
Lecture 5

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 1 / 56

Lecture 5

.

...... Parsing with (L)TAG and LFG

IA161 Syntactic Formalisms for Parsing Natural Languages 2 / 56

Lecture 5

(Lexicalized) Tree Adjoining Grammar (TAG) and
Lexical Functional Grammar (LFG)

A) Same goal
formal system to model human speech
model the syntactic properties of natural language
syntactic frame work which aims to provide a computaionally
precise and psychologically realistic representation of language

B) Properties
Unfication based
Constraint-based
Lexicalized grammar

IA161 Syntactic Formalisms for Parsing Natural Languages 3 / 56

Lecture 5

How to parse the sentence in TAG?
by Joshi, A. Levy, L and Takahashi, M. in 1975

IA161 Syntactic Formalisms for Parsing Natural Languages 4 / 56

Lecture 5

TAG’s basic component

Representation structure: phrase-structure trees
Finite set of elementary trees

Two kinds of elementary trees
Initial trees (α): trees that can be substituted
Auxiliary trees (β): trees that can be adjoined

IA161 Syntactic Formalisms for Parsing Natural Languages 5 / 56

Lecture 5

TAG’s basic component

The tree in (X∪Z) are called elementary trees.

Initial tree: Auxiliary tree:

terminal nodes or
substitution nodes

Z

Z*

X

IA161 Syntactic Formalisms for Parsing Natural Languages 6 / 56

Lecture 5

TAG’s basic component

An initial tree (α)
all interior nodes are labeled with non-terminal symbols
the nodes on the frontier of initial tree are either labeled with
terminal symbols, or with non-terminal symbols marked for
substitution (↓)

An auxiliary tree (β)
one of its frontier nodes must be marked as foot node (∗)
the foot node must be labeled with a non-terminal symbol which is
identical to the label of the root node.

A derived tree (γ)
tree built by composition of two other trees
the two composition operations that TAG uses adjoining and
substitution.

IA161 Syntactic Formalisms for Parsing Natural Languages 7 / 56

Lecture 5

Main operations of combination (1): adjunction

Sentence of the language of a TAG are derived from the
composition of an α and any number of β by this operation.

It allows to insert a complete structure into an interior node of
another complete structure.

Three constraints possible
Null adjunction (NA)
Obligatory adjunction (OA)
Selectional adjunction (SA)

IA161 Syntactic Formalisms for Parsing Natural Languages 8 / 56

Lecture 5

Main operations of combination (1): adjunction

Y

S

NP0↓

NP1↓ NP1↓

NP0↓

VP VP VP

VP

V

VV VP*V has

has lovedloved

S

X

X

X*

X

Y

(α)

(α2)

Adjoining

(β1)

+ →

(β) (γ)

IA161 Syntactic Formalisms for Parsing Natural Languages 9 / 56

Lecture 5

Main operations of combination (2): substitution
It inserts an initial tree or a lexical tree into an elementary tree.
One constraint possible

Selectional substitution

S

NP0↓

NP1↓ N

NP0↓

VP NP VP

VP

V

D↓D↓ NV loved

womanwomanloved

S

X

A↓ A

(α2)

Substitution

(α3)

+ →

IA161 Syntactic Formalisms for Parsing Natural Languages 10 / 56

Lecture 5

Adjoining constraints

Selective Adjunction (SA(T)): only members of a set T ⊆ A can
be adjoined on the given node, but the adjunction
is not mandatory

Null Adjunction (NA): any adjunction is disallowed for the
given node (NA = SA(ϕ))

Obligatory Adjunction (OA(T)): an auxiliary tree member of
the set T ⊆ A must be adjoined on the given node

for short OA = OA(A)

IA161 Syntactic Formalisms for Parsing Natural Languages 11 / 56

Lecture 5

Example 1: selective adjunction (SA)

One possible analysis of “send” could involve selective
adjunction:

α1 β1 β2

S VP VP

NP↓ VPSA(β1,β2,...) VP* away VP* PP

send NP↓ P NP↓

to

send
send away
send to
send something

IA161 Syntactic Formalisms for Parsing Natural Languages 12 / 56

Lecture 5

Example 2: obligatory adjunction

For when you absolutely must have adjunction at a node:

α1 β1 β2

S VP VP

NP↓ VPOA(β1,β2) Aux VP* Aux VP*

V has is

seen

has

is

has seen

is seen

IA161 Syntactic Formalisms for Parsing Natural Languages 13 / 56

Lecture 5

Elementary trees (initial trees and auxiliary trees)

Yesterday a man saw Mary

S NP

Adv S* D D↓ N
(βyest) (αa) (αman)

yesterday a man

S

NP0 ↓ VP NP

V NP1 ↓ N

saw Mary

*: foot node/root node
↓: substitution node

IA161 Syntactic Formalisms for Parsing Natural Languages 14 / 56

Lecture 5

Elementary trees (initial trees and auxiliary trees)

S

Ad S

yesterday NP VP

D N V NP

a man saw N
(α5)

Mary

IA161 Syntactic Formalisms for Parsing Natural Languages 15 / 56

Lecture 5

Derivation tree

Specifies how a derived tree was constructed
The root node is labeled by an S-type initial tree.
Other nodes are labeled by auxiliary trees in the case of adjoining
or initial trees in the case of substitution.
A tree address of the parent tree is associated with each node.

saw

man(1) Mary (2.2) yest (0)

a (1)

IA161 Syntactic Formalisms for Parsing Natural Languages 16 / 56

Lecture 5

Derivation tree and derived tree α5

saw

man(1) Mary (2.2) yest (0)

a (1)

S

Ad S

yesterday NP VP

D N V NP

a man saw N
(α5)

Mary

_ _ _ _ : substitution operation
______ : adjunction operation

IA161 Syntactic Formalisms for Parsing Natural Languages 17 / 56

Lecture 5

Example 1: Harry likes peanuts passionately

Step 1
NP

Harry

NP

peanuts

S

NP VP

V NP

likes

VP

VP* ADV

passionatelyStep 2: substitution

NP

Harry

S

NP VP

V NP

likes

NP

peanuts

+ +

S

NP VP

V NP

likes

Harry

peanuts

Step 3: adjunction

S

NP VP

V NP

likes

Harry

peanuts

VP

VP* ADV

passionately

+

S

NP

VP

V NP

likes

Harry

peanuts

VP

ADV

passionately

IA161 Syntactic Formalisms for Parsing Natural Languages 18 / 56

Lecture 5

Derivation tree and derived tree of Harry likes
peanuts passionately

likes

Harry(1) peanuts(2.2) passionately(2)

S

NP

VP

V NP

likes

Harry

peanuts

VP

ADV

passionately

IA161 Syntactic Formalisms for Parsing Natural Languages 19 / 56

Lecture 5

Two important properties of TAG

Elementary trees can be of arbitrary size, so the domain of
locality is increased

Extended domain of locality (EDL)

Small initial trees can have multiple adjunctions inserted within
them, so what are normally considered non-local phenomena
are treated locally

Factoring recursion from the domain of dependency (FRD)

IA161 Syntactic Formalisms for Parsing Natural Languages 20 / 56

Lecture 5

Extended domain of locality (EDL): Agreement

The lexical entry for a verb like “loves” will contain a tree like
the following:

S
NP3.sg↓ VP

V NP↓

loves

With EDL, we can easily state agreement between the subject
and the verb in a lexical entry

IA161 Syntactic Formalisms for Parsing Natural Languages 21 / 56

Lecture 5

Factoring recursion from the domain of
dependency (FRD): Extraction

S’

NPi[+wh] S’

who COMP S

that NP VP

Bill V NP

likes ei

S’

COMP S

Φ INFL NP VP

did John V NP S’*

tell Sam

.

......

The above trees for the sentence “who did John tell Sam that Bill likes ?” allow the
insertion of the auxiliary tree in between the WH-phrase and its extraction site,
resulting a long distance dependency; yet this is factored out from the domain of
locality in TAG.

IA161 Syntactic Formalisms for Parsing Natural Languages 22 / 56

Lecture 5

Factoring recursion from the domain of
dependency (FRD): Extraction

S’

NPi[+wh] S’

who COMP S

Φ INFL NP VP

did John V NP

tell Sam S’

COMP S

that NP VP

Bill V NP

likes ei

IA161 Syntactic Formalisms for Parsing Natural Languages 23 / 56

Lecture 5

Variations of TAG

Feature Structure Based TAG (FTAG: Joshi and Shanker, 1988)

each of the nodes of an elementary tree is associated with two
feature structures:

top & bottom Substitution

Substitution with features

Adjoining with features

Y X Xtr
br

t U tr
br

X

Y
t
b

Y
tr
br

tf
bf

X

Y
t U tr
br

tf
b U bf

t
Y

Y*

Y

Y

IA161 Syntactic Formalisms for Parsing Natural Languages 24 / 56

Lecture 5

Variations of TAG

Synchronous TAG (STAG: Shieber and Schabes, 1990)
A pair of TAGs characterize correspondences between languages
Semantic interpretation, language generation and translation

Muti-component TAG (MCTAG: Chen-Main and Joshi, 2007)
A set of auxiliary tree can be adjoined to a given elementary tree

Probabilistic TAG (PTAG: Resnik, 1992, Shieber, 2007)
Associating a probability with each elementary tree
Compute the probability of a derivation

IA161 Syntactic Formalisms for Parsing Natural Languages 25 / 56

Lecture 5

XTAG Project (UPenn, since 1987 ongoing)

A long-term project to develop a wide-coverage grammar for
English using the Lexicalized Tree-Adjoining Grammar (LTAG)
formalism
Provides a grammar engineering platform consisting of a
parser, a grammar development interface, and a morphological
analyzer
The project extends to variants of the formalism, and languages
other than English

IA161 Syntactic Formalisms for Parsing Natural Languages 26 / 56

Lecture 5

XTAG system
Input Sentence

P.O.S Blender

Tree Selection

Derivation Structure

Parser

Morph Analyzer Tagger

Tree Grafting

Morph DB

Stat DB

Trees DB

Syn DB

Lex Prob DB

IA161 Syntactic Formalisms for Parsing Natural Languages 27 / 56

Lecture 5

Components in XTAG system

Morphological Analyzer & Morph DB: 317K inflected items
derived from over 90K stems
POS Tagger & Lex Prob DB: Wall Street Journal-trained 3-gram
tagger with N-best POS sequences
Syntactic DB: over 30K entries, each consisting of:

Uninflected form of the word
POS
List of trees or tree-families associated with the word
List of feature equations

Tree DB: 1004 trees, divided into 53 tree families and 221
individual trees

IA161 Syntactic Formalisms for Parsing Natural Languages 28 / 56

Lecture 5

(a) Morphology database (b) syntactic database

Interfaces to the databasemaintenance tools

IA161 Syntactic Formalisms for Parsing Natural Languages 29 / 56

Lecture 5

Interface to the XTAG system

Parser evaluation in XTAG Project by [Bangalore,S. et.al, 1998]
http://www.cis.upenn.edu/~xtag/

IA161 Syntactic Formalisms for Parsing Natural Languages 30 / 56

http://www.cis.upenn.edu/~xtag/

Lecture 5

How to parse the sentence in LFG?
by Bresnan, J. and Kaplan, R.M. In 1982

IA161 Syntactic Formalisms for Parsing Natural Languages 31 / 56

Lecture 5

Main representation structures

c-structure: constituent structure

level where the surface syntactic form, including categorical
information, word order and phrasal grouping of constituents,
is encoded.

f-structure: functional structure
internal structure of language where grammatical relations
are represented. It is largely invariable across languages.
(e.g. SUBJ, OBJ, OBL, (X)COMP, (X)ADJ)

a-structure: argument structure

They encode the number, type and semantic roles of the
arguments of a predicate.

IA161 Syntactic Formalisms for Parsing Natural Languages 32 / 56

Lecture 5

Level of structures and their interaction in LFG

Functional
Projection architecture

semantic
structure

information
structure

phonological
structure

argument
structure

functional
structure

constituent
structure

LFG's
focus

IA161 Syntactic Formalisms for Parsing Natural Languages 33 / 56

Lecture 5

Level of structures and their interaction in LFG

In LFG, the parsing result is grammatically correct only if it
satisfies 2 criteria:
1 the grammar must be able to assign a correct c-structure

2 the grammar must be able to assign a correct well-formed
f-structure

IA161 Syntactic Formalisms for Parsing Natural Languages 34 / 56

Lecture 5

c-structure

C-structure
PP

P NP
with N

friends

S
NP VP
N V NP
I saw Det N

the girl

The constituent structure represents the organization of overt phrasal syntax
It provides the basis for phonological interpretation
Languages are very different on the c-structure level :external factors that usually vary by language

.Properties of c-structure..

......

c-structures are conventional phrase structure trees:

they are defined in terms of syntactic categories, terminal nodes, dominance and precedence.
They are determined by a context free grammar that describes all possible surface strings of the language.
LFG does not reserve constituent structure positions for affixes: all leaves are individual words.

IA161 Syntactic Formalisms for Parsing Natural Languages 35 / 56

Lecture 5

f-structure

PRED OBJ

PRED NUM

PLURAL'friend'

'with' PRED 'friend'
NUM PLURAL

PRED 'with'

OBJ

Attribute-Value notation for f-structure

.

......

1 representation of the functional structure of a sentence
2 f-structure match with c-structure

3 it has to satisfy three formal constraints: consistency,
coherence, completeness

4 language are similar on this level: allow to explain
cross-linguistic properties of phenomena

IA161 Syntactic Formalisms for Parsing Natural Languages 36 / 56

Lecture 5

Examples of f-structure

OBJ

TENSE

PRED

SUBJ

OBJ2

PRED

PAST

SUBJ, OBJ, OBJ2

PRED

PRED
DEF
NUM SG

SUBJ

TENSE

PRED

PRED

DEF

NUM SG

PAST

PCASE

OBJ PRED

DEF

NUM SG

'homework'

+

OBLon

+

'teacher'

-
'e-mail'

'Sabine'

'Veit'

OBLon

SUBJ, OBJ ''insist OBLon

'send '

1 2

IA161 Syntactic Formalisms for Parsing Natural Languages 37 / 56

Lecture 5

Constraint 1: f-structure must be consistent

1 Two paths in the graph structure may designate the same
element-called unification, structure-sharing

Ex: John must leave

PRED XCOMP

PRED SUBJ

PRED
'leave'

'must'

'John'

SUBJ

PRED 'leave'
SUBJ

PRED 'must'

SUBJ

XCOMP

PRED 'John'

IA161 Syntactic Formalisms for Parsing Natural Languages 38 / 56

Lecture 5

Constraint 1: f-structure must be consistent

2 attributes are functionally unique - there may not be two arcs
with the same attribute from the same f-structure

OBJOBJ

PRED 'Veit'

PRED 'Tom'

SUBJ

SUBJ

PRED

TENSE

TENSE

SUBJ ''sleep

PAST

FUT

Incosnistent f-structure

*

IA161 Syntactic Formalisms for Parsing Natural Languages 39 / 56

Lecture 5

Constraint 1: f-structure must be consistent

3 The symbols used for atomic f-structure are distinct - it is
impossible to have two names for a single atomic f-structure
(“clash”)

PRED SUBJ

PRED NUM

'pro'

'sleep'

*They sleeps

excludedSINGULAR
/PLURAL

IA161 Syntactic Formalisms for Parsing Natural Languages 40 / 56

Lecture 5

Constraint 2: f-structure must be coherent

All argument functions in an f-structure must be selected by
the local PRED feature.

SUBJ

PRED

TENSE

PRED
NUM SG
PERS 3

PRES

OBJ
PRED

NUM

PERS 3

SG

'Mary'

'John'

'fall 'SUBJ

SUBJ

PRED

TENSE

PRED
NUM SG
PERS 3

PRES

'John'

'fall 'SUBJ ?

Complete f-structure Incoherent f-structure

IA161 Syntactic Formalisms for Parsing Natural Languages 41 / 56

Lecture 5

Constraint 3: f-structure must be complete

All functions specified in the value of a PRED feature must be
present in the f-structure of that PRED.

OBJ
PRED

NUM

PERS 3

SG

'Mary'

SUBJ

PRED

TENSE

PRED
NUM SG
PERS 3

PRES

'John'

'like 'SUBJ OBJ

Complete f-structure Incoherent f-structure

?

SUBJ

PRED

TENSE

PRED
NUM SG
PERS 3

PRES

'John'

'like 'SUBJ OBJ

IA161 Syntactic Formalisms for Parsing Natural Languages 42 / 56

Lecture 5

Correspondence between different levels in LFG

C-structure

PP

P NP

Nwith

friends

PRED

OBJ
PRED

NUM PLURAL

'friend'
'with'

+

PP

P NP

Nwith

friends

PRED

OBJ
PRED

NUM PLURAL

'friend'
'with'

1

2

3

4

IA161 Syntactic Formalisms for Parsing Natural Languages 43 / 56

Lecture 5

Structural correspondence

c-structures and f-structures represent different properties of an
utterance
How can these structures be associated properly to a particular
sentence?
Words and their ordering carry information about the linguistic
dependencies in thesentence
This is represented by the c-structure (licensed by a CFG)
LFG proposes simple mechanisms that maps between elements
from one structure and those of another: correspondence
functions
A function allows to map c-structures to f-structures Φ : N → F

IA161 Syntactic Formalisms for Parsing Natural Languages 44 / 56

Lecture 5

Mapping the c-structure into the f-structure

Since there is no isomorphic relationship between structure and
function LFG assumes c-structure and f-structure
The mapping between c-structure and f-structure is the core of
LFG‘s descriptive power
The mapping between c-structure and f-structure is located in
the grammar (PS) rules

c-structure f-structure

S

NP VP

D N V NP

D Nthe mouse admired

the elephant

SUBJ

TENSE

PRED

OBJ

PRED
DEF
NUM
PERS

PAST

SUBJ OBJ

PRED
DEF
NUM
PERS 3

SG

SG
+

3

'mouse'

+
'elephant'

'admire '

?

IA161 Syntactic Formalisms for Parsing Natural Languages 45 / 56

Lecture 5

Mapping mechanism: 6 steps

.
STEP 1: PS rules..

......

Context-free phrase structure rules
Annotated with functional schemata

- EX.:

mother node
(without functional
schemata)

S NP VP

(SUBJ)= = daughter nodes
(with (a list of)
functional schemata)

- EX.: NP NP NP
= =

VP V (NP)
= (SUBJ)=

Note:
 is sometimes
omitted!

(this means nodes
without functional
schemata percolate
their entire
functional schema
unchanged to the
mother node

=

IA161 Syntactic Formalisms for Parsing Natural Languages 46 / 56

Lecture 5

Mapping mechanism: 6 steps

.STEP 2: Lexicon entries..

......

Lexicon entries consists of three parts: representation of the
word, syntactic category, list of functional schemata

Ex.: mouse N (↑PRED)=’mouse’
(↑PERS)=3
(↑NUM)=SG

the D (↑DEF)=+
admire V (↑PRED)=’admire ⟨(↑ SUBJ)(↑ OBJ)⟩’
-ed Aff (↑TENSE)=PAST

IA161 Syntactic Formalisms for Parsing Natural Languages 47 / 56

Lecture 5

Mapping mechanism: 6 steps
.STEP 3: c-structure..

......
Like the PS rules, each node in the tree is associated with a functional schemata
With the functional schemata of the lexical entries at the leaves we obtain a complete c-structure

↔VP
↑=↓

NP
(↑ SUBJ) =↓

S→
S

(↑ SUBJ) =↓ ↑=↓
NP VP

S

(↑ SUBJ) =↓
NP

↑=↓
VP

↑=↓
D

↑=↓
N

↑=↓
V

(↑ OBJ) =↓
NP

(↑ DEF) = +

the
(↑ PRED) = ’mouse’
(↑ PRED) = 3

(↑ PRED) = SG
mouse

(↑ PRED) =

’admire ⟨(↑ SUBJ)(↑ OBJ)⟩ ’
(↑ TENSE) = PAST
admired

↑=↓
D

(↑ DEF) = +

the

↑=↓
N

(↑ PRED) = ’elephant’
(↑ PRED) = 3

(↑ PRED) = SG
elephant

IA161 Syntactic Formalisms for Parsing Natural Languages 48 / 56

Lecture 5

Mapping mechanism: 6 steps

.STEP 4: Co-indexation..

......

An f-structure is assigned to each node of the c-structure
Each of these f-structures obtains a name (f1 − fn)
Nodes in the c-structure and associated f-structure are co-indexed, i.e. obtain the same name
F-structure names f1 − fn can be chosen freely but they may not occur twice

S

(↑ SUBJ) =↓
NP

↑=↓
VP

↑=↓
D

↑=↓
N

↑=↓
V

(↑ OBJ) =↓
NP

(↑ DEF) = +

the
(↑ PRED) = ’mouse’
(↑ PRED) = 3

(↑ PRED) = SG
mouse

(↑ PRED) =

’admire ⟨(↑ SUBJ)(↑ OBJ)⟩ ’
(↑ TENSE) = PAST
admired

↑=↓
D

(↑ DEF) = +

the

↑=↓
N

(↑ PRED) = ’elephant’
(↑ PRED) = 3

(↑ PRED) = SG
elephant

f1

f2 f5

f3 f4 f6 f7

f8 f9

f1[]

f2[] f3[] f4[]
f5[]

f6[]
f7[] f8[] f9[]

IA161 Syntactic Formalisms for Parsing Natural Languages 49 / 56

Lecture 5

Mapping mechanism: 6 steps
.
STEP 5: Metavariable biding..
......

All meta-variables are replaced by the names of the f-structure representation

S

(↑ SUBJ) =↓ ↑=↓
NP VP

f1

f2 f5
−→

S

(f1SUBJ) = f2 f1 = f5
NP VP

f1

f2 f5

S

(f1SUBJ) = f2
NP

f1 = f5
VP

f2 = f3
D

f1 = f4
N

f5 = f6
V

(f5OBJ) = f7
NP

(f3DEF) = +

the
(f4PRED) = ’mouse’
(f4PRED) = 3

(f4PRED) = SG
mouse

(f6PRED) =

’admire ⟨(f6SUBJ)(f6OBJ)⟩ ’
(f6TENSE) = PAST
admired

f7 = f8
D

(f8DEF) = +

the

f7 = f9
N

(f9PRED) = ’elephant’
(f9PRED) = 3

(f9PRED) = SG
elephant

f1

f2 f5

f3 f4 f6 f7

f8 f9

IA161 Syntactic Formalisms for Parsing Natural Languages 50 / 56

Lecture 5

Mapping mechanism: 6 steps
.

......

We introduce at this point the notion of functional equation
By listing all functional equations from a c-structure we obtain
the functional description, called f-description

(f1SUBJ) = f2 (f6PRED) = ’admire ⟨(f6SUBJ)(f6OBJ)⟩ ’
f2 = f3 (f6TENSE) = PAST
(f3DEF) = + (f5OBJ) = f7
f2 = f4 f7 = f8
(f4PRED) = ’mouse’ (f8DEF) = +
(f4PERS) = 3 f7 = f9
(f4NUM) = SG (f9PRED) = ’elephant’
f1 = f5 (f9PERS) = 3
f5 = f6 (f9NUM) = SG

Table : f-description
IA161 Syntactic Formalisms for Parsing Natural Languages 51 / 56

Lecture 5

Mapping mechanism: 6 steps
.STEP 6: From f-description to f-structure..

......

Computation of an f-structure is based on the f-description
For the derivation of f-structures from the f-description it is
important that no information is lost and that no information will
be added
The derivation is done by the application of the functional
equations

List of functional equations

a) simple equations of the form: fnA) = B
b) f-equations of the form: fn = fm
c) f-equations of the form: fnA) = fm

→ Functional equations with the same name are grouped into
an f-structure of the same name

IA161 Syntactic Formalisms for Parsing Natural Languages 52 / 56

Lecture 5

Application of the functional equation (a): (fnA) = B
DEF =+

PRED ='mouse'

PERS =3

NUM =SG

PRED ='admire SUBJ OBJ '

TENSE =PAST

DEF =+

PRED ='ELEPHANT'

PERS =3

NUM =SG
PRED 'mouse'
PERS 3
NUM SG

PRED 'admire
TENSE PAST

SUBJ OBJ '

DEF +

DEF +

PRED 'elephant'
PERS 3
NUM SG

Application of the functional equation (b): fn = fm

PRED 'admire
TENSE PAST

SUBJ OBJ '

PRED 'mouse'
PERS 3
NUM SG

DEF + DEF +

PRED 'elephant'
PERS 3
NUM SG

DEF + DEF +
unification unification

IA161 Syntactic Formalisms for Parsing Natural Languages 53 / 56

Lecture 5

Application of the functional equation (c): (fnA) = fm

SUBJ
OBJ

PRED 'mouse'
PERS 3
NUM SG
DEF +

PRED 'admire
TENSE PAST

SUBJ OBJ '

PRED 'elephant'
PERS 3
NUM SG
DEF +

PRED 'mouse'
PERS 3
NUM SG
DEF +

PRED 'elephant'
PERS 3
NUM SG
DEF +

SUBJ

OBJ

unification

unification

IA161 Syntactic Formalisms for Parsing Natural Languages 54 / 56

Lecture 5
.STEP 1: lexical entries..

......

made: V (↑PRED)=’MAKE⟨SUBJ,OBJ,XCOMP⟩’
(↑XCOMP SUBJ)=(↑OBJ)
(↑TENSE)=SIMPLEPAST

gave: V (↑PRED)=’GIVE⟨SUBJ,OBJ,OBJ2⟩’
(↑TENSE)=SIMPLEPAST

had said: V (↑PRED)=’SAY⟨SUBJ,OBJ⟩’
(↑TENSE)=PASTPERFECT

the: D (↑PRED)=’THE’
(↑SPECTYPE)=DEF

about: P (↑PRED)=’ABOUT⟨OBJ⟩’
which: N (↑PRED)=’PRO’

(↑PRONTYPE)=REL
John’s: D (↑PRED)=’JOHN’

(↑SPECTYPE)=POSS
many: D (↑PRED)=’MANY’

(↑SPECTYPE)=QUANT
things: N (↑PRED)=’THINGS’

(↑NUM)=PLURAL

.STEP 2: c-structure..

......

a. S → NP
(↑ SUBJ) =↓

VP
↑=↓

b. NP →
{

A N
↑=↓ ↑=↓

}

c. VP → V
↑=↓

NP
(↑ SUBJ) =↓

V
(↑ XCOMP) =↓

(↑ XCOMP PRED) = ’be ⟨SUBJ, PREDIC⟩ ’

d. V → NP
(↑ PREDIC) =↓

IA161 Syntactic Formalisms for Parsing Natural Languages 55 / 56

Lecture 5

.STEP 3: f-structure..

......

'John made Peter angry'
S

SUBJ = =
NP

=
N

John

VP

= OBJ = XCOMP =

made

V NP

=
N

Peter

V

PREDIC =
NP

=

A

angry

= =

SUBJ =

=

OBJ =

=

XCOMP =

XCOMP PREDIC ='be SUBJ, PRED '

PREDIC =

=

.
STEP 4: unification..

......

PRED 'make 'SUBJ, XCOMP

TENSE simplepast

SUBJ , PRED 'John'

, PRED 'Peter'OBJ

PRED 'be SUBJ, PRED '

SUBJ

PREDIC , PRED 'angry'

XCOMP

, ,

IA161 Syntactic Formalisms for Parsing Natural Languages 56 / 56

	Lecture 5

