Syntactic Formalisms for Parsing Natural Languages

Parsing with CCG

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář (based on slides by Juyeon Kang)

ial61@nlp.fi.muni.cz

Autumn 2013

IA161	Syntactic Formalisms for Parsing Natural Languages	1 / 43	IA161	Syntactic Formalisms for Parsing Natural Languages	2 / 43
	Lecture 6			Lecture 6	
Outline					

1 A-B categorial system

2 Lambek calculus

3 Extended Categorial Grammar

Variation based on Lambek calculus

- Abstract Categorial Grammar, Categorial Type Logic
- Variation based on Combinatory Logic
 - Combinatory Categorial Grammar (CCG)
 - Multi-modal Combinatory Categorial Grammar

Categorial Grammar is

- : a lexicalized theory of grammar along with other theories of grammar such as HPSG, TAG, LFG, ...
- : linguistically and computationally attractive
 - \longrightarrow language invariant combination rules, high efficient parsing

Lecture 6	Lecture 6	
ain idea in CG and application operation	1. A-B categorial system	

All natural language consists of operators and of operands.

- Operator (functor) and operand (argument)
- Application: (operator(operand))

M

Categorial type: typed operator and operand

The product of the directional adaptation by Bar-Hillel (1953) of Ajdukiewicz's calculus of syntactic connection (Ajdukiewicz, 1935)

Definition 1 (AB categories).

Given *A*, a finite set of *atomic categories*, the **set of categories C** is the smallest set such that:

■ *A* ⊆ *C*

 $(X \setminus Y), (X/Y) \in C \text{ if } X, Y \in C$

IA161	Syntactic Formalisms for Parsing Natural Languages	5 / 43	IA161	Syntactic Formalisms for Parsing Natural Languages	6 / 43
Lecture 6		Lecture 6			
1. A-B categorial system			1. A-B cate	egorial system	

Calculus on types in CG are analogue to algebraic operations

х/у у	$\rightarrow x \approx 3/3$	5 * 5 = 3	
Brazil 	$\frac{defeated}{(s\backslash n)/n}$	Germany 	
	s	> <	

- Categories (type): primitive categories and derivative categories
 - Primitive: S for sentence, N for nominal phrase
 - Derivative: $S/N, N/N, (S \setminus N)/N, NN/N, S/S \dots$
- Forward(>) and backward (<) functional application

a.
$$X/Y Y \Rightarrow X$$
(>)b. $Y X \setminus Y \Rightarrow X$ (<)

1. A-B categorial system

Applicative tree of **Brazil defeated Germany**

Lecture 6

2. Lambek ca

the calculus of syntactic types still context-free

The axioms of Lambek calculus are the following:

1 $x \rightarrow x$

- 2 $(xy)z \rightarrow x(yz) \rightarrow (xy)z$ (the axioms 1, 2 with inference rules, 3, 4, 5)
- 3 If $xy \rightarrow z$ then $x \rightarrow z/y$, if $xy \rightarrow z$ then $y \rightarrow x \setminus z$;
- 4 If $x \to z/y$ then $xy \to z$, if $y \to x \setminus z$ then $xy \to z$;
- 5 If $x \rightarrow y$ and $y \rightarrow z$ then $x \rightarrow z$.

Limitation of AB system

1 Relative construction

a. team_i that t_i defeated Germany b. team_i that Brazil defeated t_i a'. that $(n \setminus n)/(s \setminus n)$ team [that] $_{(n \setminus n)/(s \setminus n)}$ [defeated Germany] $_{s \setminus n}$ team [that] $_{(n \setminus n)/(s/n)}$ [Brazil defeated] $_{s/n}$ b'. that $(n \setminus n)/(s/n)$ team that Brazil defeated $(n \setminus n)/(s/n)$ (s n)/nn —— (?) 3 Many others complex phenomena Coordination, object extraction, phrasal verbs, ...

Lecture 6

4 AB's generative power is too weak - context-free

yntactic Formalisms for Parsing Natural Languages	9 / 43	IA161 Syntactic Formalisms for Parsing Natural Languages		10 / 43	
Lecture 6			Lecture 6		
lculus (Lambek, 1958, 1961	1)	2. Lambek calculus (Lambek, 1958, 1961)			

The rules obtained from the previous axioms are the following:

- **1** Hypothesis: if x and y are types, then x/y and $y \setminus x$ are types.
- 2 Application rules : $(x/y)y \rightarrow x, y(y \setminus x) \rightarrow x$ ex: Poor John works.
- 3 Associativity rule : $(x \setminus y)/z \leftrightarrow x \setminus (y/z)$ ex: John likes Jane.
- 4 Composition rules : $(x/y)(y/z) \rightarrow x/z, (x \setminus y)(y \setminus z) \rightarrow x \setminus z$ ex: He likes him. $s/(n \setminus s)n \setminus s/n$
- **5** Type-raising rules : $x \rightarrow y/(x/y), x \rightarrow (y/x) \setminus y$

3. Combinatory Categorial Grammar

Lecture 6

3. Combinatory Categorial Grammar

- Developed originally by M. Steedman (1988, 1990, 2000, ...)
- Combinatory Categorial Grammar (CCG) is a grammar formalism equivalent to Tree Adjoining Grammar, i.e.
 - it is lexicalized
 - it is parsable in polynomial time (See Vijay-Shanker and Weir, 1990)
 - it can capture cross-serial dependencies
- Just like TAG, CCG is used for grammar writing
- CCG is especially suitable for statistical parsing

- several of the combinators which Curry and Feys (1958) use to define the λ-calculus and applicative systems in general are of considerable syntactic interest (Steedman, 1988)
- The relationships of these combinators to terms of the λ-calculus are defined by the following equivalences (Steedman, 2000b):

a.**B** $fg \equiv \lambda x.f(gx)$... composition b.**T** $x \equiv \lambda f.fx$... type-raising c.**S** $fg \equiv \lambda x.fx(gx)$... substitution

IA161	Syntactic Formalisms for Parsing Natural Languages	13 / 43	IA161	Syntactic Formalisms for Parsing Natural Languages	14 / 43
	Lecture 6			Lecture 6	
CCG catego	ries		Lexical cate	gories in CCG	

- Atomic categories: S, N, NP, PP, TV...
- Complex categories are built recursively from atomic categories and slashes
- Example complex categories for verbs:
 - intransitive verb: *S**NP* walked
 - transitive verb: $(S \setminus NP)/NP$ respected
 - ditransitive verb: $((S \setminus NP)/NP)/NP$ gave

- An elementary syntactic structure a lexical category is assigned to each word in a sentence, eg:
 - walked: S\NP 'give me an NP to my left and I return a sentence'
- Think of the lexical category for a verb as a function: NP is the argument, S the result, and the slash indicates the direction of the argument

Lecture 6	
The typed lexicon item	The t

The typed lexicon item

Attribution of types to lexical items: examples

Predicate

- ex: is as an identificator of nominal
 - as an operator of predication from a nominal $\longrightarrow (S \setminus NP)/NP$

from an adjective $\longrightarrow (S \setminus NP)/(N/N)$

- from an adverb $\longrightarrow (S \setminus NP) / (S \setminus NP)$
- from a preposition $\longrightarrow (S \setminus NP) / ((S \setminus NP) \setminus (S \setminus NP) / NP)$

ex: verbs unary (S\NP) binary (S\NP)/NP ternary (S\NP)/NP/NP

19/43

- The CCG lexicon assigns categories to words, i.e. it specifies which categories a word can have.
- Furthermore, the lexicon specifies the semantic counterpart of the syntactic rules, e.g.:

love $(S \setminus NP) / NP \lambda x \lambda y$.loves'xy

Combinatory rules determine what happens with the category and the semantics on combination

Dictionary of typed words

Syntactic categories	Syntactic types	Lexical entries
Nom.	N	Olivia, apple
Completed nom.	NP	an apple, the school
Pron.	NP	She, he
Adj.	$(N/N), (N \setminus N)$	pretty woman,
Adv.	(N/N)/(N/N),	very delicious,
	$(S \setminus NP) \setminus (S \setminus NP) \dots$	_
Vb	$(S \setminus NP), (S \setminus NP)/NP$	run, give
Prep.	$(S \setminus NP) \setminus (S \setminus NP) / NP$	run in the park,
	$(NP \setminus NP)/NP$	book of John,
Relative	(<i>S</i> \ <i>NP</i>)/ <i>S</i>	I believe that

Lecture 6

Combinatorial categorial rules

- Functional application (>,<)
- Functional composition (> **B**, < **B**)
- Type-raising (< **T**, > **T**)
- **Distribution** $(< \mathbf{S}, > \mathbf{S})$
- **Coordination** $(< \Phi, > \Phi)$

IA161	Syntactic Formalisms for Parsing Natural Languages	21 / 43	IA161	Syntactic Formalisms for Parsing Natural Languages	22 / 43
	Lecture 6			Lecture 6	
Functional application (FA)			Derivation in CCG		

 $X/Y : f \quad Y : a \Rightarrow X : fa$ (forward functional application, >) $Y : a \quad X \setminus Y : f \Rightarrow X : fa$ (backward functional application, <)

• Combine a function with its argument:

$$\frac{NP \ S \setminus NP}{S}$$

$$\frac{Mary \ sleeps}{S \setminus NP \ S \setminus NP \ NP \ NP \ NP \ Mary \ S \setminus NP \ MP \ Mary \$$

Direction of the slash indicates position of the argument with respect to the function

- The combinatorial rule used in each derivation step is usually indicated on the right of the derivation line
- Note especially what happens with the semantic information

John	loves	Mary
NP : John'	$\overline{(S \setminus NP)/NP : \lambda x \lambda y.loves' xy}$	NP : Mary'
	$S \setminus NP : \lambda y. loves' Mary' y$	>
	S : loves'Mary'John'	<

23/43

Function composition (FC)

Function composition (FC)

Generalized forward composition (> Bn) X/Y: f $Y/Z: g \Rightarrow_B X/Z: \lambda x.f(gx)$ (> B)

Functional composition composes two complex categories (two functions):

$$(S \setminus NP)/PP$$
 $(PP/NP) \Rightarrow_B (S \setminus NP)/NP$
 $S/(S \setminus NP)$ $(S \setminus NP)/NP \Rightarrow_B S/NP$

Generalized backward composition (< Bn) $Y \setminus Z : f \qquad X \setminus Y : g \Rightarrow_B X \setminus Z : x.f(gx) \qquad (< B)$

Lecture 6

IA161	Syntactic Formalisms for Parsing Natural Languages Lecture 6	25 / 43	IA161	Syntactic Formalisms for Parsing Natural Languages Lecture 6	26 / 43
Type-raising	ј (Т)		Example of	functional composition $(> B)$	and

```
Forward type-raising (> T)
X: a \Rightarrow T/(T \setminus X) : \lambda f.fa (> T)
```

- Type-raising turns an argument into a function (e.g. for case assignment)
 - $NP \Rightarrow S/(S \setminus NP)$ (nominative)

type-raising (1)

28 / 43

■ This must be used e.g. in the case of WH-questions

IA161	Syntactic Formalisms for Parsing Natural Languages	27 / 43	IA161	Syntactic Formalisms for Parsing Natural Languages
-------	--	---------	-------	--

Lecture 6					Lecture 6						
Example of <u>functional composition</u> (> B) and <u>type-raising (T)</u>					nd	Coordin	ation (&)				
	Backwa X∶a⇒	rd type- $T\setminus (T/X)$:	raising <u>∖f.fa</u>	(< T) (< T)			X CONJ X =	$\Rightarrow_{\Phi} X$	(Coc	$prdination(\Phi))$	
Type-rai assignm	sing turns an a lent)	argument	into a <u>fu</u>	nction (e.g. 1	for case	give (VP/NP)/NP	$-\frac{a \ dog}{(VP/NP) \setminus ((VP/NP)/NP)} < T$	$\frac{a \text{ bone}}{VP \setminus (VP/NP)} < T$ $NP)/NP)$	and _ <b< th=""><th>a policeman (VP/NP)\((VP/NP)/NF VP\</th><th>$T = \frac{a \ flower}{VP \setminus (VP/NP)} < T$ $T = VP \setminus (VP/NP) < B$</th></b<>	a policeman (VP/NP)\((VP/NP)/NF VP\	$T = \frac{a \ flower}{VP \setminus (VP/NP)} < T$ $T = VP \setminus (VP/NP) < B$
NF	$P \Rightarrow (S \setminus NP) \setminus ((A \cap S) \setminus NP) \setminus ((A \cap S) \cap S) $	$S \setminus NP) / NP$) (accus	sative)				VP\((VP/NP)	/NP)	< & >
The referee gave	Unsal	a card	and	Rivaldo	the ball		VI	Þ		<	
(s/np)/np	np	np	$(X \setminus X) / X$	np	np						
	$\frac{1}{(s/np) \setminus ((s/np)/np)} < 1$	$\frac{1}{s \setminus (s/np)} < 1$		$\frac{1}{(s/np) \setminus ((s/np)/np)} < 1$	$\frac{1}{s \setminus (s/np)} < 1$						
	$s \setminus ((s/np)/n)$	(np)		$s \setminus ((s/np))$	/np)						
			$s \setminus ((s/np)/n)$	p)							
		S									
IA161	Syntactic Form	nalisms for Par Lecture 6	sing Natural	Languages	29 / 43	IA161	Syntactic For	malisms for Pa	arsing I	Natural Languages	30 / 43
Substitut	ion (S)					Substitu	ution (S)				
	Forwar (X)	d substi /Y)/Z Y/Z	tution $Z \Rightarrow_S X/Z$	(> S)			Backward cr Y/	rossed s Z (X\Y)/	subs $Z \Rightarrow g$	titution (< S 5 <mark>X/Z</mark>	S×)

Application to parasitic gap such as the following:

a. team that I persuaded every detractor of to support

Application to parasitic gap such as the following:

a. John watched without enjoying the game between Germany and Paraguay.

b. game that John watched without enjoying

31/43

32 / 43

Limit on possible rules

Semantic in CCG

The Principle of Adjacency:

Combinatory rules may only apply to entities which are linguistically realised and adjacent.

■ The Principle of Directional Consistency:

All syntactic combinatory rules must be consistent with the directionality of the principal function. ex: $X \setminus Y \neq X$

■ The Principle of Directional Inheritance:

If the category that results from the application of a combinatory rule is a function category, then the slash defining directionality for a given argument in that category will be the same as the one defining directionality for the corresponding arguments in the input functions. ex: $X/Y Y/Z \neq > X \setminus Z$.

CCG offers a syntax-semantics interface.

Lecture 6

- The lexical categories are augmented with an explicit identification of their semantic interpretation and the rules of functional application are accordingly expanded with an explicit semantics.
- Every syntactic category and rule has a semantic counterpart.
- The lexicon is used to pair words with syntactic categories and semantic interpretations:

love $(S \setminus NP) / NP \Rightarrow \lambda x \lambda y. loves' xy$

IA161	Syntactic Formalisms for Parsing Natural Languages	33 / 43	IA161	Syntactic Formalisms for Parsing Natural Languages	34 / 43		
	Lecture 6		Lecture 6				
Semantic in	CCG		Semantic in	CCG			

■ The semantic interpretation of all combinatory rules is fully determined by the **Principle of Type Transparency**:

- Categories: All syntactic categories reflect the semantic type of the associated logical form.
- Rules: All syntactic combinatory rules are type-transparent versions of one of a small number of semantic operations over functions including application, composition, and type-raising.

proved := $(S \setminus NP_{3s})/NP : \lambda x \lambda y. prove'xy$

the semantic type of the reduction is the same as its syntactic type, here functional application.

Marcel	proved	completeness
NP _{3sm} : marcel'	$\overline{(S \setminus NP_{3s})/NP : \lambda x \lambda y. prove' xy}$	NP : completeness'
	$S \setminus NP_{3s} : \lambda y. prove' com$	pleteness'y
	~ · · · · ·	

S : prove' completeness' marcel'

Semantic in CCG

IA161

Parsing a sentence in CCG

CCG with semantics : *Mary will copy and file without reading these articles*

Lecture 6

Mary will	сору	and	file	without	reading	these articles		
S/VP :p.Mary'	$\begin{array}{c c} \hline \\ \hline \\ S/VP & VP/NP & CONJ & VP/NP & (VP \setminus VP)/VPing \\ .Mary' & \lambda p. will' : copy' : and' : file' & \lambda p. \lambda q. withou \\ \end{array}$				VPing/NP ut'pq :read'	NP :articles'		
کے (VP\VP)/VPing :کx.کq.without'(read' x)q								
·····································								
\sim VP/NP : $\lambda x.and'(without'(read'x))(copy'x)$								
:will	'(and'(witho	ut')(rea	d'articles'	S)(file'articles'))(co	opy'articles'))	mary'		

Step	1:	tokenization
------	----	--------------

Step 2: tagging the concatenated lexicon

Step 3:

 calculate on types attributed to the concatenated lexicons by applying the adequate combinatorial rules

Lecture 6

 eliminate the applied combinators (we will see how to do on next week)

Step 4: finding the parsing results presented in the form of an operator/operand structure (predicate -argument structure)

IA161 Syntactic Formalisms for Parsing Natural Languages 37 / 43 Lecture 6	IA161 Syntactic Formalisms for Parsing Natural Languages 38 / 43 Lecture 6
Parsing a sentence in CCG	Parsing a sentence in CCG
Example: I requested and would prefer musicals STEP 1 : tokenization/lemmatization \rightarrow ex) POS Tagger, tokenizer, lemmatizer	STEP 3 : categorial calculus a. apply the type-raising rules \longrightarrow Subject Type-raising (> T) $NP : a \Rightarrow T/(T \setminus NP) : Ta$
a. I-requested-and-would-prefer-musicals b. I-request-ed-and-would-prefer-musical-s STEP 2 : tagging the concatenated expressions → ex)	b. apply the functional composition rules \longrightarrow Forward Composition: (> B) $X/Y : f Y/Z : g \Rightarrow X/Z : Bfg$ c. apply the coordination rules \longrightarrow Coordination: (< & >) $X \text{ conj } X \Rightarrow X$
Supertagger, Inventory of typed words I NP Requested (S\NP)/NP And CONJ Would (S\NP)/VP Prefer VP/NP musicals NP	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Parsing a sentence in CCG

STEP 4 : semantic representation (predicate-argument structure)

I	requested	and	would	prefer	musicals
1/ :i'	:request'	:and'	: will'	:prefer'	: musicals'
2/ :λf.f	<i>'I'</i>				
				<i>.</i>	

3/	: λx.λy.will'(prefer'x)y

- 4/ : $\lambda x \lambda y.and'(will'(prefer'x)y)(request'xy)$
- 5/ : $\lambda x \lambda y.and'(will'(prefer'x)y)(request'xy)$
- 6/ :λy.and'(would'(prefer' musicals')y)(request' musicals' y)

7/S: and'(will'(prefer' musicals') i')(request' musicals' i')

Lecture 6

Variation of CCG : Multi-modal CCG (Baldridge, 2002)

- Modalized CCG system
- Combination of Categorial Type Logic (CTL, Morrill, 1994; Moortgat, 1997) into the CCG (Steedman, 2000)
- **Rules restrictions by introducing the modalities:** *, x, \bullet , \diamond
- Modalized functional composition rules

(> B)	$X/_{\Diamond}Y$	$Y/_{\Diamond}Z$	\Rightarrow	$X/_{\Diamond}Z$
(< B)	$X ackslash \phi Y$	$Y_{0}Z$	\Rightarrow	$X \setminus_{\Diamond} Z$

Invite you to read the paper "Multi-Modal CCG" of (Baldridge and M.Kruijff, 2003)

IA161	Syntactic Formalisms for Parsing Natural Languages	41 / 43	IA161	Syntactic Formalisms for Parsing Natural Languages	42 / 43
	Lecture 6				

The positions of several formalisms on the Chomsky hierarchy

