Syntactic Formalisms for Parsing Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář (based on slides by Juyeon Kang) ia161@nlp.fi.muni.cz

Autumn 2013

Parsing with CCG

Outline

- A-B categorial system
- 2 Lambek calculus
- 3 Extended Categorial Grammar
 - Variation based on Lambek calculus
 - Abstract Categorial Grammar, Categorial Type Logic
 - Variation based on Combinatory Logic
 - Combinatory Categorial Grammar (CCG)
 - Multi-modal Combinatory Categorial Grammar

Categorial Grammar is

- : a lexicalized theory of grammar along with other theories of grammar such as HPSG, TAG, LFG, ...
- : linguistically and computationally attractive
 - \longrightarrow language invariant combination rules, high efficient parsing

Main idea in CG and application operation

All natural language consists of operators and of operands.

- Operator (functor) and operand (argument)
- Application: (operator(operand))
- Categorial type: typed operator and operand

The product of the directional adaptation by Bar-Hillel (1953) of Ajdukiewicz's calculus of syntactic connection (Ajdukiewicz, 1935)

Definition 1 (AB categories).

Given *A*, a finite set of *atomic categories*, the **set of categories C** is the smallest set such that:

 $\blacksquare A \subseteq C$

 $(X \setminus Y), (X/Y) \in C \text{ if } X, Y \in C$

Categories (type): primitive categories and derivative categories

- Primitive: S for sentence, N for nominal phrase
- Derivative: $S/N, N/N, (S \setminus N)/N, NN/N, S/S \dots$

■ Forward(>) and backward (<) functional application

a.
$$X/Y Y \Rightarrow X$$
 (>)
b. $Y X \setminus Y \Rightarrow X$ (<)

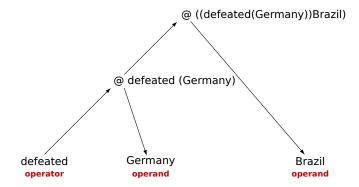
IA161

Calculus on types in CG are analogue to algebraic operations

 x/y y	$y \rightarrow x \approx 3/2$	5 * 5 = 3	
Brazil n	$\frac{defeated}{(s\backslash n)/n}$	>	
		<	

s

Applicative tree of Brazil defeated Germany



Limitation of AB system

1 Relative construction

- a. team_i that t_i defeated Germany
- b. team_i that Brazil defeated t_i
 - a'. that $(n \setminus n)/(s \setminus n)$ team $[that]_{(n \setminus n)/(s \setminus n)}$ [defeated Germany]_{$s \setminus n$}

b'. that $(n \setminus n)/(s/n)$ team [that] $(n \setminus n)/(s/n)$ [Brazil defeated]s/n

team	that	Brazil	defeated
	$(n \backslash n) / (s/n)$	n	$(s \setminus n)/n$
		-	

3 Many others complex phenomena

Coordination, object extraction, phrasal verbs, ...

4 AB's generative power is too weak - context-free

2. Lambek calculus (Lambek, 1958, 1961)

the calculus of **syntactic types** still *context-free*

The axioms of Lambek calculus are the following:

1 $x \rightarrow x$

- 2 $(xy)z \rightarrow x(yz) \rightarrow (xy)z$ (the axioms 1, 2 with inference rules, 3, 4, 5)
- 3 If $xy \to z$ then $x \to z/y$, if $xy \to z$ then $y \to x \setminus z$;
- 4 If $x \to z/y$ then $xy \to z$, if $y \to x \setminus z$ then $xy \to z$;
- 5 If $x \to y$ and $y \to z$ then $x \to z$.

2. Lambek calculus (Lambek, 1958, 1961)

The rules obtained from the previous axioms are the following:

- **1** Hypothesis: if x and y are types, then x/y and $y \setminus x$ are types.
- 2 Application rules : $(x/y)y \rightarrow x, y(y \setminus x) \rightarrow x$ ex: *Poor John works.*
- 3 Associativity rule : $(x \setminus y)/z \leftrightarrow x \setminus (y/z)$ ex: John likes Jane.
- 4 Composition rules : $(x/y)(y/z) \rightarrow x/z, (x \setminus y)(y \setminus z) \rightarrow x \setminus z$ ex: *He likes him.* $s/(n \setminus s)n \setminus s/n$
- 5 Type-raising rules : $x \rightarrow y/(x/y), x \rightarrow (y/x) \setminus y$

3. Combinatory Categorial Grammar

- Developed originally by M. Steedman (1988, 1990, 2000, ...)
- Combinatory Categorial Grammar (CCG) is a grammar formalism equivalent to Tree Adjoining Grammar, i.e.
 - it is lexicalized
 - it is parsable in polynomial time (See Vijay-Shanker and Weir, 1990)
 - it can capture cross-serial dependencies
- Just like TAG, CCG is used for grammar writing
- CCG is especially suitable for statistical parsing

3. Combinatory Categorial Grammar

- several of the combinators which Curry and Feys (1958) use to define the λ-calculus and applicative systems in general are of considerable syntactic interest (Steedman, 1988)
- The relationships of these combinators to terms of the λ-calculus are defined by the following equivalences (Steedman, 2000b):
 - a.**B** $fg \equiv \lambda x.f(gx)$... composition b.**T** $x \equiv \lambda f.fx$... type-raising c.**S** $fg \equiv \lambda x.fx(gx)$... substitution

CCG categories

- Atomic categories: S, N, NP, PP, TV...
- Complex categories are built recursively from atomic categories and slashes
- Example complex categories for verbs:
 - intransitive verb: S\NP walked
 - **u** transitive verb: $(S \setminus NP)/NP$ respected
 - ditransitive verb: ((S\NP)/NP)/NP gave

Lexical categories in CCG

An elementary syntactic structure – a lexical category – is assigned to each word in a sentence, eg:

walked: $S \setminus NP$ 'give me an NP to my left and I return a sentence'

Think of the lexical category for a verb as a function: NP is the argument, S the result, and the slash indicates the direction of the argument

The typed lexicon item

- The CCG lexicon assigns categories to words, i.e. it specifies which categories a word can have.
- Furthermore, the lexicon specifies the semantic counterpart of the syntactic rules, e.g.:

love $(S \setminus NP) / NP \lambda x \lambda y$.loves' xy

IA161

Combinatory rules determine what happens with the category and the semantics on combination

The typed lexicon item

Attribution of types to lexical items: examples

Predicate

ex: is as an identificator of nominal

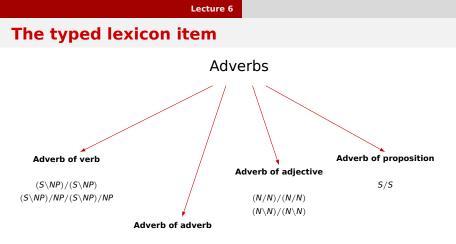
as an operator of predication from a nominal $\longrightarrow (S \setminus NP)/NP$

from an adjective $\longrightarrow (S \setminus NP) / (N/N)$

from an adverb $\longrightarrow (S \setminus NP) / (S \setminus NP) \setminus (S \setminus NP)$

from a preposition $\longrightarrow (S \setminus NP) / ((S \setminus NP) \setminus (S \setminus NP) / NP)$

ex: verbs unary (S\NP) binary (S\NP)/NP ternary (S\NP)/NP/NP



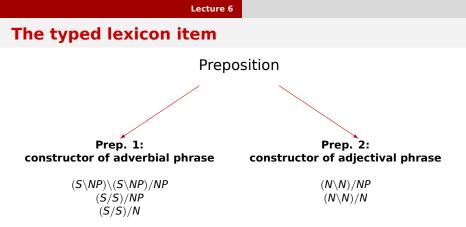
$$\label{eq:snp} \begin{split} (S \ NP) / (S \ NP) / (S \ NP) / (S \ NP) \\ (S \ NP) / NP / (S \ NP) / NP / (S \ NP) / NP / (S \ NP) / NP \end{split}$$

Adverb: operator of determination of type (X/X)

IA161

Syntactic Formalisms for Parsing Natural Languages

19 / 43



Preposition: constructor of determination of type (X/X)

IA161

Syntactic Formalisms for Parsing Natural Languages

20 / 43

Dictionary of typed words

Syntactic categories	Syntactic types	Lexical entries
Nom.	N	Olivia, apple
Completed nom.	NP	an apple, the school
Pron.	NP	She, he
Adj.	$(N/N), (N \setminus N)$	pretty woman,
Adv.	(N/N)/(N/N),	very delicious,
	$(S \setminus NP) \setminus (S \setminus NP) \dots$	
Vb	$(S \ NP), (S \ NP)/NP$	run, give
Prep.	$(S \setminus NP) \setminus (S \setminus NP) / NP$	run in the park,
	$(NP \setminus NP) / NP \dots$	book of John,
Relative	(<i>S</i> \ <i>NP</i>)/ <i>S</i>	I believe that

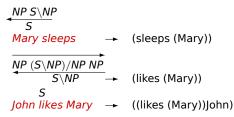
Combinatorial categorial rules

- Functional application (>,<)
- Functional composition (> **B**, < **B**)
- Type-raising (< **T**, > **T**)
- **Distribution** (< S, > S)
- **Coordination** $(< \Phi, > \Phi)$

Functional application (FA)

 $X/Y : f \quad Y : a \Rightarrow X : fa$ (forward functional application, >) $Y : a \quad X \setminus Y : f \Rightarrow X : fa$ (backward functional application, <)

Combine a function with its argument:



Direction of the slash indicates position of the argument with respect to the function

Derivation in CCG

- The combinatorial rule used in each derivation step is usually indicated on the right of the derivation line
- Note especially what happens with the semantic information

John	loves	Mary
NP : John'	$\overline{(S \setminus NP)/NP : \lambda x \lambda y.loves' xy}$	NP : Mary'
	$S \setminus NP : \lambda y. loves' Mary'y$	>
	S : loves'Mary'John'	<

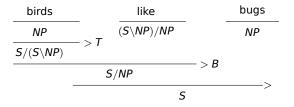
Function composition (FC)

Generalized forward composition (> Bn) X/Y: f Y/Z: g \Rightarrow_B X/Z: $\lambda x.f(gx)$ (> B)

Functional composition composes two complex categories (two functions):

$$(S \setminus NP)/PP \quad (PP/NP) \Rightarrow_B (S \setminus NP)/NP$$

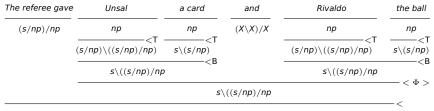
 $S/(S \setminus NP) \quad (S \setminus NP)/NP \Rightarrow_B S/NP$



25 / 43

Function composition (FC)

IA161



s

Type-raising (T)

Forward type-raising (> T) X : $a \Rightarrow T/(T \setminus X) : \lambda f.fa$ (> T)

Type-raising turns an <u>argument</u> into a <u>function</u> (e.g. for case assignment)

 $NP \Rightarrow S/(S \setminus NP)$ (nominative)

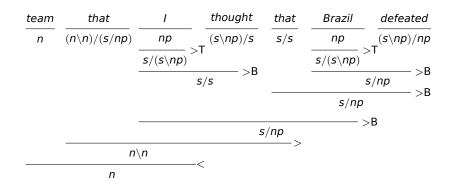
This must be used e.g. in the case of WH-questions

IA161

Syntactic Formalisms for Parsing Natural Languages

27 / 43

Example of functional composition (> B) and type-raising (T)

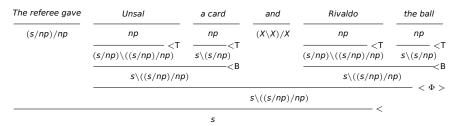


Example of functional composition (> B) and type-raising (T)

Backward type-raising (< T) $X : a \Rightarrow T \setminus (T/X) : \lambda f.fa$ (< T)

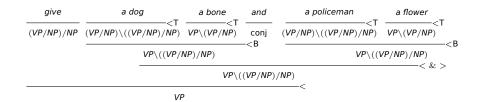
Type-raising turns an argument into a <u>function</u> (e.g. for case assignment)

 $\textit{NP} \Rightarrow (\textit{S} \ \textit{NP}) \ ((\textit{S} \ \textit{NP}) \ \textit{NP})$ (accusative)



Coordination (&)

 $X CONJ X \Rightarrow_{\Phi} X$ (Coordination(Φ))

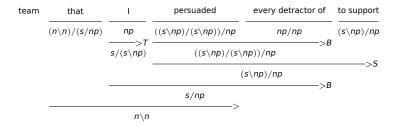


Substitution (S)

Forward substitution (> S) $(X/Y)/Z Y/Z \Rightarrow_S X/Z$

Application to parasitic gap such as the following:

a. team that I persuaded every detractor of to support



Substitution (S)

Backward crossed substitution (< S×) $Y/Z (X \setminus Y)/Z \Rightarrow_S X/Z$

Application to parasitic gap such as the following:

a. John watched without enjoying the game between Germany and Paraguay.

b. game that John watched without enjoying

game that John [watched] $(s np)/n$	$_{2}$ [without enjoying] $((s \land np) \land (s \land np))/np$
-------------------------------------	--

game	that	John	watched	without enjoying
	$\overline{(n \setminus n)/(s/np)}$	np	$\overline{(s \setminus np)/np}$	((s np) (s np))/np
		$\overline{s/(s \setminus np)}^{>1}$	(5	\sqrt{np}/np
			$s/(s \mid np)$	>B
		n∖n	>	

Limit on possible rules

The Principle of Adjacency:

Combinatory rules may only apply to entities which are linguistically realised and adjacent.

■ The Principle of Directional Consistency:

All syntactic combinatory rules must be consistent with the directionality of the principal function. ex: $X \setminus Y \neq X$

■ The Principle of Directional Inheritance:

If the category that results from the application of a combinatory rule is a function category, then the slash defining directionality for a given argument in that category will be the same as the one defining directionality for the corresponding arguments in the input functions. ex: $X/Y Y/Z \neq > X \setminus Z$.

- CCG offers a syntax-semantics interface.
- The lexical categories are augmented with an explicit identification of their semantic interpretation and the rules of functional application are accordingly expanded with an explicit semantics.
- Every syntactic category and rule has a semantic counterpart.
- The lexicon is used to pair words with syntactic categories and semantic interpretations:

love $(S \setminus NP)/NP \Rightarrow \lambda x \lambda y.loves' xy$

- The semantic interpretation of all combinatory rules is fully determined by the **Principle of Type Transparency**:
 - Categories: All syntactic categories reflect the semantic type of the associated logical form.
 - Rules: All syntactic combinatory rules are type-transparent versions of one of a small number of semantic operations over functions including application, composition, and type-raising.

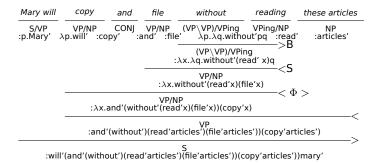
proved := $(S \setminus NP_{3s})/NP : \lambda x \lambda y. prove'xy$

the semantic type of the reduction is the same as its syntactic type, here functional application.

Marcel	proved	completeness		
NP _{3sm} : marcel'	$(S \setminus NP_{3s})/NP : \lambda x \lambda y. prove' xy$	NP : completeness'		
	$S \setminus NP_{3s} : \lambda y. prove' completeness' y$			
S : prove' completeness' marcel'				

IA161

CCG with semantics : *Mary will copy and file without reading these articles*



- Step 1: tokenization
- Step 2: tagging the concatenated lexicon

Step 3:

- calculate on types attributed to the concatenated lexicons by applying the adequate combinatorial rules
- eliminate the applied combinators (we will see how to do on next week)
- Step 4: finding the parsing results presented in the form of an operator/operand structure (predicate -argument structure)

IA161

Example: I requested and would prefer musicals STEP 1 : tokenization/lemmatization \rightarrow ex) POS Tagger, tokenizer, lemmatizer

> a. I-requested-and-would-prefer-musicals b. I-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions \rightarrow ex) Supertagger, Inventory of typed words

I NP Requested (S\NP)/NP And CONJ Would (S\NP)/VP Prefer VP/NP musicals NP

STEP 3 : categorial calculus

a. apply the type-raising rules $NP: a \Rightarrow T/(T \setminus NP): Ta$

b. apply the functional composition rules \longrightarrow Forward Composition: (> B) X/Y : f Y/Z : g \Rightarrow X/Z : Bfg

c. apply the coordination rules $X conj X \Rightarrow X$

I-	requested-	and-	would-	prefer-	musicals	
1/ NP	$(S \setminus NP) / NP$	CONJ	$(S \setminus NP) / VP$	VP/NP	NP	
$2/S/(S\setminus NP)$	$(S \setminus NP) / NP$	CONJ	$(S \setminus NP) / VP$	VP/NP	NP	(>T)
3/ <i>S</i> /(<i>S</i> \ <i>NP</i>)	$(S \setminus NP) / NP$	CONJ	$(S \setminus NP)$	/NP	NP	(>B)
4/ $S/(S \setminus NP)$	$(S \setminus NP)$	/NP			NP	(> Φ)
5/ $S/(S \setminus NP)$	$(S \setminus NP)$	/NP			NP	(>B)
6/ <i>S</i>	i/NP				NP	(>)
7/			S			

STEP 4 : semantic representation (predicate-argument structure)

I requested and would prefer musicals 1/:i' :request' :and' : will' :prefer' : musicals' 2/:λf.f l'

- 3/ : $\lambda x. \lambda y. will' (prefer'x) y$
- 4/ : $\lambda x \lambda y.and'(will'(prefer'x)y)(request'xy)$
- 5/ : $\lambda x \lambda y$.and'(will'(prefer'x)y)(request'xy)
- 6/ :λy.and'(would'(prefer' musicals')y)(request' musicals' y)

7/S: and'(will'(prefer' musicals') i')(request' musicals' i')

Variation of CCG : Multi-modal CCG (Baldridge, 2002)

- Modalized CCG system
- Combination of Categorial Type Logic (CTL, Morrill, 1994; Moortgat, 1997) into the CCG (Steedman, 2000)
- \blacksquare Rules restrictions by introducing the modalities: *, x, •, \Diamond
- Modalized functional composition rules

 Invite you to read the paper "Multi-Modal CCG" of (Baldridge and M.Kruijff, 2003)

The positions of several formalisms on the Chomsky hierarchy

