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History: Logic of Necessity and Possibility

Classical logic is truth-functional: truth value of larger formula determined
by truth value(s) of its subformula(e) via truth tables for A, Vv, =, and —.

Lewis 1920s: How to capture a non-truth-functional notion of “A Necessarily
Implies B"? (A < B)

Take A < B to mean “it is impossible for A to be true and B to be false”
Write P A for “A is possible” then:
-PA 1s “A is impossible”
-P—A is “not-A is impossible”
NA .= -P—-A “Ais necessary”
A—<B :=N(A—B)=-P-(A— B)=-P~(-AVvB)=-P(AAN-B)

Modal Logic: “possibly true” and “necessarily true” are modes of truth
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Preliminaries

Directed Graph (V, E): where
V = {vg,v1, -} Is a set of vertices

E = {(s1,t1), (sp,tn), -} is a set of edges from source vertex s; € V
to target vertex t; € Vfori =1,2,---.

Cross Product: V' x V stands for {(v,w) | v € V,w € V} the set of all
ordered pairs (v, w) where v and w are from V.

Directed Graph (V| E): where V = {vg,v1, -} IS a set of vertices and
E CV x Vis a binary relation over V.

Iff: means if and only If.
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Logic = Syntax and (Semantics or Calculus)

Syntax: formation rules for building formulae ¢, 1, - - - for our logical language
Assumptions:  a (usually) finite collection I" of formulae

Semantics: ¢ is a logical consequence of I (M=)
Calculi: ¢ Is derivable (purely syntactically) from I (M= )
Soundness: IfI"'+-@thenl = ¢

Completeness: IfIT = ¢pthenl | ¢

Consistency: Both I+ ¢ and I = =y should not hold for any ¢

Decidability: Is there an algorithm to tell whether or not I = ¢ ?

Complexity: Time/space required by algorithm for deciding whether I' = ¢ ?
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Syntax of Modal Logic

Atomic Formulae: p:i=po|p1|p2|--- (Atm)

Formulae: pi=pl-e|QelllelerpleVele—p (F'ml)

Examples: [Jpo —p2  [lpza — [lllpr  [I(p1 — p2) — (([Ip1) — ([Ip2))

Variables: p,q,r stand for atomic formulae while ¢, 1) possibly with subscripts
stand for arbitrary formulae (including atomic ones)

Schema/Shapes: [J¢ — ¢ e — [llle [1(p = ) — ([l — [I9¥)
Schema Instances: Uniformly replace the formula variables with formulae
Examples: []pg — po is an instance of [Jo — ¢ but []Jpg — po IS not

Formula Length: number of logical symbols, excluding parentheses, where
length(pg) = length(pq) =--- =1

Example: length([]Jpg — pp) =4
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Kripke Semantics for Logical Consequence
Motivation: Give an intuitive meaning to syntactic symbols.
Motivation: Give the meaning of “p Is true”
Motivation: Define a meaning of “p is a logical consequence of " (" = ¢)

Goal: Prove some interesting properties of logical consequence.
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Kripke Semantics for Logical Consequence

Kripke Frame: directed graph (W, R) where W is a non-empty set of
points/worlds/vertices and R C W x W is a binary relation over W

Valuation: on a Kripke frame (W, R)yisamap 9 : W x Atm — {t, f} telling us
the truth value (t or else f) of every atomic formula at every point in W

Kripke Model: (W, R, ) where ¥ is a valuation on a Kripke frame (W, R)

Example: If W = {wq, w1, ws} and R = {(wq, w1), (wg, wo)} and
P (w1,p3) =t then (W, R, ¥) is a Kripke model as pictured below:

w1 I (wg, p) = fforallp € Atm
R/ Y (w1, p) = fforall p % p3 € Atm
wo . I (wo, p) = fforallp € Atm
~ d(wo, )p1) = 7
w2 J(wo, [lp1) = 7
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Kripke Semantics for Logical Consequence

Given some model (W, R, ¢) and some w € W, we compute the truth value of
a non-atomic formula by recursion on its shape:

vwme) = { P otherica

oy =} oty = o =

i) = ] iy ==

Intuition: classical connectives behave as usual at a world (truth functional)

Introduction to Modal and Temporal Logics 6 December 2007 8



Kripke Semantics for Logical Consequence

Given some model (W, R, ) and some w € W, we compute the truth value of
a non-atomic formula by recursion on its shape:

,

o t 9(v,p) =t for some v € W with wRv
I(w, () = <> f otherwise

o t 9(v,p) =t forevery v € W with wRv
d(w, llg) = f otherwise

\

Example: It W = {wo, w1, wQ} and R = {(’wo, wl), (’wo, ’wz)} and
P (w1,p3) =t then (W, R, ) is a Kripke model as pictured below:

w1 r49(,w07<>p3) =t

B d(wo, [lpz) = f

wo_ I(wy, [lp1) = ¢

~ I(wy, []-p1) = ¢

w2 I(wo, (Mlp1) = t
Intuition: truth of modalities depends on underlying R (not truth functional)
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Semantics: Examples

Let M = (W, R, ) be any Kripke model, and w € W.

Example: If ¢(w, [J¢) = t then Y (w, {)—p) = f

Example: If 9(w, ()—=p) = f then 9(w, ~()~¢p) =t [l — =0
Example: If ¢(w, ()p) = t then ¥ (w, [[-¢) = f

Example: If §(w, []-¢) = f then d(w, ~[]-¢) =t Qe — —ll-e
Exercise: Show that all these implications are reversible.

Example: ¢(w, [J¢) = tifand only if 3(w, =~ ()—p) =t

Example: 9(w, {)p) = tif and only if $(w, —[]-p) =t
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Classical (Two-Valued) Nature of Kripke Semantics

Lemma 1 For any Kripke model (W, R, ), any w € W and any formula ¢,
either ¥(w, ) = t or else ¥(w, p) = 1.

Proof: Pick any Kripke model (W, R, ), any w € W, and any formula ¢.
Proceed by induction on the length [ of ¢.

Base Case [ = 1: If ¢ is an atomic formula p, either 9(w,p) =t or
I(w, p) = f by definition of ¥. So the lemma holds for all atomic formulae.

Ind. Hyp. : Lemma holds for all formulae of length less than some n > 0.
Induction Step: If ¢ is of length n, then consider the shape of .

¢ = ()1: If whas no R-successors, then ¢(w, ()v) = f, and 3(w, ) =t
IS Impossible by its definition. Else pick any v € W with wRwv. By IH, either
I(v,v) = t or else ¥(v, 1) = f since v is smaller than . Either all
R-successors of w make 1 false, or else at least one of them makes
true. Hence, either 9(w, {)v») = f or else Y (w, {)1p) = t.
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Semantic Forcing Relation [ and its negation [}/
Let IC be the class of all Kripke models, and M = (W, R, ¥) a Kripke model
Let K be the class of all Kripke frames and let § be a Kripke frame

Let I" be a set of formulae, and ¢ be a formula

Forces We say We write When o lf ©
inaworld | w forces ¢ w k¢ Hw,p) =t Hw,p) =f
iInamodel | Mforcesyp | MIFp | YVwe Wwlke | dJwe Wwlf o
in a frame | F forces ¢ S| V.G DHIFp | F9.E,9) IFe

Classicality: either o I ¢ or else e | © holds for ¢ € {w, M, F}

Exercise: Work out the negation of each fully e.g. M I ¢ is dJw € W.w IF —p
Either w |- ¢ or else w |F = holds (Lemma 1)
But this does not apply to all: e.g. either M |- © or else M |- = Is rarely true.

W I ¢ meaning “every frame built out of given W forces ¢” is not interesting
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Various Consequence Relations
Let IC be the class of all Kripke models, and M = (W, R, ) a Kripke model
Let K be the class of all Kripke frames and let § be a Kripke frame

Let I" be a set of formulae, and ¢ be a formula

Forces We say We write When o lf ©
inaworld | w forces ¢ w Ik Hw,p) =1t Hw,p) =1
iInamodel | Mforcesyp | MIFp | VweWwl-ep | dwe Wwlf o
in a frame | § forces ¢ S| YO IFe | FIF,I)IF e

Let o IF " stand for Vi) € .o IF 1) (o € {w, M,F})
World: every world that forces I also forces ¢ Vw e Ww lF T = w - ¢
Model: every model that forces I also forces ¢ VM e CMIFT = M ¢

Frame: every frame thatforces [ alsoforcesy V§Fe RFIFT = FlF @
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Various Consequence Relations
Let IC be the class of all Kripke models, and M = (W, R, ) a Kripke model
Let K be the class of all Kripke frames and let § be a Kripke frame.

Let I" be a set of formulae, and ¢ be a formula

Forces We say We write When o lf ©
inaworld | w forces ¢ w Ik Hw,p) =1t Hw,p) =1
iInamodel | Mforcesyp | MIFp | VweWwl-ep | dwe Wwlf o
in a frame | § forces ¢ S| YO IFe | FIF,I)IF e

Let o I I" stand for Vi € .o IF 7 (o € {w, M, F})
World: Vw e Ww lFT = wlF ¢ ff Vvwe WwlF AT — p If M IFAT — ¢
Model: VM e KMIFT = MIF ¢ IS the one we study

Frame: V§F e RSIFTM =FIFop usually undecidable
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Logical Consequence, Validity and Satisfiability
Logical Consequence: M= iff VMeKLMIFT = MIF @
Validity: pis K-valid iff 0=
Satisfiability: ¢ is K-satisfiable iff IM = (W, R, 9) € K,3w € W, w IF ¢

Example: {pg} = [lpo- If every world in a model makes pq true, then every
world in that model must make []pg true.

For a contradiction, assume {pg} = [lpo-

l.e. exists M = (W, R, ) € K.M IF pg and M I []po.
l.e. exists wg € W and wq I []pg

l.e. exists wg € W and w1 € W with wgRwq and w1 | pg

l.e. But M IF pg means Vw € W.w IF pg, hence wq IF pg  (contradiction)
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Logical Consequence: Examples
Example 1 All instances of o — (¢p — ¢) are K-valid.
For a contradiction, assume some instance ¢1 — (11 — 1) hot K-valid.
l.e. exists model M = (W, R,¥) and w € W with w I} o1 — (¥v1 — ©1).
lL.e. w - o1 and w I 1 — 1.
l.e. w IF 1 and w IF 1 and w [ ¢1. (contradiction)
Exercise 1 All instances of ——¢p — ¢ are K-valid.

Exercise 2 All instances of (¢ — (¢ — &)) — ((p — ) — (¢ — &£)) are
JC-valid.
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Logical Consequence: Examples

Example 2 Allinstances of [[(¢ — v) — ([Jo — []v) are K-valid.

For a contradiction, assume there iIs some instance
[1(p1 — ¥1) — ([l1 — []J¥1) which is not K-valid.

Therefore, there is some model M = (W, R, ¢) and some w € W such that

w I [1(p1 — 1) — (1 — [l¥1).
Le. d(w, [[(p1 — 1) — ([ler — [I¥1)) =1

lL.e. w I
lLe. w -

lLe. w I

(o1 — 1) and w I ([leo1 — [[¥1)

(1 — 1) and w - [Je1 and w I [Jiq
1(p1 — 1) and w IF [Jq and v € W with wRv and v Iff 1

lLe.v -1 — Y1 and v I o1 and v If 4

l.e. v IF ¥y and v I ¢4 (contradiction)
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Logical Consequence: Examples
Example 3 Ifp € Mthenl = ¢ (by definition of =)
Example 4 If " =@ then Tl = []p
For a contradiction, assume I' = p and " = [].
lLe.exists M = (W, R,¢) IF T and w € W with w I =[] .
l.e. exists M = (W, R,¥) IF T and w € W with w IF ()—p.
l.e. exists M = (W, R,9) IFT and w € W with wRv and v I- —¢.
Butl = p means VM € K.(M IFT = M I ¢), hence v IF ¢. Contradiction.

Exercise 3 IfT = pandl = ¢ — ¢ thenl =
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Logical Implication as Logical Consequence
Lemma 2 For any w in any model (W, R, 9), if w IF {p, ¢ — 1} then w IF ¢
Lemma 3 For any model M, if M I+ {p, o — 1} then M IF ¢
Lemmad fIMf=¢p —ythenl o = (writing I, p for " U {p})

Proof: Suppose I' = ¢ — 9. Suppose M I T, . Must show M I ). But
M IF T implies M IF ¢ — ¥, s0 M IF {p, p — ¥}. Lemma 3 gives M I 1.

Remark: Converse of Lemma 4 fails! e.g. We know pg = []pg. But
0 = po — [lpo is falsified in a model where w I+ pg with wRv and v I+ —pg.

Lemma5 If I, ¢ = v then there exists an n such that

T =% A0t Ao Al") — 4
where [ = g and [["¢ = [][]* Lo (See Kracht for details)

e.g. po = [lpo implies @ = (po A [lpog) — [lpo SO n = 1 for this example
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Summary: Logic = Syntax and Semantics
Atomic Formulae: p ::=pg | p1 | p2 | - - (Atm)

Formulae: ¢ :i=p | —p | Qe |lleleAeleVele —o (F'ml)

Kripke Frame: directed graph (W, R) where W is a non-empty set of
points/worlds/vertices and R C W x W is a binary relation over W

Valuation on a Kripke frame (W, R) isamap ¢ : W x Atm — {t, f} telling us
the truth value (t or f) of every atomic formula at every point in W

Kripke Model: (W, R, ) where 9 is a valuation on a Kripke frame (W, R)
Logical consequence: I' (= ¢ if VM e KMIFT = Mk ¢
Having defined I" = ¢, we can consider a logic to be a set of formulae:

K={p|0FE¢}={p|IMeKMIFp} ={p|V§e€RTIF ¢}
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Lecture 2: Hilbert Calcull

Motivation: Define a notion of deducibility “p is deducible from ™"

Requirement: Purely syntax manipulation, no semantic concepts allowed.

Judgment: I F ¢ where I is a finite set of assumptions (formulae)

Read I - ¢ as “p is derivable from assumptions ™"

Soundness: IfIM=¢@thenTl = ¢

If © Is derivable from I then ¢ is a logical consequence of I

Completeness: IfIT = pthenTl F ¢

If © Is a logical consequence of I" then ¢ is derivable from I

Goal: Deducibility captures logical consequence via syntax manipulation.
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Hilbert Calculi: Derivation and Derivability

Assumptions: finite set of formulae accepted as derivable in one step
(instantiation forbidden)

Axiom Schemata: Formula shapes, all of whose instances are accepted
unquestionably as derivable in one step (listed shortly)

Rules of Inference: allow us to extend derivations into longer derivations
Judgment: I F ¢ where I is a finite set of assumptions (formulae)

Judgment; ...Judgment,,
Judgment

premisses
conclusion

Rules: (Name) (Condition)

Read as: if premisses hold and condition holds then conclusion holds

Rule Instances: Uniformly replace formula variables and set variables in
judgements with formulae and formula sets
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Hilbert Derivability for Modal Logics

Assumptions: finite set of formulae accepted as derivable in one step
(instantiation forbidden)

(1d) =—— Seer e.g. (ld) ol - 10

Axiom Schemata: Formula shapes, all of whose instances are accepted
unquestionably as derivable in one step (listed shortly)

(AX) @ IS an instance of an axiom schema

[ F o

Rules of Inference: allow us to extend derivations into longer derivations
e THEe—Y
=
[
M {le

Modus Ponens (MP)

Necessitation  (Nec)
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Hilbert Derivability for Modal Logics

(1d) o pel (AX) o © IS an instance of an axiom schema
T Thep—1 e

MP N

(MP) = (NeS) =1,

Rule Instances: Uniformly replace formula and set variables with formulae
and formula sets

Derivation of g from assumptions [ : is a finite tree of judgments with:
1. arootnode 'y F ¢
2. only (Ax) judgment instances and (Id) instances as leaves (sic!)

3. and such that all parent judgments are obtained from their child
judgments by instantiating a rule of inference
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Hilbert Calculus for Modal Logic K

Axiom Schemata;:

PC: o — (¢ — )
T — @
(p— (W —8) = (p—v) = (p—E))

Ki [l =) — ([l — [I¥)

How used: Create the leaves of a derivation via;

(AX) IS an instance of an axiom schema

NEETRE
p ANy = (e — )
eV = (mp =)
p = i=(p—=P)AN (Y — p)
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Hilbert Derivations: Examples
Let Mg = {po,po — p1} and g = []p1. Usually omit braces.

Below is a derivation of []p1 from {pg, po — p1}-

(Id) (Id)
P0,P0 — P1 PO P0,P0 — P11 pPo — P1
(MP)

Po,Po — P1 F p1

(Nec)
po,Po — p1 F [Ip1
A derivation of g from assumptions I is a finite tree of judgments with:
1. arootnode 'y - ¢
2. only (Ax) judgment instances and (Id) instances as leaves

3. and such that all parent judgments are obtained from their child judgments
by instantiating a rule of inference
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Hilbert Derivations: Examples
Let Mg = {po,po — p1} and g = []p1. Usually omit braces.

Below is a derivation of []p1 from {pg, po — p1}-

(Id) (Id)
P0,P0 — P1 PO P0,Po — P1 F po — Pp1
(MP)
Po,Po — P1 F p1
(Nec)
po,po — p1 F [lp1
[ o
(Nec) = {po,po — P =D
r - []90 { 0, PO 1} 2 1
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Hilbert Derivations: Examples
Let Mg = {po,po — p1} and g = []p1. Usually omit braces.

Below is a derivation of []p1 from {pg, po — p1}-

(Id) (Id)
P0,P0 — P1 PO P0,P0 — P1 pPo — Pp1
(MP)
Po,Po — P1 F p1
(Nec)
po,po — p1 F [lp1
- M- o —
(MP) L& er ¥ = {po,po — p1} © = po Y i=p1
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Hilbert Derivations: Examples
Let Mg = {po,po — p1} and g = []p1. Usually omit braces.

Below is a derivation of []p1 from {pg, po — p1}-

(Id) (Id)
P0,P0 — P1 I Po P0,P0 — P1 pPo — Pp1
(MP)

Po,Po — P1 F p1

(Nec)
Po,pPo — p1 - [lp1

| [ |

(d)r|_¢90€ (d)|-|_9090€|_
I :={po,po — p1} I :={po,po — p1}
@Y = PO Y .= Ppo — P1
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Hilbert Derivations: Examples

Let T = {pg, po — p1}. Another derivation of []p1 from {pg, po — p1}:

(Id)
Po,Po — P1 F po — p1

(Nec) (AX)
Po,ro — p1 F [1(po — p1) po,ro — p1 F [I(po — p1) — ([lpo — [lpr1)

po,Po — p1 - [lpo — [lp1
1

(Id)
P0,P0 — P1 = Po 1
(Nec)

Po,Po — p1 F [lpo P0,Po — p1 - [lpo — [lp1

po,po — p1 - llp1

K: [1(e — ) — ([l — [l¥) @ = po Y

pP1
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Summary: Logic = Syntax and Calculus

Atomic Formulae: p ::=pg | p1 | p2 | - - (Atm)
Formulae: ¢ :i=p | —p | Qe |lleleAeleVeole —0o (F'ml)
Hilbert Calculus K: [[(¢ — ¥) — ([l — []¥) only modal axiom
(1d) o pel (AX) F o © IS an instance of an axiom schema
[Fp TTFHp—Y [

(MP) FF v (Nec) mF o
[ ¢ iff there is a derivation of ¢ from I in K.

Having defined I - ¢, we can consider a logic to be a set of formulae:

K = {o[0F ¢}
plis atheoremof Kiff p € K l.e. if it is deducible from the empty set

A modal logic is called “normal” if it extends K with extra modal axioms.
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Soundness: all derivations are semantically correct
Theorem: ifIr=ythenl =4 (T =yYmeansVM € C.M IFT = M |- )
Proof: By induction on the length [ of the derivation of [T - )
[ =0: Sol 1 because ¢ € I'. But M I T implies M |- forall ¢ € I".

[ = 0: So I F ¢ because ¢ is an axiom schema instance. By Eg 1, Ex 1, Ex 2,
Eg 2, we know () = ) for every axiom schema instance v, hence " = .

Ind. Hyp. : Theorem holds for all derivations of length less than some k£ > O.

Ind. Step: Suppose I + 1) has a derivation of length k. Bottom-most rule?

MP: Sobothl" - pand I - ¢ — 1 are shorterthan k. By IHT |= ¢ — ¢
and I = . Butifw IF ¢ — ¢ and w IF ¢ then w IF 4, hence I = v

Nec: Then we know that I - ¢ has length shorter than k. By IH we know
[ =. ButifI' =y then " =[]y by Eg 4.

Introduction to Modal and Temporal Logics 6 December 2007 32



Completeness: all semantic consequences are derivable

Theorem: ifIr=epthenT -
Proof Method: Prove contrapositive, if ' I/ p then I [= ¢

Proof Plan: Assume I" I/ ¢. Show there is a K—model M. = (W, Re¢, ¥¢)
such that M. IF T and M. I ¢ (l.,e. Jw € Weaw IF =)

Technigue: is known as the canonical model construction

Local Consequence: Write X ; ¢ iff there exists a finite subset
{¢1a¢2>“‘ 777077/} g XSUChthat@F ("901/\102/\/\1%) — P

Exercise: if X F;pothen X F ¢ by (MP)on X F A(v;) and X = A(v;) — ¢
Set X is Maximal: ifvy.¢ € X or— € X
Set X is Consistent: if both X +; ¢ and X ; = never hold, for any

Set X I1s Maximal-Consistent: if it is maximal and consistent.

Introduction to Modal and Temporal Logics 6 December 2007 33



Lindenbaum’s Construction of Maximal-Consistent Sets

Lemma 6 Every consistent " is extendable into a maximal-consistent X* D I".
Proof: Choose an enumeration 1, ©o, 3, - - - 0f the set of all formulae.
Stage O: Let Xg :=1T

: ) Xp1 U {90?1} if X1 F7 on
Stage n > 0: X, = { X, 1 U {—wn} otherwise

Stage w: X* :=UY_5Xn
Question: Every Stage is deterministic so why is X* not unique ? (choice)

Not Effective: Relies on classicality: either X,,_1 F; pn or X,,_1 ) o is
true, but does not say how we decide the question.

Exercise: Why is having both X,, 1 ; ¢n and X,,_1 F; —¢n impossible ?
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Lindenbaum’s Construction of Maximal-Consistent Sets
Lemma 7 Every consistent " is extendable into a maximal-consistent X* D .
Proof: Choose an enumeration 1, ©o, 3, - - - 0f the set of all formulae.
Stage O: Let Xg :=1T

: _ ) Xp1 U {Sﬁn} if X1 ¢n
Stage n > 00 Xn 1= { Xp—1U{—pn} otherwise

Stage w: X* := U _qXn
Chain of consistent sets:  Xg C X7 C ---
Maximality: Clearly, for all © either ¢ € X* orelse —p € X*

X™Is consistent: Suppose for a contradiction that X * is inconsistent. Thus
X* Fpapand X™* ) — for some 3. Hence ¢ € X; and —¢ € X; for some
iand j. Let k := max{i,j}. Then X F; ¢ by (Id) and X} F; — by (1d).
Contradiction since X, is consistent.
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The Canonical Model M = (We, Re, ¥¢)

We = {X™* | X*is a maximal-consistent extension of '} % ()

t ifpew

w Rev iff {o | [lp € w} Co Je(w,p) = { Lorpen

Claim: wRv iff {OQ¢ | p € v} Cw

Proof left to right:  Suppose wRcv and {{)p | ¢ € v} € w. Hence, there is
some ¢ € v such that ()¢ € w. By maximality, =() € w. By consistency,
[]-¢p € w. By definition of wR.v, we must have —¢p € v. Contradiction.

Proof right to left:  Suppose {()¢ | ¢ € v} C w and not wR.v. Hence, there
Is some [|¢ € w such that ¢ € v. By maximality, —=¢ € v. By supposition,
()= € w. By consistency, —[]¢ € w. Contradiction.
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The Canonical Model M = (We, Re, Y¢)
We = {X™* | X*is a maximal-consistent extension of '} % ()

t ifpew

w Rev iff {o | [lp € w} Co Je(w,p) = { Lorpen

Lemma 8 For every formula ¢ and every formula ) and every w € W.:

-l g ew iff o & w lLe. ~p & wiff o € w
AN o ANYew Iff pewandy € w

Vi eoVyew Iff pewory e w

—. p—Yew Iff p&wory e w

[: [l € w Iff Yo e wwRw = p v

O Hpew Iff JvewwRw& pewv
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The Canonical Model M = (We, Re, ¥¢)

We = {X* | X*is a maximal-consistent extension of ' } % ()

t ifpew

w Rew iff o | [lp € w} C o Do, p) = { tifpcuw

Clam: oAy ewiff o € wandy € w

Proof right to left :  Suppose ¢ A ¥ € w and ¢ € w. Then —p € w.

Note (p AY) — ¢ € wsince D ; (o A1) — o by PC (exercise)
Exists k with X F; =, and X, F; o A, and X H; (o AyY) — ¢, by (1d).
Then X, ; ¢ by (MP) Contradiction.

Proof left to right:  Suppose ¢ € wand ¢ € wand o A Y € w.
.e. (p — ) € wsince p Ay = —(p — 1))
l.e. exists k such that X, ; ¢ and X -; ¢ — — and X, F; ¢ by (id)
Then X, ; = by (MP) Contradiction
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The Canonical Model M = (We, Re, ¥¢)

We = {X* | X*is a maximal-consistent extension of I } % ()

. t Ifpce
w Rev iff{¢ | []¢Y € w} Co de(w, p) = { f otﬁervﬁse

Claim: []J¢ € wiff Vv € We.(wRev = ¢ € v)

Proof left to right:  Suppose []J¢ € w and Vv € We.wRev & @ € v
l.e. [Jo € wand Jv € We.wRev & ¢ & v
Le. [JpecwanddJv e Wep Ev & p v Contradiction.
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The Canonical Model M = (We, Re, ¥¢)

We = {X* | X*is a maximal-consistent extension of '} % ()

. t Ifpc
w Rev iff {4 | []Y € w} Co de(w, p) 1= { f otzr)]ervﬁse

Claim: [Je € wiff Vv € We.(wRev = ¢ € v)

Proof right to left:  Suppose Vv € We.(wRev = ¢ € v). Must show [Jp € w.
Le.Voe We.({o | [J[Y e w} Cv = pewv) Let W = A{v | [J[¥ € w}
le.Vve We (W ev=pew) i.e.Voe We. W — ¢ € vby Lemma 8(—).
le. N W — o (else can choose g = W — ¢ for some v)
l.e. [ H; [[(W — ) by (Nec)

Note I" I [J(W — ¢) — ([JW — [l¢) by (AX)

Hence I k; ([JW — []¢) by (MP) Hence ([JV — [Jy) € w.
Note, 0 F; (([Ivo) A ([l1)) — [1(o A1) (exercise)
Hence {[]WV, ([][V — [J¢)} C w. Hence []J¢ € w by (MP).
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Truth Lemma

Lemma 9 For every ¢ and every w € We: 9c(w, ) = tiff o € w.

Proof: Pick any ¢, any w € W. Proceed by induction on length [ of .

[ = 0: So ¢ = pis atomic. Then, d.(w, p) = t iff p € w by definition of ¥..
Ind. Hyp. : Lemma holds for all formulae with length [ less than some n > 0
Ind. Step: Assume | = n and proceed by cases on main connective

o = []y: We have d.(w, [|[1) =t
iff Vo € We.(wRev = Ye(v, ) =t (by defn of valuations )
iff Vo € We.(wRev = ) € v) (by IH)
iff ]+ € w by Lemma 8([]).

Exercise: complete the proof
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Completeness Proof

Corollary 1 (We, Re, ¥¢) IH T

Proof: Since I" is in every maximal-consistent set extending it, we must have
I Cwforallw € We. By Lemma 9, w IF I, hence (We, Re, ¥¢) IF T

Proof of Completeness: if I i/ pthen " = ¢
Suppose I ¥ ¢. Hence I t/; ¢. Construct the canonical model
Mpr = (We, Re, Y¢). Consider any ordering of formulae where ¢ is the first
formula and let the associated maximal-consistent extension of " be X*.
Since I t/; ¢ we must have - € X*. The set X* appears as some world
wo € W, (say). Hence there exists at least one world where -y € wq. By
Lemma 9 wq IF —¢p i.e. M If ¢. By Corollary 1, we know M |- I". Since
the canonical model is a Kripke model, we have I = ¢. (i.e. not
VM eKMIFT = M @)

Completeness: By contraposition, if T = ¢ then I - .
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Notes

[+ ¢iff T = ¢ relies on the canonical frame (W, R.) being a Kripke frame by
its definition. (i.e. (We, Re) € R)

Later we shall see that the canonical model is not always sound for F: that is
we can have o where I = ¢ and M If ¢ (incomplete logics)

Beware: some books (e.g. Goldblatt) use the notation I" - ¢ for our I" ; ¢
because then the deduction theorem holds: ', o ;Y iff T = o — W

Exercise: Prove it.
For us, the syntactic counterparts of Lemma 4 and Lemma 5 are:
Lemmal0 '+ ¢ — o impliesl, o+

Lemma 1l I, - o implies In.T = 199 A - A [[" — o
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Lecture 3: Logic = Syntax and (Semantics or Calculus)
[ = ¢ : semantic consequence in class of Kripke models C
[" = ¢ : deducibility in Hilbert calculus K
Soundness: if T - pthen ™ = ¢

Completeness: if I t/ ¢ then M = ¢ and M € K.

K = {¢|0FE=¢} the validities of Kripke frames &
K {p|0F ¢} the theorems of Hilbert calculus K

Theorem1l K =K
The presence of R makes modal logics non-truth-functional.
But Kripke models put no conditions on R.

So what happens if we put conditions on R ?
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Valid Shapes and Frame Conditions
A binary relation R is reflexive if Vw € W.wRw.
A frame (W, R) or model (W, R, ¥) is reflexive if R is reflexive.
The shape [Jo — ¢ is called T
A frame (W, R) validates a shape iff it forces all instances of that shape.

l.e. for all instances ¢ of the shape and all valuations 9 we have (W, R, ) IF 1
Lemma 12 A frame (W, R) validates T iff R is reflexive.

Intuition: the shape 1" captures or corresponds to reflexivity of R.
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Valid Shapes and Frame Conditions
A relation R is reflexive if Vw € W.wRw. The shape [|J¢ — ¢ is called T'.

Lemma 13 [Correspondence] A frame (W, R) validates 7' iff R is reflexive.

Proof(i): Assume R is reflexive and (W, R) If [[«» — ) for some []y — 2.
Exists model (W, R, ) and wg € W with wq I+ [J« and wq Iff .
v IF e for all v with wg Rv wo Rwg Hence, wq IF . Contradiction

Proof(ii): Assume (W, R) forces all instances of [Jo — ¢, and R not reflexive.
Exists wg € W such that wgRwg does not hold.
Forallw € W, let 9(w, pg) = t iff wgRw. (we define ¥)
I (v, pg) = t for every v with wgRv, and 4(wg, pg) = f since not wgRwg.

wo I [lpo and wo I po hence wq ¥ [[po — po
But []Jpg — po is an instance of T" hence wq I+ [[pg — po. Contradiction.
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Valid Shapes and Frame Conditions
A frame (W, R) is reflexive if Vw € W.wRw. The shape [ — ¢ is called T..
A frame (W, R) validates T iff R is reflexive.
This correspondence does not work for models!
A model (W, R, ) validates T iff R is reflexive is false!

Consider the reflexive model M where:
W = {wg} and R = {(wq, wg)} and ¥ is arbitrary.

This model must validate T since (W, R) is reflexive.

Now consider the model M’ where:

W' = {vg,v1} R' = {(vg,v1), (v1,v0)} V' is:
o ]t if I wo,p) =t
9 (vi,p) = { f otherwise

Exercise: model M’ also validates 7. But M is not reflexive!
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Summary: The Logic of Reflexive Kripke Frames
Let R< be the class of all reflexive Kripke frames.
Let IC7 be the class of all reflexive Kripke models.
Let KT = K + [Jo — ¢ (shape T') as an extra modal axiom.
Define I' =7 ptomean VM € KT .M IFT = M IF .
Define I 7 ¢ to mean there is a derivation of ¢ from " in K'T.
Soundness: if I Fir othen I (=1 ¢
Proof: all instances of 7" are valid in reflexive frames.
Completeness: if I e ¢ then M =i ¢ and M- € KT
Proof: if M validates (all instances of) T' then M is reflexive. (sic!)
l.e. T-instance [J¢1 — 1 € wiff [J[4¥1 € w = Y1 € w by Lemma 8(—).
Vw,v € Waw Reviff {¢ | [][v € w} Cw implies wRcw
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More Axiom and Frame Correspondences

Name Axiom Frame Class Condition
T [N — ¢ Reflexive Vw € W.awRw
D [l — O Serial Vw € W3v € WawRv
4 [N — [l Transitive Vu,v,w € WuRv&vRw = uRw
5 Olle — [l¢  Euclidean Vu,v,w € WauRv&uRw = vRw
B e — [10)p Symmetric Vu,v € WuRv = vRu
Alt1 Qe — [le Weakly-Functional Vu,v,w € WuRv&uRw = v = w
2 Olle — [1{)p Weakly-Directed  Vu,v,w € W.uRv&uRw =
dr € WwRx&wRx
3 O A (O —  Weakly-Linear Vu,v,w € WuRv&uRw =
O(e N OY) vRw or wRv of w = v
VO Qe AY)
V() (p A1)
Let KA{Ag-- - An =K+ A1 +A>+ -+ An. (any A;s from above)
Theorem 2 T FgA Ay Ay P iff I =icAi Ay Ay P
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Correspondence, Canonicity and Completeness

Normal modal logic L is determined by class of Kripke frames ¢ if:

Vp.ClF ¢ < 1 . Normal modal logic L is complete if determined by some
class of Kripke frames. A normal modal logic is canonical if it is determined by
Its canonical frame.

A Sahlqgvist formula is a formula with a particular shape (too complicated to
define here but see Blackburn, de Rijke and Venema)

Theorem 3 Every Sahlgvist formula ¢ corresponds to some first-order
condition on frames, which is effectively computable from .

Theorem 4 If each axiom A; is a Sahlqvist formula, then the Hilbert logic
KA{1A5--- Ay is canonical, and is determined by a class of frames which is
first-order definable.

Theorem 5 Given a collection of Sahlqvist axioms Aq,--- , Az, the logic
KA{1A5 - Ay is complete wrt the class of frames determined by A --- A,.
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Not All First-Order Conditions Are Captured By Shapes

Theorem 6 (Chagrov) It is undecidable whether an arbitrary modal formula
has a first-order correspondent.

Question: Are there conditions on R not captured by any shape ?

Yes: the following conditions cannot be captured by any shape:
Irreflexivity:  Vw € W. not wRw

Anti-Symmetry: Vu,v € WuRv&vRu = u = v

Asymmetry: Vu,v € W.uRv = not (vRu)

See Goldblatt for detalls.
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Second-Order Aspects of Modal Logics

All of these conditions are first-order definable so it looked like modal logic was
just a fragment of first-order logic ...

An R-chain is a sequence of distinct worlds wg Rwq Rwy - - - .

Name Shape R Condition

G ([l — ¢) — [l transitive and no infinite R-chains
Grz ([l — [Jle) — v) — [Je reflexive, transitive and no infinite R-chains

The condition “no infinite R-chains” is not first-order definable since “finiteness”
IS not first-order definable. It requires second-order logic, so propositional
modal logic is a fragment of quantified second-order logic.

The logic KG has an interesting interpretation where []¢ can be read as “p is
provable in Peano Arithmetic”.

These logics are not Sahlgvist.
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Shapes Not Captured By Any Kripke Frame Class
Consider logic KH where H is the axiom schema []([J¢ < ¢) — []e.

Theorem 7 (Boolos and Sambin) The logic KH is not determined by any
class of Kripke frames.

G Boolos and G Sambin. An Incomplete System of Modal Logic, Journal of
Philosophical Logic, 14:351-358, 1985.

Incompleteness first found in modal logic by S K Thomason in 1972. Beware,
there is also a R H Thomason in modal logic literature.

Can regain a general frame correspondence by using general frames instead of
Kripke frames: see Kracht.

Kracht shows how to compute modal Sahlqvist formulae from first-order
formulae.

SCAN Algorithm of Dov Gabbay and Hans Juergen Ohlbach automatically
computes first-order equivalents via the web.
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Sub-Normal Mono-Modal Logics

Hilbert Calculus S = PC plus modal axioms (not K)

(1d) M s o pel (AX) M Fs o @ IS an instance of an axiom schema
[+

(MP) [ Fsp THRsp=w (Mon) s = Y no rule (Nec)

st s [l — [1v

[ 5 @ @ Iff there is a derivation of o from I In S.

Such modal logics are called “sub-normal”.

[ =5 ¢: needs Kripke models (W, Q, R, ) where: W is a set of “normal”
worlds and ¥ behaves as usual, and @ is a set of “queer” or “non-normal”
worlds where 9 (wq, ()¢) = t for all ¢ and all wy € @Q by definition. Then (Nec)
fails since M I o & M IF []p i.e. every non-normal world makes []¢ false.

Applications in logics for agents: |= ¢ == []y says that “if ¢ is valid, then ¢ is
known”, but agents may not be omniscient, hence want to go “sub-normal”.
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Regaining Expressive Power Via Nominals

Atomic Formulae: p ::=pg | p1 | p2 | - - (Atm)
Nominals: ¢ :i=1ig | i1 |20 | --- (Nom)
Formulae: ¢ i=p ||~ | Qe |lleleAeleVelp—p (F'ml)

Valuation: for every i, 9(w, ) = t at only one world
Intuition: 7 is the name of w

Expressive Power:

Irreflexivity:  Vw € W. not wRw i — =)@
Anti-Symmetry: Vu,v € WuRv&vRu = u = v i — [](()i — i)
Asymmetry: Yu,v € W.auRv = not (vRu) i — () ()1

And many more see: Blackburn P. Nominal Tense Logics, Notre Dame Journal
Of Formal Logic, 14:56-83, 1993.
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Lecture 4: Tableaux Calculi and Decidability

Motivation: Finding derivations in Hilbert Calculi is cumbersome:

ok oiffTFe —ofails! Mok wiff T E ([P A[JYe--[["p) — ¥

2 2 5
I—— & — — |—7

§ F&E— (o — ) (VP) ® (Nec)
=@ — = [l

Resolution: one rule suffices for classical first-order logic, but not so for modal
resolution

Decidability: questions can be answered via refinements of canonical models
called filtrations, but there are better ways ...

For filtrations see Goldblatt.
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Negated Normal Form

NNF: A formula is in negation normal form iff all occurrences of — appear in
front of atomic formulae only, and there are no occurrences of —.

Lemma 14 Every formula ¢ can be rewritten into a formula ¢’ such that ¢’ is in
negation normal form, the length of ' is at most polynomially longer than the
length of v, and 0 |= ¢ « ¢’

Proof. Repeatedly distribute negation over subformulae using the following
valid principles:

= (@1 — Y1) < (mp1 VY1) = —(p1 — Y1) < (p1 A1)
= (P AY) = (mp V) — (e V) = (mp A1) = e o
= () « []7p = [l < (-
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Examples: NNF

Example:

=([I(po — pr1) — ([lpo — [lr1))
[1(ro — p1) A =([lpo — [lpr1)
[1(ro — p1) A ([Ipo A =[lp1)
[1(—=po VvV p1) A ([lpo A ()—p1)

Example:
=([lpo — [1llpo)
=([Ipo — po) ([lpo) A (=[l{lro)
([lpo) A (—=po) ([lpo) A (O —[lro)

([Ipo) A (){)—po)
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Tableau Calculi for Normal Modal Logics

Static Rules: (id) 2 R B (A) Z_A@Zb_? (V) S;_”)Z mXX
Transitional Rule: (()K) Nz U;{; Z V.l € Z X ={[Jv | ¥ € X}

X,Y, Z are possibly empty multisets of formulae and
@; X stands for {} multiset-union X so number of occurences matter

MSet If numerator is /C-satisfiable
MSet; | ... | MSet, then some denominator is [C-satisfiable

Rules: (Name)

A K-tableau for Y is an inverted tree of nodes with:
1. aroot node nnf Y

2. and such that all children nodes are obtained from their parent node by
Instantiating a rule of inference

A K-tableau is closed (derivation) if all leaves are (id) instances, else it is open.
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Examples of K-Tableau

(id) p; —p; X ( e N, X eV, X Qe 1X, Z

X

N)

~(J(po = p1) — (llpo — llp1))

—————————————————————————————————————— nnt
[1(—po V p1)A([lpo A ()—p1) )
[1(—po V p1); ({[IpoA()—p1)
(N)
[1(—po V p1); [lpo; () —p1
PO VvV P1,P0,» P1 (\/)
—po;Po, P1 | P1:Pos TP1
X X

There is a closed K-tableau for =([](pg — p1) — ([lpo — [lp1))

o W) oxtox 0K LTy ¢ 2
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Examples of Tableau

(id) p, —p, X (A) e N, X (

p VP X Oe; [1X; Z
> cox M oxex 0K T2 vellv gz
—([lpo — [l{]lpo)
—([lpo — Po) N A (AN nnf
———————————————— nnf (lIpo) A (OO —po) "
Wro) A =po s [Ipo; ()()—po
(0po); —po — ((HK)
((OK)
—po

There is no closed K-tableau for =([]pg — pg)
There is no closed K-tableau for =([lpg — [I[]po)

How can we be sure, we only looked at one K-tableau for each ?
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Some Proof Theory

0) PP () PR ) L ) VR v e ¢ 2

Weakening: Lemma 15 If ¢; X has a closed K-tableau then so does ¢; X ;Y
for all multisets Y (adding junk does not destroy closure)

Inversion A: Lemma 16 If o A ¢; X has a closed K-tableau then so does
©; P, X (applying (A) cannot destroy closure)

Inversion V: Lemma 17 If ¢ V ¢; X has a closed K-tableau then so do ¢; X
and ¢; X (applying (V) cannot destroy closure)

Inversion fails for (<>K) <> (p V —'p); (q A ﬂq) «—— has closed K-tableau

pV —p «—— has no closed K-tableau

Contraction: Lemma 18 ¢; X has a closed K-tableau iff ¢; ¢; X has a
closed K-tableau. Can treat multisets as sets and vice-versa!

Introduction to Modal and Temporal Logics 6 December 2007 62



Soundness of Modal Tableaux W.R.T. C-satisfiability

A multiset of formulae Y is KC-satisfiable iff there is some Kripke model
(W, R,9) and some w € W with w IF' Y l.e. Vo € Yow I .

Lemma 19 (id) The multiset p; —p; X Is never K-satisfiable.
Lemma 20 (A) If o A; X is KC-satisfiable then ¢; v¢; X is KC-satisfiable.

Lemma 21 (V) If ¢ vV ¢; X is K-satisfiable then ¢; X is K-satisfiable or ¢; X is
JC-satisfiable.

Lemma 22 (()) If ()p; [|X; Z is K-satisfiable then ¢; X is K-satisfiable.

Proof: Suppose {)p; [|X; Z is K-satisfiable.

l.e. exists Kripke model (W, R,) and some w € W with w IF ()p; [| X; Z

l.e. exists Kripke model (W, R,?) and some v € W with wRv and v I ¢
lLe.vIiFpandov - X Le.vlFp; X

l.e. (¢; X) is K-satisfiable. (transitional)
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Soundness of Modal Tableaux

Theorem 8 If there is a closed K-tableau for Y then Y is not KC-satisfiable.

Proof: Suppose there is a closed K-tableau for nnf Y. Proceed by induction
on length of K-tableau, recall that = (AY) < (Annf Y).

[ = 0: Sonnf Y is an instance of (id). But p; —p; X is never [C-satisfiable.
Ind. Hyp. : Theorem holds for all derivations of length less than some k£ > O.

Ind. Step: Then nnf Y has a closed K-tableau of length k. Top-most rule?

(()K): So the top-most rule application is an instance of the ({)K)-rule.
©; X has closed K-tableau By IH. ¢; X is not K-satisfiable.
Lemma 22: if ()p; [| X; Z is K-satisfiable then ¢; X is K-satisfiable.
Hence Y = (()y; [| X; Z) cannot be K-satisfiable.

Corollary 2 If {—¢} has a closed K-tableau then () = ¢
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Downward Saturated Or Hintikka Sets

A set Y is downward-saturated or an Hintikka set iff:

1 eY = peY

poANYeY = peYandyecY
poVyeY = peYoryeyY
p—YeY = p&YoryeY

L <24

Downward-saturated set is consistent if it does not contain {,, -}, for any ¢.

Don’t need maximality: it is not demanded that V.o € Y or =¢ € Y. (Hintikka)
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Model Graphs

A K-model-graph for set Y is a pair (W, <1) where W is a non-empty set of
downward-saturated and consistent sets, some wg € W contains Y, and < is
a binary relation over W such that for all w:

O Qpew=(Fve Wwdv&pev)

[: [l € w= (YveWwdv= pEv).

Lemma 23 (Hintikka) If there is a K-model-graph (W, <) for set Y then Y is
IC-satisfiable.

Proof: Let (W, R, ¢) be the model where R = < and ¥(w, p) =t iff p € w. By
induction on the length of a formula ¢, show that ¥(w, ¢) = t iff o € w. Since
Y C wp we have wq IF Y.
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Creating Downward-Saturated and Consistent Sets

Lemma 24 If every K-tableau for Y is open, then Y can be extended into a
downward-saturated and consistent Y* so every K-tableau for Y* is also open.

Proof. Suppose no K-tableau for Y closes. Now consider the following
systematically constructed K-tableau.

Stage O: Letwg =Y.

Stage 1: Apply static rules giving finite open branch of nodes wq, w1, - - - , wy.
Let Y* be the multiset-union of wq, - - - , wg.

Claim: Y* is downward-saturated (obvious) and consistent, and Y C Y'*.

By Contraction Lemma 18, we know ¢; X has (no) closed K-tableau iff ©; ©; X
has (no) closed K-tableau. (adding copies cannot affect closure)

Tableau for Y* cannot close since construction of Y * just adds back the
principal formulae of each static rule application. can treat Y* as a set!

Introduction to Modal and Temporal Logics 6 December 2007 67



Completeness and Decidability

Lemma 25 If no K-tableau for Y is closed, there is a K-model-graph for Y.

Proof. Suppose no K-tableau for Y closes. Now consider the following
systematic procedure

Stage 0: Letw =Y.

Stage 1: Apply static rules giving downward-saturated and consistent node w*
(Lemma 24)

Stage 2: Let ()1, )1, ()n be all the ()-formulae in the current node.

So the current node looks like: {)p;; [|X; Z; foreach: =1---n.

Qv 1X; Z; — w*
pi; X D

Foreachi = 1---napply: ({))

Repeat Stages 1 and 2 on each node v, = (¢;; X), and so on ad infinitum.
Each (())-rule application reduces maximal-modal degree, giving termination.

Let W be set of all x-nodes, let w* < v} (W, <) is a K-model-graph for Y.
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Decidablility and Analytic Superformula Property

Subformula property: the nodes (sets) of a K-tableau for Y (i.e. nnf Y') only
contain formulae from nnf Y.

Subformula property will hold if all rules simply break down formulae or copy
formulae across.

Analytic superformula property: the nodes (sets) of a L-tableau for Y (i.e.
nnf Y) only contain formulae from a finite set Y/ computable from nnf Y (but
possibly larger than nnf Y).

Analytic superformula property will hold if all rules that build up formulae cannot
be applied ad infinitum.

The main skill in tableau calculi is to invent rules with the subformula property
or the analytic superformula property!

Introduction to Modal and Temporal Logics 6 December 2007 69



Completeness W.R.T. [C-Satisfiability
Theorem 9 If there is no closed K-tableau for Y then Y is [C-satisfiable.
Proof. Suppose every K-tableau for Y is open.
Use Lemma 25 to construct a K-model-graph (W, <) for Y.

Forallw € W, let 9(w,p) =t iff p € w.

Then (W, <, ¢) contains a world wq with wg =Y by Hintikka’'s Lemma 23.

Corollary 3 If there is no closed K-tableau for {—¢} then = .
Corollary 4 There is a closed K-tableau for Y iff Y is not [C-satisfiable.

Corollary 5 There is a closed K-tableau for {—p} iff ¢ is K-valid.
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What About Logical Consequence: a concrete example

Write ' 7 ¢ : iff there is a closed K-tableau for (I"; —p) l.e. nnf (I"; —p)
Want Completeness: I /7 o = AM M IF T & M If ¢

Consider: I := {pg} and ¢ := []p1.

Then nnf (I"; =) has only one (open) K-tableau:

()
(po; ~[lp1)
po; ~llp1 (ant )
(ro; ()—p1)
—p1
wo = {po, ()1} wy = {—p1} woRw1

Problem: although wq IF ", we don’t have wq IF 7. So M If o but M [/ T".

If only we could make w; force I" too ...
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Regaining Completeness WRT Logical Consequence

Change (()) rule from ({)) e Ui{; Z V. [l &€ Z to:

» . O 1X; 2
Transitional Rule: (()I") o X nf T V. [ly € Z (R-successor forces IN)

Semantic reading:
If numerator is L-satisfiable in a model that forces T

then some denominator is L-satisfiable in a model that forces I (new)

. . . Oeir [1X; Z; — w*
Stage 2: Foreachi = 1---napply: (()I") o X mnf T P——
By completeness: " /7 ¢ : iff (GM.IwMIFT &w - (T —p))
iff (GMMIFT & MIF o) Iff ™ =
But there is a slight problem ... (TINSTAAFL)
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Regaining Decidability

Problem: K-tableau can now loop for ever: I := {()pg}, and ¢ := p:

(T =)
————————————— nnf )
(Opo; —p1)

Or)
(ro; ()ro)

)
(ro; ()ro)

Or)

Solution: if we ever see a repeated node, just add a <j-edge back to previous
copy on path from current node to root.
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Other Normal Modal Logics

[le; X

KT: Static Rules: (id), (A), (Vv), plus (T) o (o) X

[l unstarred

V. [ly € Z (unstar all []-formulae)

Transitional Rule: (()I") gSOX[]i:;?f

K4: Static Rules: (id), (A), (V)

Qe 11X, Z

Transitional Rule: (()I"4) o X X ot T

V.l & Z

KT4: Static Rules: (id), (A), (V), (T)

Transitional Rule: (()I"'T'4) ;%[D])E)Slfzr V. [l € Z  (unstar all []-formulae)
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Examples of K'T-Tableau

. Ctafi o p; X
KT: Static Rules: (id), (A), (V), plus (T) (o) X []¢ unstarred

O, [1X*; Z V.l & Z (unstar all []-formulae)

Transitional Rule: [
ansitional Rule: ({)I") o X nf T

=([lpo — po)

(llpo) A =
Po Po (A)

([lpo); —po

Po, ([lpo)*; —po

%
There is a closed KT-tableau for —=([Jpo — po) i.e. 0 F7r [lpo — po

Starring stops infinite sequence of T-rule applications.

Introduction to Modal and Temporal Logics 6 December 2007 75



Examples of K4-Tableau
K4: Static Rules: (id), (A), (V)

Qe 11X, Z

Transitional Rule: (()I"4) > X X mmfT V.l € Z
~(lpo = llllpo)
([lpo) A () ()—ro)
[Ipo; () () Y (ro; 110
PO —p :
E . 2 (T4 PO (ray
po; [1po; ()—po (Ora po; ()ro; [1{)po
po; [1po; —po po; ()po; [1()ro
X
There is closed K 4-tableau for =([]pg — [1[Ipo) l.e. 074 [lpo — [Illpo

Need loop check: K4-tableau for ({)pg; []{)po) has infinite branch.
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Follow The Procedure ...
Prove Weakening.
Prove Inversion for all Static Rules.
Check if Transitional Rule has Inversion (unlikely).

Prove Soundness: If there is a closed KL-tableau for Y then Y is not
JCL-satisfiable.

Define appropriate notion of L-model-graph.

Prove Hintikka’s Lemma: If there is an L-model-graph for Y then Y is
K L-satisfiable.

Prove Completeness: If there is no closed KL-tableau for Y then Y is
ICL-satisfiable.

Add changes to transitional rule(s) for handling I' =7 ¢

Prove termination (by analytic superformula property and tracking of loops).
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Soundness for Rule ( ()7'4)

o, [1X* Z

Example: (()T4) Yy o [1X

V.l & Z

All depends upon:
Lemma : if ()p; [|X; Z is KT 4-satisfiable then ¢; X is K7 4-satisfiable.

Proof: Suppose {)p; [|X; Z is is K7 4-satisfiable.

l.e. exists transitive Kripke model (W, R, ¢) and some w € W with
w - Qe [1X; Z

l.e. exists transitive Kripke model (W, R, ¢) and some v € W with wRv and
v I (¢, X; [1X) (X — [1l1X)

l.e. exists transitive Kripke model (W, R, ¢) and some v € W with wRv and
v IF (¢; []X) can regain X by T rule

Introduction to Modal and Temporal Logics 6 December 2007 78



Tableaux Versus Hilbert Calculi
Algorithm: Systematic procedure gives algorithm for finding (closed) tableaux.
Decidability: easier than in Hilbert Calculi.

Modularity: Must invent new rules for new axioms. Reuse completeness proof
based upon systematic procedure with tweaks. Rules require careful
design to regain decidability e.g. starring, looping, dynamic looping etc.

Automated Deduction:  Logics WorkBench htt p: / / www. | wb. uni be. ch
has implementation of tableau theorem provers for many fixed logics e.g.
K, KT, K4, KT4, ...

Automated Deduction: The Tableaux WorkBench
http://arp. anu. edu. au/ ~abat e/ t wo provides a way to implement
tableau theorem provers for any tableau calculus that fits its syntax e.g.
KD45, KtS4, Int, IntS4, ...
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Lecture 5: Tense and Temporal Logics
Tense Logics: interpret []p as “¢ is true always in the future”.
W represents moments of time
R captures the flow of time

Temporal Logics: similar, but use a more expressive binary modality ¢ /1) to
capture “p is true at all time points from now until ¢) becomes true”.

Shall look at Syntax, Semantics, Hilbert and Tableau Calculi.
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Tense Logics: Syntax and Semantics
Atomic Formulae: p ::=pg | p1 | p2 | - -

Formulae: ¢ :=p [ ¢ | (F)¢ | [Fle | (P)e | [Ple oA loVele—p

Boolean connectives interpreted as for modal logic.

Given some Kripke model (W, R, ) and some w € W, we compute the truth
value of a non-atomic formula by recursion on its shape:

9w, (Fp) = E gtﬁgrj\;v??e: t at some v € W with wRwv
9w, [Flo) = E gtﬁgrj\;v??e: t at every v € W with wRv
9(w, (P)p) = f 1{3 ic]:tﬁgrjv’v??e: t at some v € W with v Rw
9(w, [Plp) = f 1{ ic]:tﬁgr)v,v??e: t at every v € W with v Rw

Va
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Tense Logics: Syntax and Semantics

N\

. t if9(v,p) =t atsome v € W with wRwv

I(w, (F)p) = f otherwise
(¢ if Y (v, ) =t atevery v € W with wRwv

d(w, [Flp) = f otherwise
o I t ifd(v,p) =t atsome v € W with v Rw

I(w, (P)p) = f otherwise
o f t ifd(v,p) =t ateveryv € W with v Rw

d(w, [Plp) = f otherwise

\

Example: It W = {wo, w1, wQ} and R = {(’wo, wl), (’wo, ’wz)} and
P (w1,p3) = t then (W, R, ) is a Kripke model as pictured below:

w1q
B d(wo, (F)pz) =t
wo_ P(wo, (P)(F)p3) = t
\w2 9(wo, [P]p1) =t
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Hilbert Calculus for Modal Logic K

Axiom Schemata: Axioms for PC plus:
KIF]: [Fl(e — ) — ([Fle — [F]y)
KIP]: [P](e — ¢) — ([Ple — [PlY)

FP: o — [F(P)y PF: o — [PI(F)e
Rules of Inference: (AXx) Fo © IS an instance of an axiom schema
Chr o Tl o — Y
Id el MP L L
()FFKM@O (MP) e,
[ I_K @ [ I_K @
Nec|F - (Nec|P]) -
(Neel" D) =, 11 D e e

Soundness, Completeness, Correspondence etc. : Let Ky = K be class of all
Kripke Tense frames T ErAL Ao A, PIET =R AL A A, ®
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Different Models of Time
Arbitrary Time: K¢
Reflexive Time: ¢ — (F)y Transitive Time: (F)(F)p — (F)p
Dense Time: (Fo — (F){F)p Never Ending Time: [Flp — (F)p
Backward Linear: (F){P)py — (P)p V o V (F)y
Forward Linear: (P){F)p — (F)p V ¢ V (P)p

Tableau Calculi also exist but require even more complex loop detection often
called “dynamic blocking”.

Discrete (Z, <) , Rational (Q, <), Real (R, <) linear and non-reflexive models
of time also possible: see Goldblatt.

Tableau-like calculi exist; see Mosaic Method
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PLTL: Propositional Linear Temporal Logic
Atomic Formulae: p ::=pg | p1 | p2 | - -

Formulae: ¢ :=p | —p | Dy | [Fle [ (F)e | U |oANe Vo le —o@

Boolean connectives interpreted as for modal logic.

Linear Time Kripke Model: (S, o, R, )

S: non-empty set of states

o. N — S enumerates S as sequence oq, 01, - - - With repetitions when S finite
v S x Atm — {t, f}

R: is a binary relation over S

Condition: R = o* (R is the reflexive and transitive closure of o)
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Semantics of PLTL

o = =
Koo = |} e
Hulrle) = | lied = T
V(s pUY) = <\ ;’, gtﬁ];rvz\/i;.eﬁ(smw =t&Vji<j<k=0(sj,p) =t
S; Sit1 Ce S S Sk
pUg DP,Qq - PG oo q

Note: when k # i, the state s, is the first state after s; where q is true.
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Semantics of PLTL

oo B9 = | f omenige |
) = {1 s =21
Kol = |} o) =2
s = {§ LAE 0= B < =
S; Si41 .- Sj .. S
-(pUg),~¢ 7T - —q ... g qis always false, or
~(ptq) 4 -+ TP, .-+ q  pfalse before g true

Note: when k # i, the state s, Is the first state after s; where q is true. And p is
false in some s; before state sy.
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Hilbert Calculus for PLTL

Axiom Schemata: axioms for PC plus

KIFT: [Fl(e = ¢) — ([Fle — [F])

KD: B(p —¢) — (B — DY)

Fun: @—-¢ < Dy

Mix: [Fle — (o A DIF]e)

Ind: [F](¢ — D) — (¢ — [Flp)

Ui (pUY) — (F)y Uz: (pUYp) = pV (mp Ao AN D(eUY))

Rules: (Id), (Ax), MP and (Nec[F]) and (Nec)
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Tableau Calculus for PLTL

Presence of Induction Axiom Ind means no finitary cut-free sequent calculus
(must guess induction hypothesis)

Cannot just “jJump” on (F') because of its interaction with @ which demands
“single steps”

Requires a two pass method: build a model-graph, check that it is contains a
model.
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Tableau Calculus for PLTL: Pass 1
Stage O0: putwg =Y

Stage 1: repeatedly apply usual (A) and (V) rules together with the following
to obtain a downward-saturated node wg in which each non-atomic formula is
marked as “done” or is of the form P

Dy — B [Fle — (0 ADI[F]p)
(F)ye — (@ V B(F)p) (UY) = PV (~Y Ap AND(pU))

Stage 2: Current node is now of the form P X; Z where Z contains only atoms,
negated atoms, and “done” formulae. Create a (H-successor w1y containing X.

Stage 3: Saturate wq via Stage 1 to get w] and add wyR@w7 if w7 is new,
else add wyR@v™ for the node v* which already replicates w7.

Stage 4: If w7 is new then repeat and so on until no new x-nodes turn up giving
a possibly cyclic graph.
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Tableau Method for PLTL: Pass 2
An eventuality is a formula (F")y or o U
A path is a maximal (cyclic) sequence of nodes starting at the root.
“Maximal” means “cannot avoid repetition” (unwind)
A path fulfills {F')¢ if some node on it contains ¢
A path fulfills o U if some node on it contains ) and between nodes contain ¢
Delete all nodes that contain a pair {p, —p}.
Repeatedly delete all nodes who now do not have an §-successor.

If some single path fulfills all eventualities contained in its nodes then Y is
PLTL-satisfiable, otherwise it is not.

Note: all eventualities on that path must be fulfilled on that path!
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Lecture 6: Fix-point Logics
PLTL: linear time temporal logic
CTL: computation tree logic
PDL.: propositional dynamic logic
LCK: logic of common knowledge

Look at CTL but using only one relation R rather than R = o*
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CTL: Computation Tree Logic

Atomic Formulae: p::=wpg|p1|p2 | " (AP)
Formulae: o ::=p|-p|pAp|peVe|p—p

EXp | AXyp

E(pUy) | AlpU)

E(pBv) | A(p Bv) (Fml)

Note: FE'pis not a formula!
Unary Modal connectives are: FEX-and AX-
Binary Modal Connectivesare: E(-U-) A(-U-) A(-B-) E(-B")

NNF: we shall later assume that all formulae are in Negation Normal Form
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Semantics of CTL

Transition Frame: is a pair (W, R) where W is a non-empty set of worlds
and R is a binary relation over W that is total (Vw € W. dv € W. w Rv).

Full path: in atransition frame (W, R) is an infinite sequence o, 01,05, ... oOf
worlds in W such that o; Ro; 41 forall < € N.

B(w): forw € W, B(w) is the set of all fullpaths in (W, R) which begin at w

Model: M = (W, R, L) is a transition frame (W, R) and a labelling
function L : W — 2AP so that L(w) is the set of atomic formulae true at w

Seriality: B(w) is non-empty by seriality
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Semantics of CTL

Model: M = (W, R, L) is a transition frame (W, R) and a labelling
function L : W — 2AP so that L(w) is the set of atomic formulae true at w

World forces formula: M, w I ¢ defined by induction on shape of ¢

M,wlFp iff pe L(w), forpe AP
M, w - = iff  M,w W Y

M,wlEpAy iff M,wl-p & M,w |-
M,wlFovy iff M,wlkqeor M,wlF

Intuition: classical connectives behave as usual at a world
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Semantics of CTL

Model: M = (W, R, L) is a transition frame (W, R) and a labelling

function L : W — 2AP so that L(w) is the set of atomic formulae true at w

World forces formula: M, w I ¢ defined by induction on shape of ¢

M, wlF EXp iff Jve W wRv& M,vlF ¢

M,wlFAXp Iff Yve W . wRv = M,viFp

Intuitions: E X ¢ means “some immediate R-successor forces ¢”
Intuitions:  AX ¢ means “every immediate R-successor forces ¢”

X: stands for neXt i.e. immediate
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Semantics of CTL

Model: M = (W, R, L) is a transition frame (W, R) and a labelling
function L : W — 2AP so that L(w) is the set of atomic formulae true at w

World forces formula: M, w I ¢ defined by induction on shape of ¢

M,wlk E(pU~1) iff “some full path from w forces ¢ until )"

M,wlF A(pU~) iff “every full path from w forces ¢ until )"

But: we have not defined what it means for a fullpath to force a formula

Must: express it in terms of a world forcing a formula
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Semantics of CTL

Model: M = (W, R, L) is a transition frame (W, R) and a labelling
function L : W — 2AP so that L(w) is the set of atomic formulae true at w

World forces formula: M, w I ¢ defined by induction on shape of ¢
M,wl- E(pU~) iff Jo € B(w).3i € N.[M,o0; |k &Vj <i. M,o; Ik ¢]
M,wl- A(pU) iff Vo B(w).3i € N.[M,o; |k &Vj <i.M,o;lkF ]

E(pU1) A(pU )
v v

T/R 5 RT o " o R\QD

3 0
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Semantics of CTL

Model: M = (W, R, L) is a transition frame (W, R) and a labelling
function L : W — 2AP so that L(w) is the set of atomic formulae true at w

World forces formula: M, w I ¢ defined by induction on shape of ¢

M,wl- E(pBv) iff Joe€ B(w).VieN.[M,o;lFv¢ = 35 <i.M,o0;lF ¢]
“some fullpath from w forces ¢ before it forces ”
M,wl- A(p Bvy) iff Vo€ B(w).Vi e N. [M,o;l-v¢ = 35 <i. M,o0; - ¢]

“every fullpath from w forces ¢ before it forces "

Note: it is possible that ) is never forced
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Exercises for CTL

Exercise: Show that M, w IF AX oy iff M, w |F =EX—p

Exercise: Give semantics for EFp := E(T U ¢) where T := pg V —pg
Exercise: Give semantics for AFp := A(T U ¢) where T := pg V —pg
Exercise: Work out the semantics for AGy := —EF -y

Exercise: Work out the semantics for EGyp := = AF -y

Exercise: Why can’t we define AGy := A(pU L) where L := pg A —pg
Exercise: Why can’'t we define EGyp := E(pU 1) where L := pg A —pg

Exercise: Express AGy and EGy interms of A(- B-) and E(- B -) (resp)
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Exercise:

Exercise:

Exercise:

Exercise:

Exercises for CTL
Show that -E(o U v¢) < A((—yp) B1) is CTL-valid
Show that —A(p U ) < E((—yp) B1) is CTL-valid
Showthat E(pUq) < qV (p ANEXE(pU q)) is CTL-valid

Showthat A(pUgq) < qV (p NAXA(pU q)) is CTL-valid
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Tableau Rules for CTL using Smullyan’s

(84 a1 (829
o NP © (
E(pBvy) |~y | oV EXE(p By)
A(lpBY) |~ | oV AXA(p BY)
AG @ © AXAG ¢
EG ¢ © EXEG ¢

Define: ~1 ;= NNF(—))

Proposition:

a— and B—notation

B B1 Bo
oV © (
E(eUv) | v | o ANEXE(pU?)
A(pUy) | ¥ | p NAXA(eU W)
EF ¢ © EXEF ¢
AF ¢ © AXAF ¢

Note: some of these equivalences require that R is serial/total

Tableau Rules:

[ o
(@) [ ap; an

Exercise:

;3

() 8111 B2

all instances of a <+~ a1 AN ap and 3 <~ 31 VvV 3, are CTL-valid

assuming that all formulae are in Negation Normal Form
[ EXp, A XA

(EX)

THVAN

If numerator is CTL-satisfiable then so is some denominator
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Tableau Calculus for CTL: Phase 1

State Node: a set of formulae of the form A, EXT, AX A where A contains
only atoms and negated atoms
Repeat:

Saturate: repeatedly apply the («) and (3) rules until none are
applicable to give leaves (states) of the
form N\, EXpq,- -, EXpp, A XA

Jump: For each state, create n (£ X )-children w1, - - - , wn Where w;
contains ¢;, A

Loop Check: Don’t expand a node that duplicates another node

Until no rules are applicable
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Tableau Method for CTL: Phase 2 (Almost)

Eventuality: Each formula E(p U 1)IA(p U 1)) is an eventuality since it
entails that eventually ¢y must become true on some/every path

Fulfilled: E(pU) € sis fulfilled if there is some path sg = s,s1,--- from s
such that there exists a k such that ¢ € s, and ¢ € s; forall j < k

Fulfilled: A(o U ) € sis fulfilled if for every path sog = s, s1,--- from s there
exists a k such that+ € s and ¢ € s; forall j <k

Repeat: [J delete all nodes that contain a pair {p, —-p}
[] delete any states with no R-successor (seriality)

[1 delete any node that contains an un-fulfilled eventuality

Until: no state is deleted

But this can give the wrong answer as the “unwinding” is more subtle due to
branching nature of CTL-models
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Tableau Method for CTL: Phase 2

Eventuality: Each formula E(o U ¢)IA(p U ) is an eventuality since it
entails that eventually » must become true on some/every path

Fulfilled: E(pU) € sis fulfilled if there is some path sg = s,s1,--- from s
such that there exists a k such that ) € s, and ¢ € s; forall j < k

Fulfilled: A(pU ) € sis fulfilled if the graph can be unwound in a
complicated way (see Emerson)

Repeat: [J delete all nodes that contain a pair {p, —-p}
[] delete any states with no R-successor (seriality)

[] delete any node that contains an un-fulfilled eventuality

Until: no state is deleted
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Example: AGp — AGp

~(AGp — AGp) |

AGp;, "AGp
nn f
AGp; EF —p
a

¢
% :

p; AXAGp; —p | 1

p;AXAGp;EXEFﬂp‘

EX
ngp;EFﬂp‘
o’ o Qo 16 31 B> (EX)FHEmeUQS
AGop | ¢ | AXAG ¢ FEF o | o | EXEF ¢ ©; A
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Example: AGp — AGp Pruning Phase

~(AGp— AG p) |

AGp;

-AG D

nn f

AGp;

EF —p

(81

Prune the node containing {p, —p}

B2

p; AXAGp; EXEF —p

EX
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Example: AGp — AGp Pruning Phase

~(AGp— AGp) |

AGp;

-AG P

nn f

AGp;

EF —p

(81

B2

p;, AXAGp, EXEF —p

EX

Prune the root containing EF' —p since no path fulfils ' —p

Thatis, AG p ; EF —pis not CTL-satisfiable.

Hence AG p — AG pis CTL-valid.
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Tableaux Methods for Modal and Temporal Logics. Rajeev Gore Handbook of
Tableau Methods Kluwer Academic Publishers, 1999.
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