sequence associated with the new
attribute is a subsequence of the example sequence at the sequence database, the
new attribute takes value true. Otherwise the attribute takes value false. Using
this procedure we get a new table that represents the most interesting temporal
data available in the multi-relational database.

Learning a Theory. In this last step we learn a theory. We take all the
primitive tables and add the new sequence relation as input to an ILP algorithm,
such as Aleph, to learn a set of clauses. These clauses can therefore use the
primitive tables and the new one, that encodes the temporal information.

One example of an illustrative clause we can find is:
patient info(A,B,C,a) :- blood analysis(A,D,high,normal), urinalysis(A,E,plt,
high), sequence relation(A,true,F,G).
This clause has the predicate patient info at the head, and a call to the pred-
icate blood analysis, the predicate urinalysis and the predicate associated with
the sequence relation, predicate sequence relation, as the clause body. The clause
explains (or covers) patient number one in the database, a patient from class a.

5 Experimental Evaluation

When defining the experimental configuration to evaluate our framework we were
constrained by the representational complexity and the amount of data. We use
the YAP Prolog compiler [2] to implement three tasks: converting the temporal
data presented in the multi-relational database into a sequence database, that
can be fed to the cSPADE algorithm format; map the most interesting sequential
patterns on the sequence relation; and run the Aleph algorithm to learn a theory.

Using these tools, we define two configurations of the input parameters and
run XMuSer to solve three classification problems available in two datasets: the
Hepatitis Subtype, the Hepatitis Fibrosis degree and the prediction of successful
loans (the Financial problem). The Hepatitis Fibrosis degree problem is a multi-
class problem that we cast into a binary problem.

We test two different sequence miner support values (the λ parameter), 90%
and 80%, and study the sensibility of our framework to the number of sequential
patterns we map in the fourth phase (the k parameter). In this last study, we
map a number of patterns ranging between one and fifteen patterns. For com-
parison purposes we also run the stand-alone Aleph algorithm to solve each one
of the four problems. Furthermore, besides presenting XMuSer results using all
sequential patterns found by cSPADE, we present results using two subsets of
sequential patterns, the closed set and the maximal set. The closed and maximal
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sequences are obtained using a post-processing strategy and the naive strategy
described in Section 3. This way we define three instances of XMuSer.

We evaluate our framework using a ten-fold cross-validation procedure and
compute: the mean number of patterns found after each step of XMuSer, the gen-
eralization accuracy mean and standard deviation of XMuSer and the mean time
spent to complete each step of XMuSer. Using this same validation procedure, we
also compute: the mean number of rules learned by the Aleph algorithm, both
as a component of XMuSer and as a stand-alone algorithm. We also compute
the generalization accuracy and the time spent by the stand-alone Aleph algo-
rithm. Concerning the generalization accuracy, we also compute the Wilcoxon
hypothesis test p-value to measure how significantly our algorithm differs from
the reference algorithm, the stand-alone Aleph algorithm. We set the significance
level to 0.05.

We present the results that we obtained by introducing a strategy to select the
optimum number of sequential patterns to map. To select the optimum number
of patterns we use only 40% of the data and run a 4-cv experiment. The optimum
number of patterns is the point having maximum mean generalization accuracy.

Concerning the comparison, we use the same background knowledge and bias
when running the Aleph algorithm, either using Aleph as a component of the
XMuSer framework or by running it as stand-alone reference algorithm. The
major difference is that when running the Aleph as a component of XMuSer we
allow extra refinements by introducing the sequence relation. As our goal is to
evaluate the contribution of our novel technique, our goal is more to proof the
contribution of our framework and less to search for the best overall results.
Thus, we run Aleph algorithm using a relatively simple bias, relying on the
predefined tables in the database.

Datasets and Tasks. We present below the two datasets that we used to
evaluate our ILP based classifier: Hepatitis and Financial datasets. Both these
datasets are available to download at the PKDD challenge web page1.

The Hepatitis dataset consists of seven tables registering a long term, from
1982 to 1990, monitoring of 771 patients having hepatitis B or C. One table
provides personal data about patients. The other tables record blood and uri-
nalysis examinations. We address two classification problems. Our first task is
to discriminate between patients having B and C hepatitis. The second task is
to determine the degree of liver fibrosis. Following previous work [12], we study
fibrosis degree 2 and 3 against fibrosis degree 4. We perform limited feature
selection, based on the dataset description [12]. We select GOT, GPT, TTT,
ZTT, T-CHO, CHE, ALB, TP, T-BIL, D-BIL, I-BIL, ICG-15, PLT, WBC and
HGB features. As these features are numerical, and in fact take a wide range
of values, we discretized each feature according to medical knowledge. We use
three bin values, low, normal and high. For the sub-type problem we end with
206 hepatitis-B patients and 297 hepatitis-C patients. For the Fibrosis problem,
we have 209 patients of {2,3}-class and 67 of the {4}-class.

1 http://lisp.vse.cz/challenge/CURRENT/

http://lisp.vse.cz/challenge/CURRENT/
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Fig. 2. Mean number of rules found by running ALEPH(the last component of XMuSer)
with support value λ set to 0.8. We also present the mean number of rules that we
obtain by running the stand-alone Aleph algorithm.
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Fig. 3. XMuSer mean generalization accuracy by setting the support value, λ, to 0.8.
We also present the mean generalization accuracy when we run the stand-alone Aleph
algorithm.

The Financial dataset includes eight tables storing data about clients of a
bank. A number of tables store static information on accounts, clients and
regional demographics. The remaining tables register information concerning
credit card types, payments, transactions, and loans for each account. The se-
quence database relies on the Balance attribute only. We discretized this at-
tribute using the inequality |x − μ| < 2σ, where μ is the attribute mean value,
σ is the standard deviation and x is the attribute value that we map into one of
three bin values: low, normal and high. Our target is predicting successful loans:
606 loans were classified as successful and 76 unsuccessful.

Results. In this section we present the results that we obtained when running
XMuSer and the stand-alone Aleph algorithm. In Figure 2 we present the mean
number of rules found by the last component of XMuSer, the Aleph algorithm.
In figure 3 we present the mean generalization accuracy of XMuSer. We do not
show the results when we set λ = 0.9 as we do not observe significant changes.
Moreover, for each dimension of analysis, we plot the mean number of rules for
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the frequent, the closed and the maximal version of XMuSer framework. We also
present the results that we obtain when running the baseline, the stand-alone
Aleph algorithm.

In Tables 4, 5 and 6 we present the mean number of patterns, the mean
generalization accuracy and the mean run-time, respectively, that we obtain
by using an optimum number of sequential patterns to map. Remember that
our selection strategy uses a sample of each dataset. The optimum number of
patterns to map is presented in Table 4, columns six, seven and eight.

Analysis. First of all, we must say that most of the works that address these
same problems, use preprocessing procedures, like removing some examples to
balance the datasets, that makes almost impossible to make a fair comparison
against other works.

We present results only for two λ values, 90% and 80%. For lambda values
higher than 90% we do not observe any significant change in comparison against
the 90% value. Regarding the values lower than 80%. First, we are limited by
the available computational power. With the current resources, if we set lambda
parameter to values lower than 80% we are unable to run XMuSer to solve all
problems. Second, in the datasets that we were able to run XMuSer we do not
identify significant changes in the results. In all three classification problems,
XMuSer obtained better or equal results in comparison against the stand-alone
Aleph algorithm. Moreover, the best accuracy gains were obtained in Hepatitis
Fibrosis and in the Financial problem. If we run XMuSer by setting k to the
optimum number of patterns to map, we can get significant wins for all problems.

In all problems that we address we can get a small improvement if we use a
higher number of patterns but at the cost of getting large and less interpretable
theories.

The classifier models that we learn were obtained using the same ILP bias but
produce better or equal results than the reference algorithm. The results obtained
in the Hepatitis dataset are among the best ones that we could find in related
work that addresses this problem, and indeed outperform our previous work
where the final step is a propositional classifier [6]. This is especially relevant
since we did not customize the search bias to obtain the most accurate results.

Table 4. Mean number of patterns in each step of XMuSer (using optimized number of
patterns) and of the stand-alone Aleph algorithm

XMuSer (With Aleph)
Stand-alone
Aleph (Rules)

Seq. Miner Map Aleph(Rules)
λ Freq. Clo. Max. Freq. Clo. Max. Freq. Clo. Max.

Hepatitis Subtype
0.9 14 14 10 1 1 1 128 128 128

129
0.8 2444 1824 732 3 1 1 122 124 122

Hepatitis Fibrosis
0.9 21 21 16 4 1 1 47 53 55

59
0.8 2325 1817 709.4 13 10 4 44 44 43

Financial
0.9 140 126 98 4 4 12 141 141 142

152
0.8 6992 5633 920 7 7 14 107 110 103
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Table 5. Mean Generalization Accuracy: XMuSer (using optimized number of patterns)
against Stand-alone Aleph

XMuSer (With Aleph)
Stand-alone Aleph

Wilcoxon p-value
λ freq. clo. max. freq. clo. max.

Hepatitis Subtype
0.9 0.780(0.11) 0.778(0.11) 0.778(0.11)

0.785(0.11)
0.622 0.106 0.106

0.8 0.799(0.10) 0.801(0.10) 0.801(0.11) 0.049 0.013 0.013

Hepatitis Fibrosis
0.9 0.642(0.05) 0.632(0.05) 0.628(0.07)

0.578(0.09)
0.032 0.138 0.166

0.8 0.640(0.07) 0.649(0.05) 0.615(0.09) 0.126 0.232 0.322

Financial
0.9 0.749(0.05) 0.749(0.05) 0.743(0.04)

0.704(0.07)
0.123 0.123 0.075

0.8 0.791(0.03) 0.783(0.03) 0.768(0.02) 0.009 0.009 0.066

Table 6. Mean Run-Time, in seconds, of each XMuSer phase (using optimized number
of patterns) and the stand-alone Aleph algorithm

XMuSer (With Aleph)
Stand-alone
Aleph (Rules)

Seq. Miner Naive Selection Map Aleph(Rules)
λ Freq. Clo. Max. Freq. Clo. Max. Freq. Clo. Max.

Hepatitis Subtype
0.9 0.1 0 0 1.5 1.6 1.6 6.1 6.1 5.9

6
0.8 1.8 0.08 1.95 1.8 1.4 1.45 9.7 6.4 5.9

Hepatitis Fibrosis
0.9 0 0 0 1.1 1 1 5.4 4.1 4.3

5
0.8 1.2 0.15 1.43 1 1.4 2.6 11.6 10 6.5

Financial
0.9 0.4 0 0 0.6 0.5 0.7 3.3 3.1 14.4

2
0.8 12.3 1.4 28.04 0.8 2.6 29.8 5.3 4.5 12.2

One important point that proves that we are in the right direction is the rela-
tion between the accuracy of the obtained classification models and the number
of temporal data attributes that we use to learn the final classification the-
ory. When addressing the three problems where we get a significant win, the
final theory always include sequential patterns mapped in the sequence rela-
tion. The two problems where we get the higher accuracy wins are the ones
where XMuSer generates more compact theories. These compact theories include
the sequence relation predicate, i.e., include all, or some, sequential patterns
coded in the sequence relation. Moreover, by setting Aleph to use predicates
like sequence relation(+id,#a,#a,#a) to construct each rule we can get inter-
esting patterns that represent a conjunction of positive and negative sequential
patterns. Such clauses, that can include negation of some or several sequential
patterns, can be valuable in many domains.

As expected, XMuSer execution time is greater than the stand-alone Aleph
algorithm. The execution time heavily depends on the two input parameters,
the λ and k values. Moreover, when we set λ parameter to low values, the time
need to select closed or maximal sequential patterns, especially the last ones
increases. If we run XMuSer by setting λ input parameter to low values we get
a huge number of sequential patterns and thus we get a run-time overhead.
This is a typical behavior of sequence miners, the lower the support the higher
the execution time and the number of patterns found. In respect to the post-
processing strategies that we use to select the closed sequential patterns and
the maximal sequential patterns, we can say that the time needed to select the
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maximal sequential patterns is higher than the time needed to select the closed
sequential patterns. This is especially clear when we run the sequence miner with
0.8 support value.

Furthermore, if we analyze theoretically the run-time of the last step of
XMuSer, we can say that by adding the sequence relation to the search bias
we will have to explore a 2k larger search space, where k is the number of pat-
terns/attributes in the sequential relation. In our experiments, when comparing
the mean run-time of last step of our framework against the stand-alone Aleph
algorithm, the time spent by the last component of our framework is almost the
same as the run-time of the stand-alone Aleph algorithm. If we stay on low k
values we can effectively explore the temporal data using our framework.

6 Conclusions and Future Work

In this work we have presented XMuSer a framework whose efficiency is grounded
in sequence data representation and in the strengths of sequential miners. Our
approach is general and can be used in conjunction with any classical ILP algo-
rithm.

To design our five step architecture we introduce some new methodologies
that are at the core of XMuSer. We developed sequence coding, a technique
to code the temporal data available in the original database into a sequence
database. Regarding the number of findings of the sequential miner and the
need to obtain class correlated sequential patterns among these findings, we
introduce a filter that selects the top class related sequential patterns. We use
the chi-square statistical to sort the sequential patterns and map the top most
interesting ones. We introduce the sequence relation, a relation that encodes
the time information of each example, the sequential patterns found by the
sequential miner. Last, we define the enlarged database, a database that is the
union of the original database and the sequence relation, and induce a first-
order theory on the enlarged database. We believe that this methodology ensures
that we can explore the valuable logic-relational information available in multi-
relational datasets, especially temporal patterns, using an ILP learner, and this
is confirmed by our empirical evaluation of our framework.

In the future, we will develop specialized sequential miners that can find
first-order closed or maximal predictive sequential patterns in a multi-relational
classification framework. Moreover, we will study other metrics to sort the se-
quential patterns aiming to obtain highly interesting patterns. By doing this we
can go further ahead and explore reacher temporal data available in relational
datasets that is impossible to explore if we were grounded only in ILP learning.
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