
Lecture 6

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 1 / 43

Lecture 6

.

...... Parsing with CCG

IA161 Syntactic Formalisms for Parsing Natural Languages 2 / 43

Lecture 6

Outline

1 A-B categorial system
2 Lambek calculus
3 Extended Categorial Grammar

Variation based on Lambek calculus
Abstract Categorial Grammar, Categorial Type Logic

Variation based on Combinatory Logic
Combinatory Categorial Grammar (CCG)
Multi-modal Combinatory Categorial Grammar

IA161 Syntactic Formalisms for Parsing Natural Languages 3 / 43

Lecture 6

Categorial Grammar is
: a lexicalized theory of grammar along with other theories of
grammar such as HPSG, TAG, LFG, …
: linguistically and computationally attractive
−→ language invariant combination rules, high efficient parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 4 / 43

Lecture 6

Main idea in CG and application operation

All natural language consists of operators and of operands.
Operator (functor) and operand (argument)
Application: (operator(operand))
Categorial type: typed operator and operand

IA161 Syntactic Formalisms for Parsing Natural Languages 5 / 43

Lecture 6

1. A-B categorial system

.

......
The product of the directional adaptation by Bar-Hillel (1953) of Ajdukiewicz’s
calculus of syntactic connection (Ajdukiewicz, 1935)

Definition 1 (AB categories).
Given A, a finite set of atomic categories, the set of
categories C is the smallest set such that:

A ⊆ C

(X\Y), (X/Y) ∈ C if X,Y ∈ C

IA161 Syntactic Formalisms for Parsing Natural Languages 6 / 43

Lecture 6

1. A-B categorial system

Categories (type): primitive categories and derivative
categories

Primitive: S for sentence, N for nominal phrase
Derivative: S/N,N/N, (S\N)/N,NN/N,S/S . . .

Forward(>) and backward (<) functional application

a. X/Y Y ⇒ X (>)
b. Y X\Y ⇒ X (<)

IA161 Syntactic Formalisms for Parsing Natural Languages 7 / 43

Lecture 6

1. A-B categorial system

Calculus on types in CG are analogue to algebraic
operations

.

...... x/y y → x ≈ 3/5 ∗ 5 = 3

Brazil defeated Germany

n (s\n)/n n
>

s\n
<

s

IA161 Syntactic Formalisms for Parsing Natural Languages 8 / 43

Lecture 6

1. A-B categorial system

Applicative tree of Brazil defeated Germany

defeated
operator

Germany
operand

Brazil
operand

@ defeated (Germany)

@ ((defeated(Germany))Brazil)

IA161 Syntactic Formalisms for Parsing Natural Languages 9 / 43

Lecture 6

Limitation of AB system

1 Relative construction
a. teami that ti defeated Germany
b. teami that Brazil defeated ti

a’. that (n\n)/(s\n) team [that](n\n)/(s\n) [defeated Germany]s\n
b’. that (n\n)/(s/n) team [that](n\n)/(s/n) [Brazil defeated]s/n

(?)

team that
(n\n)/(s/n)

Brazil
n

defeated
(s\n)/n

3 Many others complex phenomena
Coordination, object extraction, phrasal verbs, ...

4 AB’s generative power is too weak – context-free

IA161 Syntactic Formalisms for Parsing Natural Languages 10 / 43

Lecture 6

2. Lambek calculus (Lambek, 1958, 1961)

the calculus of syntactic types
still context-free

The axioms of Lambek calculus are the following:

1 x → x

2 (xy)z → x(yz) → (xy)z (the axioms 1, 2 with inference rules, 3, 4, 5)
3 If xy → z then x → z/y, if xy → z then y → x\z;
4 If x → z/y then xy → z, if y → x\z then xy → z;

5 If x → y and y → z then x → z.

IA161 Syntactic Formalisms for Parsing Natural Languages 11 / 43

Lecture 6

2. Lambek calculus (Lambek, 1958, 1961)

The rules obtained from the previous axioms are the
following:
1 Hypothesis: if x and y are types, then x/y and y\x are types.
2 Application rules : (x/y)y → x,y(y\x) → x

ex: Poor John works.

3 Associativity rule : (x\y)/z ↔ x\(y/z)
ex: John likes Jane.

4 Composition rules : (x/y)(y/z) → x/z, (x\y)(y\z) → x\z
ex: He likes him.

s/(n\s)n\s/n
5 Type-raising rules : x → y/(x/y),x → (y/x)\y

IA161 Syntactic Formalisms for Parsing Natural Languages 12 / 43

Lecture 6

3. Combinatory Categorial Grammar

Developed originally by M. Steedman (1988, 1990, 2000, ...)
Combinatory Categorial Grammar (CCG) is a grammar
formalism equivalent to Tree Adjoining Grammar, i.e.

it is lexicalized
it is parsable in polynomial time (See Vijay-Shanker and Weir,
1990)
it can capture cross-serial dependencies

Just like TAG, CCG is used for grammar writing
CCG is especially suitable for statistical parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 13 / 43

Lecture 6

3. Combinatory Categorial Grammar

several of the combinators which Curry and Feys (1958)
use to define the λ-calculus and applicative systems in
general are of considerable syntactic interest (Steedman, 1988)
The relationships of these combinators to terms of the
λ-calculus are defined by the following equivalences
(Steedman, 2000b):

a.Bfg ≡ λx.f(gx) ... composition
b.Tx ≡ λf.fx ... type-raising
c.Sfg ≡ λx.fx(gx) ... substitution

IA161 Syntactic Formalisms for Parsing Natural Languages 14 / 43

Lecture 6

CCG categories

Atomic categories: S, N, NP, PP, TV…
Complex categories are built recursively from atomic categories
and slashes
Example complex categories for verbs:

intransitive verb: S\NP walked
transitive verb: (S\NP)/NP respected
ditransitive verb: ((S\NP)/NP)/NP gave

IA161 Syntactic Formalisms for Parsing Natural Languages 15 / 43

Lecture 6

Lexical categories in CCG

An elementary syntactic structure – a lexical category – is
assigned to each word in a sentence, eg:
walked: S\NP ‘give me an NP to my left and I return a sentence’
Think of the lexical category for a verb as a function: NP is the
argument, S the result, and the slash indicates the direction of
the argument

IA161 Syntactic Formalisms for Parsing Natural Languages 16 / 43

Lecture 6

The typed lexicon item

The CCG lexicon assigns categories to words, i.e. it specifies
which categories a word can have.
Furthermore, the lexicon specifies the semantic counterpart of
the syntactic rules, e.g.:
love (S\NP)/NPλxλy.loves′xy

Combinatory rules determine what happens with the category
and the semantics on combination

IA161 Syntactic Formalisms for Parsing Natural Languages 17 / 43

Lecture 6

The typed lexicon item

Attribution of types to lexical items: examples

Predicate
ex: is as an identificator of nominal

as an operator of predication from a nominal (S\NP)/NP

from an adjective (S\NP)/(N/N)

from an adverb (S\NP)/(S\NP)\(S\NP)

from a preposition (S\NP)/((S\NP)\(S\NP)/NP)

ex: verbs unary (S\NP)

binary (S\NP)/NP
ternary (S\NP)/NP/NP

IA161 Syntactic Formalisms for Parsing Natural Languages 18 / 43

Lecture 6

The typed lexicon item

Adverbs

Adverb of verb

(S\NP)/(S\NP)
(S\NP)/NP/(S\NP)/NP

Adverb of adverb

(S\NP)/(S\NP)/(S\NP)/(S\NP)
(S\NP)/NP/(S\NP)/NP/(S\NP)/NP/(S\NP)/NP

Adverb of adjective

(N/N)/(N/N)

(N\N)/(N\N)

Adverb of proposition

S/S

.

...... Adverb: operator of determination of type (X/X)

IA161 Syntactic Formalisms for Parsing Natural Languages 19 / 43

Lecture 6

The typed lexicon item

Preposition

Prep. 1:
constructor of adverbial phrase

(S\NP)\(S\NP)/NP
(S/S)/NP
(S/S)/N

Prep. 2:
constructor of adjectival phrase

(N\N)/NP
(N\N)/N

.

...... Preposition: constructor of determination of type (X/X)

IA161 Syntactic Formalisms for Parsing Natural Languages 20 / 43

Lecture 6

Dictionary of typed words

Syntactic categories Syntactic types Lexical entries
Nom. N Olivia, apple…

Completed nom. NP an apple, the school
Pron. NP She, he…
Adj. (N/N), (N\N) pretty woman,…
Adv. (N/N)/(N/N), very delicious,…

(S\NP)\(S\NP)…
Vb (S\NP), (S\NP)/NP… run, give…

Prep. (S\NP)\(S\NP)/NP run in the park,
(NP\NP)/NP… book of John, …

Relative (S\NP)/S… I believe that…

IA161 Syntactic Formalisms for Parsing Natural Languages 21 / 43

Lecture 6

Combinatorial categorial rules

Functional application (>,<)

Functional composition (> B, < B)

Type-raising (< T, > T)

Distribution (< S, > S)

Coordination (< Φ, > Φ)

IA161 Syntactic Formalisms for Parsing Natural Languages 22 / 43

Lecture 6

Functional application (FA)

X/Y : f Y : a⇒ X : fa(forward functional application, >)
Y : a X\Y : f⇒ X : fa(backward functional application, <)

Combine a function with its argument:

John likes Mary ((likes (Mary))John)
S

S\NP (likes (Mary))
NP (S\NP)/NP NP

Mary sleeps (sleeps (Mary))
S

NP S\NP

Direction of the slash indicates position of the argument with
respect to the function

IA161 Syntactic Formalisms for Parsing Natural Languages 23 / 43

Lecture 6

Derivation in CCG

The combinatorial rule used in each derivation step is usually
indicated on the right of the derivation line
Note especially what happens with the semantic information

John loves Mary

NP : John′ (S\NP)/NP : λxλy.loves′xy NP : Mary′

>
S\NP : λy.loves′Mary′y

<
S : loves′Mary′John′

IA161 Syntactic Formalisms for Parsing Natural Languages 24 / 43

Lecture 6

Function composition (FC)

Generalized forward composition (> Bn)
X/Y : f Y/Z : g ⇒B X/Z : λx.f(gx) (> B)

Functional composition composes two complex categories (two
functions):

(S\NP)/PP (PP/NP) ⇒B (S\NP)/NP
S/(S\NP) (S\NP)/NP ⇒B S/NP

S
>

S/NP
> B

S/(S\NP)
> T

NP

birds
(S\NP)/NP

like

NP

bugs

IA161 Syntactic Formalisms for Parsing Natural Languages 25 / 43

Lecture 6

Function composition (FC)

Generalized backward composition (< Bn)
Y\Z : f X\Y : g ⇒B X\Z : x.f(gx) (< B)

The referee gave

(s/np)/np

Unsal

np

a card

np

and

(X\X)/X

Rivaldo

np

the ball

np
<T

(s/np)\((s/np)/np)
<T

s\(s/np)
<T

(s/np)\((s/np)/np)
<T

s\(s/np)
<B

s\((s/np)/np
<B

s\((s/np)/np
< Φ >

s\((s/np)/np
<

s

IA161 Syntactic Formalisms for Parsing Natural Languages 26 / 43

Lecture 6

Type-raising (T)

Forward type-raising (> T)
X : a ⇒ T/(T\X) : λf.fa (> T)

Type-raising turns an argument into a function (e.g. for case
assignment)

NP ⇒ S/(S\NP) (nominative)
birds

NP

fly

S\NP
<

S

birds

NP
> T

S/(S\NP)
>

S

fly

S\NP

This must be used e.g. in the case of WH-questions
IA161 Syntactic Formalisms for Parsing Natural Languages 27 / 43

Lecture 6

Example of functional composition (> B) and
type-raising (T)

team

n

that

(n\n)/(s/np)

I

np
>T

s/(s\np)
>B

s/s

thought

(s\np)/s

that

s/s

Brazil

np
>T

s/(s\np)
>B

s/np

defeated

(s\np)/np

>B
s/np

>B
s/np

>
n\n

<
n

IA161 Syntactic Formalisms for Parsing Natural Languages 28 / 43

Lecture 6

Example of functional composition (> B) and
type-raising (T)

Backward type-raising (< T)
X : a ⇒ T\(T/X) : λf.fa (< T)

Type-raising turns an argument into a function (e.g. for case
assignment)

NP ⇒ (S\NP)\((S\NP)/NP) (accusative)
The referee gave

(s/np)/np

Unsal

np
<T

(s/np)\((s/np)/np)

a card

np
<T

s\(s/np)

and

(X\X)/X

Rivaldo

np
<T

(s/np)\((s/np)/np)

the ball

np
<T

s\(s/np)
<B

s\((s/np)/np)
<B

s\((s/np)/np)
< Φ >

s\((s/np)/np)
<

s

IA161 Syntactic Formalisms for Parsing Natural Languages 29 / 43

Lecture 6

Coordination (&)

X CONJ X ⇒Φ X (Coordination(Φ))

give

(VP/NP)/NP

a dog
<T

(VP/NP)\((VP/NP)/NP)

a bone
<T

VP\(VP/NP)

and

conj

a policeman
<T

(VP/NP)\((VP/NP)/NP)

a flower
<T

VP\(VP/NP)
<B

VP\((VP/NP)/NP)
<B

VP\((VP/NP)/NP)
< & >

VP\((VP/NP)/NP)
<

VP

IA161 Syntactic Formalisms for Parsing Natural Languages 30 / 43

Lecture 6

Substitution (S)

Forward substitution (> S)
(X/Y)/Z Y/Z ⇒S X/Z

Application to parasitic gap such as the following:

a. team that I persuaded every detractor of to
support

team that

(n\n)/(s/np)

I

np
>T

s/(s\np)

persuaded

((s\np)/(s\np))/np

every detractor of

np/np

to support

(s\np)/np
>B

((s\np)/(s\np))/np
>S

(s\np)/np
>B

s/np
>

n\n

IA161 Syntactic Formalisms for Parsing Natural Languages 31 / 43

Lecture 6

Substitution (S)

Backward crossed substitution (< S×)
Y/Z (X\Y)/Z ⇒S X/Z

Application to parasitic gap such as the following:

a. John watched without enjoying the game between
Germany and Paraguay.

b. game that John watched without enjoying
.
...... game that John [watched](s\np)/np [without enjoying]((s\np)\(s\np))/np

game that

(n\n)/(s/np)

John
np

>T
s/(s\np)

watched
(s\np)/np

without enjoying

((s\np)\(s\np))/np
<S×

(s\np)/np
>B

s/(s\np)
>

n\n

IA161 Syntactic Formalisms for Parsing Natural Languages 32 / 43

Lecture 6

Limit on possible rules

The Principle of Adjacency:

Combinatory rules may only apply to entities which are
linguistically realised and adjacent.

The Principle of Directional Consistency:
All syntactic combinatory rules must be consistent with the
directionality of the principal function. ex: X\Y Y ̸=> X

The Principle of Directional Inheritance:

If the category that results from the application of a
combinatory rule is a function category, then the slash
defining directionality for a given argument in that category
will be the same as the one defining directionality for the
corresponding arguments in the input functions. ex:
X/Y Y/Z ̸=> X\Z.

IA161 Syntactic Formalisms for Parsing Natural Languages 33 / 43

Lecture 6

Semantic in CCG

CCG offers a syntax-semantics interface.
The lexical categories are augmented with an explicit
identification of their semantic interpretation and the rules of
functional application are accordingly expanded with an explicit
semantics.
Every syntactic category and rule has a semantic counterpart.
The lexicon is used to pair words with syntactic categories and
semantic interpretations:

love (S\NP)/NP ⇒ λxλy.loves′xy

IA161 Syntactic Formalisms for Parsing Natural Languages 34 / 43

Lecture 6

Semantic in CCG

The semantic interpretation of all combinatory rules is fully
determined by the Principle of Type Transparency:

Categories: All syntactic categories reflect the semantic type of
the associated logical form.

Rules: All syntactic combinatory rules are type-transparent
versions of one of a small number of semantic operations over
functions including application, composition, and type-raising.

IA161 Syntactic Formalisms for Parsing Natural Languages 35 / 43

Lecture 6

Semantic in CCG

proved := (S\NP3s)/NP : λxλy.prove′xy
the semantic type of the reduction is the same as its syntactic
type, here functional application.

Marcel

NP3sm : marcel′
proved

(S\NP3s)/NP : λxλy.prove′xy

completeness

NP : completeness′
>

S\NP3s : λy.prove′completeness′y
<

S : prove′completeness′marcel′

IA161 Syntactic Formalisms for Parsing Natural Languages 36 / 43

Lecture 6

Semantic in CCG

CCG with semantics : Mary will copy and file without
reading these articles

Mary will

S/VP

copy

VP/NP

and

CONJ
file

VP/NP

without

(VP\VP)/VPing

reading

VPing/NP

these articles

NP
:p.Mary’ λp.will’ :copy’ :and’ :file’ λp.λq.without’pq :read’ :articles’

>B
(VP\VP)/VPing

:λx.λq.without’(read’ x)q
<S

VP/NP
:λx.without’(read’x)(file’x)

< Φ >
VP/NP

:λx.and’(without’(read’x)(file’x))(copy’x)
<

VP
:and’(without’)(read’articles’)(file’articles’))(copy’articles’)

>
S

:will’(and’(without’)(read’articles’)(file’articles’))(copy’articles’))mary’

IA161 Syntactic Formalisms for Parsing Natural Languages 37 / 43

Lecture 6

Parsing a sentence in CCG

Step 1: tokenization
Step 2: tagging the concatenated lexicon
Step 3:

calculate on types attributed to the concatenated lexicons by
applying the adequate combinatorial rules
eliminate the applied combinators (we will see how to do on next
week)

Step 4: finding the parsing results presented in the form of an
operator/operand structure (predicate -argument structure)

IA161 Syntactic Formalisms for Parsing Natural Languages 38 / 43

Lecture 6

Parsing a sentence in CCG

Example: I requested and would prefer musicals
STEP 1 : tokenization/lemmatization → ex) POS Tagger,
tokenizer, lemmatizer

a. I-requested-and-would-prefer-musicals
b. I-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions → ex)
Supertagger, Inventory of typed words

I NP
Requested (S\NP)/NP
And CONJ
Would (S\NP)/VP
Prefer VP/NP
musicals NP

IA161 Syntactic Formalisms for Parsing Natural Languages 39 / 43

Lecture 6

Parsing a sentence in CCG
STEP 3 : categorial calculus

c. apply the coordination rules Coordination: (< & >)

X conj X ⇒ X

b. apply the functional composition rules Forward Composition: (> B)
X/Y : f Y/Z : g ⇒ X/Z : Bfg

a. apply the type-raising rules Subject Type-raising (> T)
NP : a ⇒ T/(T\NP) : Ta

7/ S
6/ S/NP NP (>)
5/ S/(S\NP) (S\NP)/NP NP (>B)
4/ S/(S\NP) (S\NP)/NP NP (> Φ)
3/ S/(S\NP) (S\NP)/NP CONJ (S\NP)/NP NP (>B)
2/ S/(S\NP) (S\NP)/NP CONJ (S\NP)/VP VP/NP NP (>T)
1/ NP (S\NP)/NP CONJ (S\NP)/VP VP/NP NP

I- requested- and- would- prefer- musicals

IA161 Syntactic Formalisms for Parsing Natural Languages 40 / 43

Lecture 6

Parsing a sentence in CCG

STEP 4 : semantic representation (predicate-argument
structure)

7/S: and’(will’(prefer’ musicals’) i’)(request’ musicals’ i’)

6/ :λy.and’(would’(prefer’ musicals’)y)(request’ musicals’ y)

5/ : λxλy.and’(will’(prefer’x)y)(request’xy)

4/ : λxλy.and’(will’(prefer’x)y)(request’xy)

3/ : λx.λy.will’(prefer’x)y

2/ :λf.f I’

1/ :i’ :request’ :and’ : will’ :prefer’ : musicals’

I requested and would prefer musicals

IA161 Syntactic Formalisms for Parsing Natural Languages 41 / 43

Lecture 6

Variation of CCG : Multi-modal CCG (Baldridge,
2002)

Modalized CCG system
Combination of Categorial Type Logic (CTL, Morrill, 1994;
Moortgat, 1997) into the CCG (Steedman, 2000)
Rules restrictions by introducing the modalities: *, x, •, ♢
Modalized functional composition rules

(> B) X/♢Y Y/♢Z ⇒ X/♢Z
(< B) X\♢Y Y\♢Z ⇒ X\♢Z

Invite you to read the paper “Multi-Modal CCG” of (Baldridge
and M.Kruijff, 2003)

IA161 Syntactic Formalisms for Parsing Natural Languages 42 / 43

Lecture 6

The positions of several formalisms on the
Chomsky hierarchy

Turing complete

Context-sensitive

Middly
context-sensitive

Context-free

Unrestricted CTL

CTL with
Non-expanding Rules

Multiset-CCG

CCG
TAG

AB
CTL Base Logic

Lambek Calculus

IA161 Syntactic Formalisms for Parsing Natural Languages 43 / 43

