
Lecture 4

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 1 / 32

Lecture 4

.

...... Dependency Syntax and Parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 2 / 32

Lecture 4

Outline

1 Motivation

2 Dependency Syntax

3 Dependency Parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 3 / 32

Lecture 4

Motivation

what you have seen as far: applying analysis of formal
languages to a natural language – creating a phrase-structure
derivation tree according to some grammar

PS accounts for one important syntactic property:
constituency

is that all?

but what about: discontinuous phrases, structure sharing

IA161 Syntactic Formalisms for Parsing Natural Languages 4 / 32

Lecture 4

Motivation

another crucial syntactic phenomenon is dependency
what is a dependency? ”some relation between two words“
what is the difference to phrase-structure?
what does constituency express?
what does dependency express?

IA161 Syntactic Formalisms for Parsing Natural Languages 5 / 32

Lecture 4

Dependency Syntax (Meľchuk 1988)

A more formal account – what is a dependency? A relation!
.
Dependency Relation..

......

Let W be a set of all words within a sentence, then dependency relation
→ is D ⊆ W × W such that:

D is anti-reflexive: a → b ⇒ a ̸= b

D is anti-symmetric: a → b ∧ b → a ⇒ a = b, ≡
(anti-reflexivity) a → b ⇒ b ↛ a

D is anti-transitive: a → b ∧ b → c ⇒ a ↛ c

optionally: D is labeled: there is a mapping l : D → L,L being
the set of labels

IA161 Syntactic Formalisms for Parsing Natural Languages 6 / 32

Lecture 4

Dependency Representation

a → b: a depends on b, a is a dependent b, b is the head
of a
a dependency graph
a dependency tree

IA161 Syntactic Formalisms for Parsing Natural Languages 7 / 32

Lecture 4

Dependency Tree vs. PS Tree

sleep S

ideas furiously NP VP

Green A N V ADV

Green ideas sleep furiously

IA161 Syntactic Formalisms for Parsing Natural Languages 8 / 32

Lecture 4

Non-projectivity

a property of a dependency tree: a sentence is non-projective
whenever drawing (projecting) a line from a node to the surface
of the tree crosses an arc

a lot of attention has been paid to this problem

practical implications are rather limited (in most cases
non-projectivity can be easily handled or avoided)

hard cases:
koupil

Malou

chaloupku
IA161 Syntactic Formalisms for Parsing Natural Languages 9 / 32

Lecture 4

Czech Tradition of Dependency Syntax

a long tradition of dependency syntax in the Prague linguistic
school (Sgall, Hajičová, Panevová)
Institute of Formal and Applied Linguistics at Charles University
formalized as Functional Generative Description (FGD) of
language
Prague Dependency Treebank (PDT)

IA161 Syntactic Formalisms for Parsing Natural Languages 10 / 32

Lecture 4

Dependencies vs. PS

is one of the formalisms clearly better than the other one?
No.

dependencies: ⊕ account for relational phenomena, ⊕ simple
phrase-structure: ⊕ account for constituency, ⊕ easy chunking

can we perform transformation from one of the formalism to the
other one a vice versa? Technically yes, but . . .

It is not a problem to convert the structure between a dependency
tree and a PS tree ...
... but it is a problem to transform the information included

⇒ both of the formalisms are convertible but not mutually
equivalent

IA161 Syntactic Formalisms for Parsing Natural Languages 11 / 32

Lecture 4

Dependency Parsing

rule-based vs. statistical
transition-based (→ deterministic parsing)
graph-based (→ spanning trees algorithms)
various other approaches (ILP, PS conversion, . . .)
very recent advances (vs. long studied PS parsing algorithms)

IA161 Syntactic Formalisms for Parsing Natural Languages 12 / 32

Lecture 4

Introduction to Dependency parsing

Motivation
a. dependency-based syntactic representation seem to be useful in

many applications of language technology: machine translation,
information extraction
→ transparent encoding of predicate-argument structure

b. dependency grammar is better suited than phrase structure
grammar for language with free or flexible word order
→ analysis of diverse languages within a common framework

c. leading to the development of accurate syntactic parsers for a
number of languages
→ combination with machine learning from syntactically
annotated corpora (e.g. treebank)

IA161 Syntactic Formalisms for Parsing Natural Languages 13 / 32

Lecture 4

Introduction to Dependency parsing

Dependency parsing

“Task of automatically analyzing the dependency structure of a
given input sentence”

Dependency parser

“Task of producing a labeled dependency structure of the kind
depicted in the follow figure, where the words of the sentence

are connected by typed dependency relations”

ROOT Economic news had little effect on financial markets .

PRED
PU

PC

ATTATT

OBJ

ATTSBJATT

IA161 Syntactic Formalisms for Parsing Natural Languages 14 / 32

Lecture 4

Definitions of dependency graphs and dependency
parsing

Dependency graphs: syntactic structures over sentences

Def. 1.: A sentence is a sequence of tokens denoted by

S = w0w1 . . .wn

Def. 2.: Let R = {r1, . . . , rm} be a finite set of possible
dependency relation types that can hold between any two
words in a sentence. A relation type r ∈ R is additionally called
an arc label.

IA161 Syntactic Formalisms for Parsing Natural Languages 15 / 32

Lecture 4

Definitions of dependency graphs and dependency
parsing

Dependency graphs: syntactic structures over sentences

Def. 3.: A dependency graph G = (V,A) is a labeled directed
graph, consists of nodes, V, and arcs, A, such that for
sentence S = w0w1 . . .wn and label set R the following holds:
1 V ⊆ {w0w1 . . .wn}
2 A ⊆ V× R× V

3 if (wi, r,wj) ∈ A then (wi, r′,wj) /∈ A for all r′ ̸= r

IA161 Syntactic Formalisms for Parsing Natural Languages 16 / 32

Lecture 4

Approach to dependency parsing

a. data-driven
it makes essential use of machine learning from linguistic data
in order to parse new sentences

b. grammar-based
it relies on a formal grammar, defining a formal language, so
that it makes sense to ask whether a given input is in the
language defined by the grammar or not.

→ Data-driven have attracted the most attention in
recent years.

IA161 Syntactic Formalisms for Parsing Natural Languages 17 / 32

Lecture 4

Data-driven approach

.

......

according to the type of parsing model adopted,
the algorithms used to learn the model from data
the algorithms used to parse new sentences with the model

a. transition-based
start by defining a transition system, or state machine, for
mapping a sentence to its dependency graph.

b. graph-based
start by defining a space of candidate dependency graphs for a
sentence.

IA161 Syntactic Formalisms for Parsing Natural Languages 18 / 32

Lecture 4

Data-driven approach

a. transition-based
learning problem: induce a model for predicting the next state
transition, given the transition history
parsing problem: construct the optimal transition sequence for
the input sentence, given induced model

b. graph-based
learning problem: induce a model for assigning scores to the
candidate dependency graphs for a sentence
parsing problem: find the highest-scoring dependency graph for
the input sentence, given induced model

IA161 Syntactic Formalisms for Parsing Natural Languages 19 / 32

Lecture 4

Transition-based Parsing

Transition system consists of a set C of parser configurations
and of a set D of transitions between configurations.
Main idea: a sequence of valid transitions, starting in the
initial configuration for a given sentence and ending in one of
several terminal configurations, defines a valid dependency
tree for the input sentence.

D1′m = d1(c1), . . . ,dm(cm)

IA161 Syntactic Formalisms for Parsing Natural Languages 20 / 32

Lecture 4

Transition-based Parsing

Definition
Score of D1′m factors by configuration-transition pairs (ci,di):

s(D1′m) =
∑m

i=1 s(ci,di)

Learning
Scoring function s(ci,di) for di(ci) ∈ D1′m

Inference
Search for highest scoring sequence D∗

1′m given s(ci,di)

IA161 Syntactic Formalisms for Parsing Natural Languages 21 / 32

Lecture 4

Transition-based Parsing

Inference for transition-based parsing

Common inference strategies:
Deterministic [Yamada and Matsumoto 2003, Nivre et al. 2004]
Beam search [Johansson and Nugues 2006, Titov and Henderson
2007]
Complexity given by upper bound on transition sequence length

Transition system
Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
Limited non-projective O(n) [Attardi 2006, Nivre 2007]
Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

IA161 Syntactic Formalisms for Parsing Natural Languages 22 / 32

Lecture 4

Transition-based Parsing – Nivre algorithm

IA161 Syntactic Formalisms for Parsing Natural Languages 23 / 32

Lecture 4

Transition-based Parsing

Learning for transition-based parsing

Typical scoring function:
s(ci,di) = w · f(ci,di) where f(ci,di) is a feature vector over
configuration ci and transition di and w is a weight vector
[wi = weight of featurefi(ci,di)]

Transition system
Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
Limited non-projective O(n) [Attardi 2006, Nivre 2007]
Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

Problem
Learning is local but features are based on the global history

IA161 Syntactic Formalisms for Parsing Natural Languages 24 / 32

Lecture 4

Transition-based Parsing

Projectivization to pseudo-projectivity:

IA161 Syntactic Formalisms for Parsing Natural Languages 25 / 32

Lecture 4

Graph-based Parsing

For a input sentence S we define a graph Gs = (Vs,As) where
Vs = {w0,w1, . . . ,wn} and
As = {(wi,wj, l)|wi,wj ∈ V and l ∈ L}
Score of a dependency tree T factors by subgraphs Gs, . . . ,Gs:

s(T) =
∑m

i−1 s(Gi)

Learning: Scoring function s(Gi) for a subgraph Gi ∈ T

Inference: Search for maximum spanning tree scoring sequence
T∗ of Gs given s(Gi)

IA161 Syntactic Formalisms for Parsing Natural Languages 26 / 32

Lecture 4

Graph-based Parsing

Learning graph-based models

Typical scoring function:
s(Gi) = w · f(Gi) where f(Gi) is a high-dimensional feature vector
over subgraphs and w is a weight vector
[wj = weight of feature fj(Gi)]

Structured learning [McDonald et al. 2005a, Smith and
Johnson 2007]:

Learn weights that maximize the score of the correct dependency
tree for every sentence in the training set

Problem
Learning is global (trees) but features are local (subgraphs)

IA161 Syntactic Formalisms for Parsing Natural Languages 27 / 32

Lecture 4

Graph-based Parsing – Eisner algorithm

IA161 Syntactic Formalisms for Parsing Natural Languages 28 / 32

Lecture 4

Graph-based Parsing – Chu-Liu-Edmonds algorithm

IA161 Syntactic Formalisms for Parsing Natural Languages 29 / 32

Lecture 4

Grammar-based approach

a. context-free dependency parsing
exploits a mapping from dependency structures to CFG
structure representations and reuses parsing algorithms
originally developed for CFG → chart parsing algorithms

b. constraint-based dependency parsing
parsing viewed as a constraint satisfaction problem
grammar defined as a set of constraints on well-formed
dependency graphs
finding a dependency graph for a sentence that satisfies all the
constraints of the grammar (having the best score)

IA161 Syntactic Formalisms for Parsing Natural Languages 30 / 32

Lecture 4

Grammar-based approach

a. context-free dependency parsing
Advantage: Well-studied parsing algorithms such as CKY,
Earley’s algorithm can be used for dependency parsing as well.
→ need to convert dependency grammars into efficiently
parsable context-free grammars; (e.g. bilexical CFG, Eisner and
Smith, 2005)

b. constraint-based dependency parsing
defines the problem as constraint satisfaction

Weighted constraint dependency grammar (WCDG, Foth and
Menzel, 2005)
Transformation-based CDG

IA161 Syntactic Formalisms for Parsing Natural Languages 31 / 32

Lecture 4

Conclusions

1 Dependency syntax vs. constituency (phrase-structure) syntax
2 Non-projectivity
3 Graph-based and Transition-based methods

IA161 Syntactic Formalisms for Parsing Natural Languages 32 / 32

