Syntactic Formalisms for Parsing
Natural Languages

Ales Horak, Milos Jakubicek, Vojtéch Kovar
(based on slides by Juyeon Kang)

ial6él@nlp.fi.muni.cz

Autumn 2013

1A161 Syntactic Formalisms for Parsing Natural Languages 1/56
Lecture 5

(Lexicalized) Tree Adjoining Grammar (TAG) and
Lexical Functional Grammar (LFG)

A) Same goal

m formal system to model human speech

m model the syntactic properties of natural language

B syntactic frame work which aims to provide a computaionally
precise and psychologically realistic representation of language

B) Properties

® Unfication based
m Constraint-based
B Lexicalized grammar

“ Syntactic Formalisms for Parsing Natural Languages 3/56

Parsing with (L)TAG and LFG

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

How to parse the sentence in TAG?
by Joshi, A. Levy, L and Takahashi, M. in 1975

1A161 Syntactic Formalisms for Parsing Natural Languages

2 /56

4/56

TAG’s basic component

m Representation structure: phrase-structure trees

m Finite set of elementary trees

m Two kinds of elementary trees
B Initial trees (a): trees that can be substituted

B Auxiliary trees (3): trees that can be adjoined

1A161 Syntactic Formalisms for Parsing Natural Languages 5/56
Lecture 5

TAG’s basic component

m An initial tree (a)

m all interior nodes are labeled with non-terminal symbols
E the nodes on the frontier of initial tree are either labeled with
terminal symbols, or with non-terminal symbols marked for

substitution (])

m An auxiliary tree (B)
B one of its frontier nodes must be marked as foot node (x)

m the foot node must be labeled with a non-terminal symbol which is

identical to the label of the root node.

m A derived tree (v)

B tree built by composition of two other trees
B the two composition operations that TAG uses adjoining and
substitution.

“ Syntactic Formalisms for Parsing Natural Languages 7 /56

TAG’s basic component

m The tree in (XU Z) are called elementary trees.

Initial tree: Auxiliary tree:

terminal nodes or
substitution nodes

1A161 Syntactic Formalisms for Parsing Natural Languages 6 /56
Lecture 5

Main operations of combination (1): adjunction

m Sentence of the language of a TAG are derived from the
composition of an a and any number of s by this operation.

m It allows to insert a complete structure into an interior node of
another complete structure.
m Three constraints possible

® Null adjunction (NA)
m Obligatory adjunction (OA)
m Selectional adjunction (SA)

1A161 Syntactic Formalisms for Parsing Natural Languages 8 /56

Main operations of combination (1): adjunction

Y X Y
M ® @
X*
AN
S
/S\ NPyl VP
NPyl VP VP \% VP
/N*" /N - |
V NPyl V VP* has V NP/
(o) B | |
loved has loved
| Adjoining |

9/56

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Adjoining constraints

Selective Adjunction (SA(T)): only members of a set T C A can
be adjoined on the given node, but the adjunction
is not mandatory

Null Adjunction (NA): any adjunction is disallowed for the
given node (NA = SA(¢))

Obligatory Adjunction (OA(T)): an auxiliary tree member of
the set T C A must be adjoined on the given node

for short OA = OA(A)

“ Syntactic Formalisms for Parsing Natural Languages

11/56

Main operations of combination (2): substitution

B It inserts an initial tree or a lexical tree into an elementary tree.

B One constraint possible
B Selectional substitution

S

S
s NPyl VP
NPyl VP NP A\% VP
/N7 /N 7
V NPyl D! N loved D] N
(a,) () | |
loved woman woman

Substitution

1A161

Lecture 5

Example 1: selective adjunction (SA)

Syntactic Formalisms for Parsing Natural Languages

10/ 56

m One possible analysis of “send” could involve selective

adjunction:
aj p1 B2
S VP VP
NP, VPsa, p,.) VP* away Vpx PP
/\ /\
send NPJ P NP|
|
to
send away
send <§ send to
send something
Syntactic Formalisms for Parsing Natural Languages 12 / 56

Example 2: obligatory adjunction

m For when you absolutely must have adjunction at a node:

aq B1 B2
S VP VP
NP| VPoap, 5,) Aux VP* Aux VP*
| | |
\ has is
|
seen
has has seen

is — is seen

1A161 Syntactic Formalisms for Parsing Natural Languages 13 /56
Lecture 5

Elementary trees (initial trees and auxiliary trees)

/S\

Ad S
| /\
yesterday NP VP
/\ /\
T
a man saw N
(as) |
Mary

“ Syntactic Formalisms for Parsing Natural Languages

15/56

1A161 Syntactic Formalisms for Parsing Natural Languages

Elementary trees (initial trees and auxiliary trees)

Yesterday a man saw Mary

S NP
/\ /\
Adv S* D D} N
(Byest) | (a) | (aman) |
yesterday a man
S
NPyl VP NP
/\ |
|
saw Mary

*: foot node/root node
11 substitution node

1A161 Syntactic Formalisms for Parsing Natural Languages 14 / 56
Lecture 5

Derivation tree

m Specifies how a derived tree was constructed

B The root node is labeled by an S-type initial tree.

B Other nodes are labeled by auxiliary trees in the case of adjoining
or initial trees in the case of substitution.

B A tree address of the parent tree is associated with each node.

Qsaw
-7

- /

P /

_ /

Oman(1) aMar)l/(Z-Z) Byest (0)

Qg (1)

16 / 56

Derivation tree and derived tree o;

-7 A
P / A‘d /S\
_ - /

Phe / # yesterday NP VP
®man(1) OMary(2.2) Byest(0) D/\N V/\NP

I

! LL m‘an sa‘w llj

| (as) |

ag (1) Mary

_ _ _: substitution operation
: adjunction operation

17 / 56

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Derivation tree and derived tree of Harry likes
peanuts passionately

S

N

NP VP
Olikes | /\
\ m) Harry vp ADV

- /
QHarry(1) Qpeanuts(2-2) PBpassionately(2)

Vv NP passionately

likes peanuts

19 /56

“ Syntactic Formalisms for Parsing Natural Languages

Example 1: Harry likes peanuts passionately

(1) (az) (o) (B1)
NP NP /S\ VP
‘ ‘ NP VP
Harry peanuts VP* ADV
\ NPl
likes passionately
2 /S\
NP NP VP NP NP VP
\o e T =y
Harry \‘/ NP peanuts arry ‘ ‘
likes likes peanuts

S VP
N v W
NP I + VP ADV

‘ /\ :> Harry

ADV
Harry \ NP e

" NP passionately

likes peanuts passionately ‘ ‘

likes peanuts

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Two important properties of TAG

18 /56

m Elementary trees can be of arbitrary size, so the domain of
locality is increased

m Extended domain of locality (EDL)

m Small initial trees can have multiple adjunctions inserted within
them, so what are normally considered non-local phenomena
are treated locally

m Factoring recursion from the domain of dependency (FRD)

20/ 56

1A161 Syntactic Formalisms for Parsing Natural Languages

Extended domain of locality (EDL): Agreement

m The lexical entry for a verb like “loves” will contain a tree like

the following:

S
/\

NP3 sgy /VP\
vV NPJ
|

loves

With EDL, we can easily state agreement between the subject

and the verb in a lexical entry

1A161 Syntactic Formalisms for Parsing Natural Languages 21 /56
Lecture 5

Factoring recursion from the domain of
dependency (FRD): Extraction

o
NP,-[+Wh]/\S'
who com
<I‘> INmP
dl’d jolm V/\NP
te‘ll Sam/\S'
o %
s v e
likes e"i

“ Syntactic Formalisms for Parsing Natural Languages

23 /56

X X—br
t tutr
v Sl o
Ye— bf
tf

1A161 Syntactic Formalisms for Parsing Natural Languages

Factoring recursion from the domain of
dependency (FRD): Extraction

S’ S’
/\ /\
NP;[+wh] S’ COMP S
L com <£ — T
who INFL NP VP
| — T~ | = ey
that NP VP did John V NP S'*
Bill V NP tell Sam

The above trees for the sentence “who did John tell Sam that Bill likes ?” allow the
insertion of the auxiliary tree in between the WH-phrase and its extraction site,

resulting a long distance dependency; yet this is factored out from the domain of
locality in TAG.

1A161 Syntactic Formalisms for Parsing Natural Languages 22 /56
Lecture 5

Variations of TAG

m Feature Structure Based TAG (FTAG: Joshi and Shanker, 1988)

each of the nodes of an elementary tree is associated with two
feature structures:
top & bottom Substitution

tr—— v

X X
br—7
YO Y pr Substitution with features

—1tr

Adjoining with features

X
Y
/S——bUbf

24 /56

Variations of TAG XTAG Project (UPenn, since 1987 ongoing)

m Synchronous TAG (STAG: Shieber and Schabes, 1990) m A long-term project to develop a wide-coverage grammar for

B A pair of TAGs characterize correspondences between languages English using the Lexicalized Tree-Adjoining Grammar (LTAG)
B Semantic interpretation, language generation and translation formalism
m Muti-component TAG (MCTAG: Chen-Main and Joshi, 2007) m Provides a grammar engineering platform consisting of a
B A set of auxiliary tree can be adjoined to a given elementary tree parser, a grammar development interface, and a morphological
analyzer

m Probabilistic TAG (PTAG: Resnik, 1992, Shieber, 2007)

B Associating a probability with each elementary tree
B Compute the probability of a derivation

m The project extends to variants of the formalism, and languages
other than English

1A161 Syntactic Formalisms for Parsing Natural Languages 25 /56 IA161 Syntactic Formalisms for Parsing Natural Languages 26 / 56
Lecture 5 Lecture 5

XTAG system Components in XTAG system
Input Sentence
" h: | - * m Morphological Analyzer & Morph DB: 317K inflected items
orpn Aharyzer 99er derived from over 90K stems

m POS Tagger & Lex Prob DB: Wall Street Journal-trained 3-gram
P05 Blender tagger with N-best POS sequences

l m Syntactic DB: over 30K entries, each consisting of:
""_"""": m Uninflected form of the word
! Tree Selection m POS
! m List of trees or tree-families associated with the word
Trees DB

Parser m List of feature equations

: Tree Grafting i m Tree DB: 1004 trees, divided into 53 tree families and 221
| ! individual trees

Derivation Structure

“ Syntactic Formalisms for Parsing Natural Languages 27 / 56 1A161 Syntactic Formalisms for Parsing Natural Languages 28 /56

1 ENGLISH

Exits Buffers Grammar Parsers Parsing Tools

substitution-adjunctions - results
C lexicon
C lextrees
C advs-adjs.trees
C prepositions.trees
C determiners.trees
C conjunctions.trees
C modifiers.trees
C auxs.trees

~
if

@ XMOA Manterans (v1.4) gﬂ N syt o
[Filel Lookup|Mod1 fyl[Add] DeTete Clear| Done \Fﬂe“OptionslSear\:hHlbdify Add De]etel
*% Look-up *¥* —_—
Key: e
Entry: company
s N Part of Speech List
Fawilies: f{ Tnx0dxNL Add Fanily to List|
Tree | ATsOdL Delete Family fron List
Features: #N_ref1- Add Feature to List
A _h- Delete Feature from List
Examples: Add Example to List
Key: company Delete Example from List
Entries: company N 3sg —
company Vv INF Record # 10f 2 [Next/Previous
Key: being ’c an!
Entries: being N 3sg apay
be V PROG
Key: acquired
Entries: acquire V PPART WK
acquire V PAST WK

(a) Morphology database (b) syntactic database

Interfaces to the database maintenance tools

1A161 Syntactic Formalisms for Parsing Natural Languages 29 /56
Lecture 5

How to parse the sentence in LFG?
by Bresnan, J. and Kaplan, R.M. In 1982

“ Syntactic Formalisms for Parsing Natural Languages 31/56

C neg.trees
C punct.trees
F C Tnx0V.trees
F C Tnx0Vnxl.trees
F C Tnx0Vdnl.trees
F C Tnx0Vnxinx2.trees
F C Tnx0Vnxlpnx2.trees

)

Interface to the XTAG system

Parser evaluation in XTAG Project by [Bangalore,S. et.al, 1998]
http://www.cis.upenn.edu/~xtag/

1A161 Syntactic Formalisms for Parsing Natural Languages 30/56
Lecture 5

Main representation structures

m c-structure: constituent structure

level where the surface syntactic form, including categorical
information, word order and phrasal grouping of constituents,
is encoded.

m f-structure: functional structure

internal structure of language where grammatical relations
are represented. It is largely invariable across languages.
(e.g. SUBJ, OBJ, OBL, (X)COMP, (X)ADJ)

B a-structure: argument structure

They encode the number, type and semantic roles of the
arguments of a predicate.

1A161 Syntactic Formalisms for Parsing Natural Languages 32 /56

Level of structures and their interaction in LFG

Functional

Projection architecture

semantic
structure

argument
structure

LFG's

/ focus

functional
structure

information
structure

constituent
structure

phonological
structure

33/56

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

c-structure
C-structure S
PP =
o NP VP
| —
- A SR
with '?I | saw Det N
friends | '
the girl

B The constituent structure represents the organization of overt phrasal syntax
B It provides the basis for phonological interpretation
B Languages are very different on the c-structure level :external factors that usually vary by language

Properties of c-structure

B c-structures are conventional phrase structure trees:

they are defined in terms of syntactic categories, terminal nodes, dominance and precedence.

B They are determined by a context free grammar that describes all possible surface strings of the language.

B LFG does not reserve constituent structure positions for affixes: all leaves are individual words.

“ Syntactic Formalisms for Parsing Natural Languages

35/56

Level of structures and their interaction in LFG

m In LFG, the parsing result is grammatically correct only if it
satisfies 2 criteria:

the grammar must be able to assign a correct c-structure

the grammar must be able to assign a correct well-formed
f-structure

1A161 Syntactic Formalisms for Parsing Natural Languages 34 /56
Lecture 5
f-structure
h e Attribute-Value notation for f-structure
O:
PRED OBJ
fa PRED 'with'
'with' 0B PRED 'friend'

PRED NUM NUM PLURAL
(o] o

'friend' PLURAL

representation of the functional structure of a sentence
f-structure match with c-structure

it has to satisfy three formal constraints: consistency,
coherence, completeness

language are similar on this level: allow to explain
cross-linguistic properties of phenomena

1IA161 Syntactic Formalisms for Parsing Natural Languages

36 /56

Examples of f-structure

1

(0B
TENSE
PRED

SuB|

0BJ2

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

[PRED 'Veit']
PAST

'send (SUBJ, OBJ, OBJ2)"

[PRED 'Sabine']
PRED 'e-mail’
DEF -

NUM SG

SUB]J

TENSE
PRED

OBLon

PRED ‘'teacher'

DEF +
NUM SG
PAST

'insist { SUBJ,0BL o OBJ)"
PCASE OBLgp,

0OBJ PRED 'homework'
DEF +
NUM SG
37 /56

Constraint 1: f-structure must be consistent

attributes are functionally unigue - there may not be two arcs
with the same attribute from the same f-structure

0B

f2

h

OB

fs

“ Syntactic Formalisms for Parsing Natural Languages

Incosnistent f-structure
sug) [PRED ‘Veit]
suBj [PRED Tom']
PRED 'sleep((1SUB}))"
TENSE PAST
[TENSE FUT

39/56

Lecture 5

Constraint 1: f-structure must be consistent

Two paths in the graph structure may designate the same
element-called unification, structure-sharing

Ex: John must leave

PRED

PRED 'must’
SUBJ [PRED ‘john'

PRED 'leave'
XCOMP[SUBJ

G,
) PRED

(o]
John'

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

Constraint 1: f-structure must be consistent

38/56

The symbols used for atomic f-structure are distinct - it is
impossible to have two names for a single atomic f-structure
(“clash”)

*They sleeps
fi

@)

PRED SUBJ

f2
'sleep’
PRED NUM
O Q
pro INGULAR™ excluded
/PLURAL

1A161 Syntactic Formalisms for Parsing Natural Languages

40 /56

Constraint 2: f-structure must be coherent

All argument functions in an f-structure must be selected by
the local PRED feature.

Complete f-structure Incoherent f-structure

SUB PRED John']| |SUB PRED 'John'
? NUM SG . NUM SG
PERS 3 PERS 3
PRED ‘fall{(Tsus))’ PRED ‘fall(TsuB)) ?
[TENSE ~ PRES | |TENSE PRES '
“ [PRED '‘Mary'
B
O8] NUM SG
PERS 3

1A161 Syntactic Formalisms for Parsing Natural Languages 41 /56
Lecture 5

Correspondence between different levels in LFG

C-structure

PP
B NP PRED ‘'with'
| | + 0B PRED ‘friend'
with N NUM PLURAL
friends

/ pp, s [PRED with'

1 \ [IFo) 1
,/\ OBJ '[PRED frlend]

_-vINUM PLURAL

friends

“ Syntactic Formalisms for Parsing Natural Languages 43 /56

Constraint 3: f-structure must be complete

All functions specified in the value of a PRED feature must be
present in the f-structure of that PRED.

Complete f-structure Incoherent f-structure

SUBJ PRED 'John' SuBJ PRED 'John'
* NUM SG { NUM SG
PERS 3 N PERS 3
PRED 'like(TsuB))(ToB))| [PRED like(?suB))(ToB))"
TENSE PRES /; TENSE PRES
" [PReD 'Mary' S
?
OBJ NUM SG '
PERS 3

1A161 Syntactic Formalisms for Parsing Natural Languages 42 / 56
Lecture 5

Structural correspondence

m c-structures and f-structures represent different properties of an
utterance

m How can these structures be associated properly to a particular
sentence?

m Words and their ordering carry information about the linguistic
dependencies in thesentence

m This is represented by the c-structure (licensed by a CFG)

m LFG proposes simple mechanisms that maps between elements
from one structure and those of another: correspondence
functions

m A function allows to map c-structures to f-structures ® : N — F

1A161 Syntactic Formalisms for Parsing Natural Languages 44 / 56

Mapping the c-structure into the f-structure Mapping mechanism: 6 steps

m Since there is no isomorphic relationship between structure and
function LFG assumes c-structure and f-structure

STEP 1: PS rules

m The mapping between c-structure and f-structure is the core of
LFG's descriptive power m Context-free phrase structure rules

m The mapping between c-structure and f-structure is located in m Annotated with functional schemata
the grammar (PS) rules

c-structure f-structure - EX.: S%NP/_P—\ -EX: NP — NP NP ,#O:tf:is sometimes
S . s t=L =

‘mouse’ mother node _ = daughter nodes omitted!
/\ suB) DEF + (without functional (TSUBJ)_l’ T ‘L (with (a list of) VP — V (NP)

P VP NUM SG schemata) functional schemata) _ (this means nodes
= SUBJ)=. i i
/\ /\ 2 PERS 3 T xl/ (T)) \L without functional

schemata percolate

D N v e ﬁ their entire
| | | /\ TENSE PAST functional schema

unchanged to the

the mouse admired D N PRED ‘'admire (1SUBJ) (tOB)))" mother node
the elephant PRED 'elephant’

0BJ DEF +
NUM SG
PERS 3

1A161 Syntactic Formalisms for Parsing Natural Languages 45 / 56 IA161 Syntactic Formalisms for Parsing Natural Languages 46 / 56
Lecture 5 Lecture 5
Mapping mechanism: 6 steps Mapping mechanism: 6 steps

STEP 2: Lexicon entries B Like the PS rules, each node in the tree is associated with a functional schemata

B Wwith the functional schemata of the lexical entries at the leaves we obtain a complete c-structure

m Lexicon entries consists of three parts: representation of the
word, syntactic category, list of functional schemata

s
S NP e, — T~
(1SUB)) =4 1=l (tsuB) =4 =i
NP VP
Ex.: mouse N (tPRED)='mouse’]
= -
(tPERS)=3 (1 SUBJ) =4 =4
(1NUM)=5G e .
— =4 =4 =1 (1 0B)) =4
the D ({DEF)=+ - - y %)
. , . , [| | —
admire V (tPRED)='admire ((+ SUBJ)(1 OBJ)) (t DEF) =+ (1 PRED) = 'mouse’ (1 PRED) = =4 =1
the (1 PRED) =3 "admire ((+ SUBJ)(1 OBJ))’ ||3 N
_ = (1 PRED) = SG (1 TENSE) = PAST (1 PRED) = ’elephant’
ed Aff (TTENSE) PAST mouse admired (t DEF) =+ (1 PRED) = 3
the (4 PRED) = SG
elephant

“ Syntactic Formalisms for Parsing Natural Languages 47 /| 56 1IA161 Syntactic Formalisms for Parsing Natural Languages 48 / 56

Mapping mechanism: 6 steps

STEP 4: Co-indexation

B An f-structure is assigned to each node of the c-structure

B Each of these f-structures obtains a name (f; — f)

B Nodes in the c-structure and associated f-structure are co-indexed, i.e. obtain the same name
B F-structure names f; — f, can be chosen freely but they may not occur twice

S fi
/\
(1 SUBJ) =4 =4
NP fa VP f5

121 =1 +=1 (OBJ) =4

D f3 N fy V fg NP f7

\ \ \ —

(1 DEF) = + (1 PRED) = 'mouse’ (1 PRED) = =1 t=1

the (1 PRED) = 3 "admire ((1 SUBJ) (1 OB)))’ D fg N fo

(1 PRED) = SG (+ TENSE) = PAST (4 PRED) = "elephant’
AN mouse admired (1 DEF) =+ (1 PRED) = 3
]] . the (+ PRED) = SG
2[] sl 1 fal] Bl elephant
fe]
fzl] fs[] fol]

1A161 Syntactic Formalisms for Parsing Natural Languages 49 / 56
Lecture 5

Mapping mechanism: 6 steps

m We introduce at this point the notion of functional equation

m By listing all functional equations from a c-structure we obtain
the functional description, called f-description

(f1SUBJ) = £, (fsPRED) = "admire ((fsSUBJ)(fsOB]J))’
fo=1; (fsTENSE) = PAST

(fsDEF) = + (fs0BJ) = f7

fo =1 fr =1

(f4PRED) = 'mouse’ (fsDEF) = +

(f,PERS) =3 fr =1y

(iLNUM) = SG (fyPRED) = "elephant’

fi="F; (foPERS) =3

fs =16 (fFNUM) = SG

Table : f-description

“ Syntactic Formalisms for Parsing Natural Languages 51/56

Mapping mechanism: 6 steps

STEP 5: Metavariable biding

B Al meta-variables are replaced by the names of the f-structure representation

S f1 S f1
/\ /\
(1 suB)) =1 T=| — (f1SUB)) =fy 1 =15
NP fo VP f5 NP fo VP f5
S fi
//\
(f1SUBJ) = fa fi =f5
NP fo VP f5
fo =13 fi =" fs = 1o (fs08B)) = f7
D f3 N fy VvV fe NP f7
[[\ —
(f3DEF) = + (f4PRED) = 'mouse’ (fsPRED) = fr =fg fr = fg
the (f4PRED) = 3 ‘admire ((fsSUBJ)(fsOBJ)) * D fg N fo
(f,PRED) = SG (fs TENSE) = PAST \ (foPRED) = "elephant’

(fsDEF) = + (f,PRED) = 3
the (foPRED) = SG
elephant

mouse admired

1A161 Syntactic Formalisms for Parsing Natural Languages 50/ 56
Lecture 5

Mapping mechanism: 6 steps

STEP 6: From f-description to f-structure

m Computation of an f-structure is based on the f-description

m For the derivation of f-structures from the f-description it is
important that no information is lost and that no information will
be added

m The derivation is done by the application of the functional
equations

List of functional equations
a) simple equations of the form: f,A) =B
b) f-equations of the form: f, =1,
c) f-equations of the form: f,A) =1y,

— Functional equations with the same name are grouped into
an f-structure of the same name

1A161 Syntactic Formalisms for Parsing Natural Languages 52 /56

Application of the functional equation (a): (f,A)

[f4DEF)=+

f4PRED ‘mouse’

(

(

(

(faNUM)

(fePRED)= admlre<(fGSUBj)(f6051)>'
(f6TENSE)=PAST

(fsDEF)=+

(foPRED)='ELEPHANT'

(foPERS)=3)
(foNuM)=SG fo[DEF+] o
i [PRED 'mouse’) ¢ Topen admire ((f5SUBY)(f5 08J))

PERS 3
| NUM G TENSE PAST

I3 [DEF +]

PRED 'elephant']
PERS 3
NUM SG

= fo f} PRED ‘admire ((fSUB))(f6OBJ))
J5|TENSE PAST
J6

f PRED 'mouse’
/$ PERS 3
NUM SG
J4| DEF +

f? PRED 'elephant’
/—"/. PERS 3
unification /| NUM SG
fo| DEF +

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

DEF +

fr

unification
Is

‘—\/ [DEH

STEP 1: lexical entries

made: V (+PRED)='MAKE (SUBJ,0BJ,XCOMP)’
(+XCOMP SUBJ)=(10BJ)

(1 TENSE)=SIMPLEPAST
gave: V. (1PRED)='GIVE(SUBJ,0BJ,0BJ2)’
(1 TENSE)=SIMPLEPAST
had said: V. (1PRED)='SAY(SUBJ,0BJ)’

(1 TENSE)=PASTPERFECT
the: D (1PRED)='THE’
(1SPECTYPE)=DEF
about: P (+PRED)='ABOUT(OB}J)’
which: N (+PRED)='PRO’
(tPRONTYPE)=REL
John's: D (+PRED)="JOHN’
(1SPECTYPE)=POSS
many: D ($PRED)='MANY’
(+SPECTYPE)=QUANT
things: N (+PRED)='"THINGS’
(+NUM)=PLURAL

53 /56

STEP 2: c-structure

s
[
|

a5 NP VP

' (tSuB) =4 1=

A N

b- NP ”{ =4 | =4 }

c. VP — Txi G SUNBFJ)) =1 (r XCO\KAP) =|
= =¥ (4 XCOMP PRED) = ’be (SUBJ, PREDIC) '
. NP

d- V' = (4 pREDIC) =

“ Syntactic Formalisms for Parsing Natural Languages

55/56

Application of the functional equation (c): (f,bA) =1Tm

(f15UB))=fo

(f508)= f7
FilpreD ‘admire ((fsSUBJ)(f0B)))!
J5|TENSE PAST
e
T SUBJ f5[PRED 'mouse
unification f> PERS 3
’~|NUM SG
J1 DEF + unification
T~
2] PRED 'mouse OBJ f| PRED ‘elephant’ f+| PRED ‘elephant'
f3 PERS 3 f PERS 3 . | PERS 3
NUM SG 8/ NUM SG f8 num s
4| DEF + Jfo| DEF + Jo| DEF +

54 /56

1A161 Syntactic Formalisms for Parsing Natural Languages
Lecture 5

STEP 3: f-structure

‘John made Peter angry"

Shi
(o)™ Vet h=fisto
\ /V\ (f1508)) =
=y TSL (10B)=l (1xComp)=| fo=fa
Nfy Vs NPfs Vfs (f108))=fs
‘ ‘ ‘ ‘ fo = fr
John made 1=4 (TPREDIC) 1 (f4XCOMP) = fg
Nfr NPr (f4XCOMP PREDIC) ='be (SUBJ, PRED)"
| ‘ (f<PREDIC) =fo
Peter =4 fo = fo
Aflﬂ

angry

v

STEP 4: unification

PRED 'make (SUBJ, XCOMP) *
TENSE simplepast
SUB) f2, f3[PRED ‘John']

f1, fa, f5|0B) fo. f7[PRED ‘Peter']
f3[sUB)

PREDIC fo, fi0[PRED ‘'angry']

XCOMP

1IA161 Syntactic Formalisms for Parsing Natural Languages

56 / 56

