Lecture 7	
Lecture /	

Lecture 7

Syntactic Formalisms for Parsing Natural Languages

Parsing with HPSG

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář (based on slides by Juyeon Kang)

ial61@nlp.fi.muni.cz

Autumn 2013

IA161	Syntactic Formalisms for Parsing Natural Languages	1/64	IA161	Syntactic Formalisms for Parsing Natural Languages	2 / 64
Lecture 7			Lecture 7		
Overview on syntactic formalisms			Heritage of	HPSG	

Unification based grammars

■ : HPSG, LFG, TAG, UCG...

Dependency based grammars

■ : Tesnière model; Meaning-Text of Mel'čuk...

- GPSG Generalized Phrase-Structure Grammar (Gerald Gazdar)
 - linear order/hierarchy order feature structure for representation of information

LFG

- Lexicon contains
- Lexical rules

CG

Subcategorization

Lecture 7

Key points of HPSG

Syntactic representation in HPSG

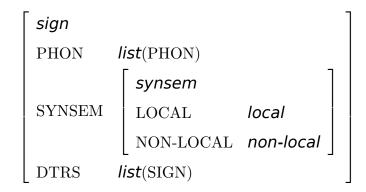
Monostratal theory without derivation

- Sharing a given information without movement and transformation
- One representation for different levels of analysis : phonology, syntax, semantic
- Constraint-based analysis
- Unification of given information
- Computational formalism

Typed feature structure

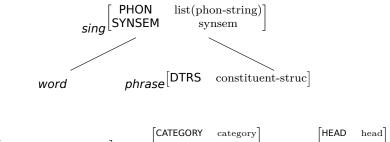
- consists of a couple "attribute/value"
- the types are organized into a hierarchy
 - ex: sign>phrase, case>nominative
- feature structure is a directed acyclic graph (DAG), with arcs representing features going between values

IA161	Syntactic Formalisms for Parsing Natural Languages Lecture 7	5 / 64	IA161	Syntactic Formalisms for Parsing Natural Languages Lecture 7	6 / 64
eatures			Types		
	ment of structure in HPSG e appropriate to a type		■ Types are ■ sign	e attributed to features -> typed features	
 Most freq PHON SYNS 	uently used features		syns head phra conte Index	se ent	
 CONT CONT HEAD SUJ COMF S-ARC 	ENT PS		 The t it The t 	these feature values is itself a complex ob type sign has the features PHON and SYNSEM feature SYNSEM has a value of type synsem type itself has relevant features (LOCAL and N	appropriate fo


7 / 64

Lecture 7	Lecture 7
Types	Types

- sign is the basic type in HPSG used to describe lexical items (of type word) and phrases (of type phrase).
- All signs carry the following two features:
 - PHON encodes the phonological representation of the sign
 - SYNSEM syntax and semantics


In attribute-value matrix (AVM) form, here is the skeleton of an object:

IA161	Syntactic Formalisms for Parsing Natural Languages	9 / 64	IA161	Syntactic Formalisms for Parsing Natural Languages	10 / 64
Lecture 7			Lecture 7		
Structure of signs in HPSG			Description	of an object in HPSG:	

- synsem introduces the features LOCAL and NONLOCAL
- local introduces CATEGORY (CAT), CONTENT (CONT) and CONTEXT(CONX)
- non-local will be discussed in connection with unbounded dependencies
- category includes the syntactic category and the grammatical argument of the word/phrase

lexical sign and phrasal sign

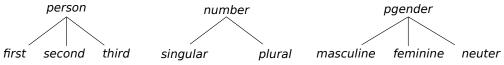
				CATEGORI	category		ILEAD	nead	
	LOCAL	local		CONTENT	content		VAL		
synsem	NON-LOCAL	non-local	local	CONTEXT	context	category	[]	

Lecture 7	Lecture 7	
CATEGORY	Sub-categorization of hea	id type

CATEGORY encode the sign's syntactic category

- Given via the feature [HEAD head], where head is the supertype for noun, verb, adjective, preposition, determiner, marker; each of these types selects a particular set of head features
- Given via the feature [VALENCE ...], possible to combine the signs with the other signs to a larger phrases


IA161	Syntactic Formalisms for Parsing Natural Languages	13 / 64	IA161	Syntactic Formalisms for Parsing Natural Languages	14 / 64	
	Lecture 7			Lecture 7		
Description	on of an object in HPSG			epresentation: CONTENT		
			(& CONTEX	T) feature		

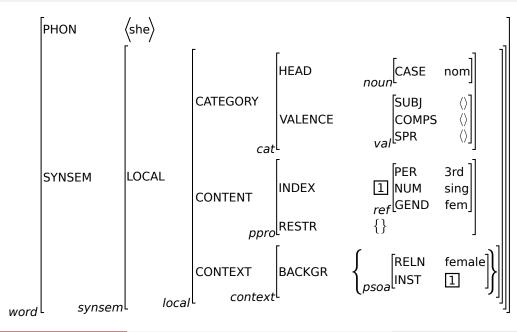


				CATEGORY	category		HEAD	head
	LOCAL	local		CONTENT	content		VAL	
synsem	NON-LOCAL	non-local	local	CONTEXT	context	category	[]

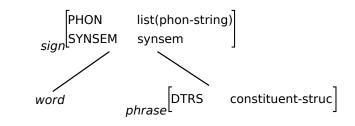
Semantic interpretation of the sign is given as the value to CONTENT

- **nominal-object**: an individual/entity (or a set of them), associated with a referring index, bearing agreement features → INDEX, RESTR
- **Parameterized-state-of-affairs** (psoa): a partial situate; an event relation along with role names for identifying the participants of the event→ BACKGR
- **quantifier**: some, all, every, a, the, . . .
- Note: many of these have been reformulated by "Minimal Recursion Semantics (MRS)" which allows underspecification of quantifier scopes.

it


Note:

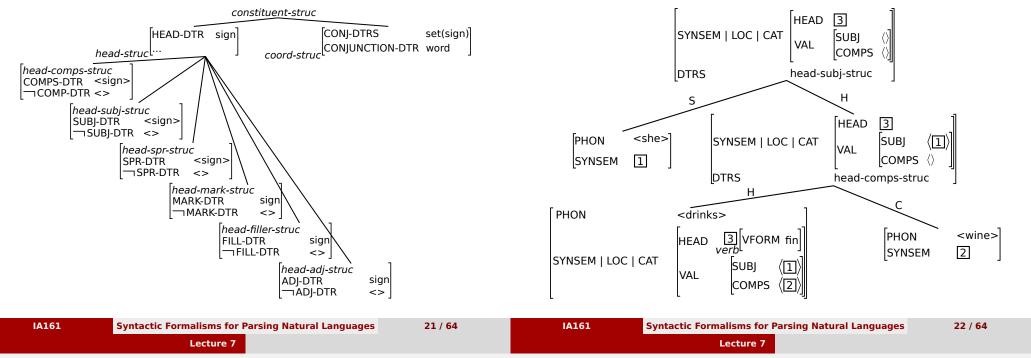
Semantic restriction on the index are represented as a value of RESTR. RESTR is an attribute of a nominal object. The value of RESTR is a set of psoa. In turn, RESTR has the attribute of REL whose value can either be referential indices or psoas.


IA161 Syntactic Formalisms for Parsing Natural Languages		17 / 64	IA161	18 / 64	
	Lecture 7		Lecture 7		
Lovies Linnut of Cho				wt of Cho	

Lexical input of She

aive^{, l}

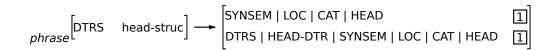
Lexical input of She



- Each phrase has a DTRS attribute which has a <u>constituent-structure</u> value
- This DTRS value corresponds to what we view in a tree as daughters (with additional grammatical role information, e.g. adjunct, complement, etc.)
- By distinguishing different kinds of <u>constituent-structures</u>, we can define different kinds of constructions in a language

Structure of phrase

head-subject/complement structure


Questions! (1)

HEAD-feature principle

How exactly did the last example work?

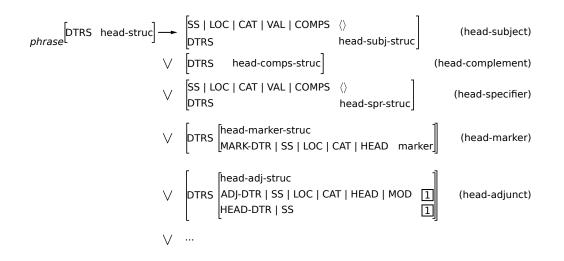
- drink has head information specifying that it is a finite verb and subcategories for a subject and an object
 - The head information gets percolated up (the HEAD feature principle)
 - The valence information gets "checked off" as one moves up in the tree (the VALENCE principle)
- Such principles are treated as linguistic universals in HPSG

The value of the HEAD feature of any headed phrase is token-identical with the HEAD value of the head daughter

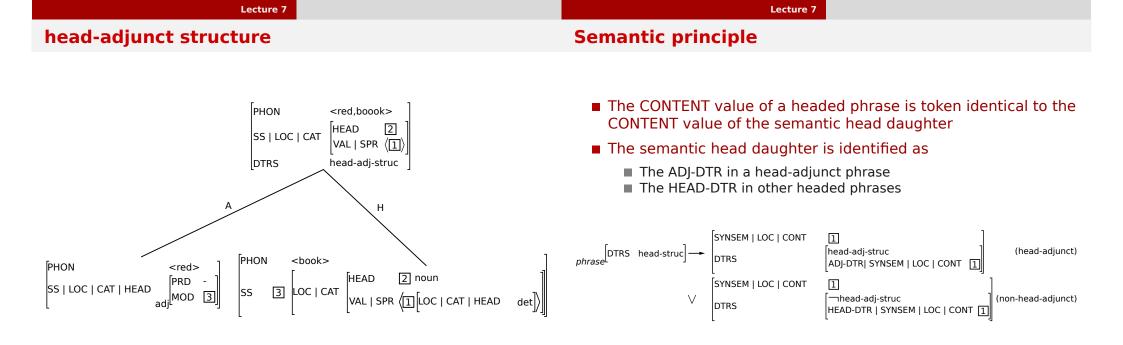
Lecture 7	Lecture 7
VALENCE principle	Questions! (2)
The sheeded physics for each valence facture T the T value of	

In a headed phrase, for each valence feature F, the F value of the head daughter is the concatenation of the phrase's F value with the list of F-DTR's SYNSEM (Pollard and Sag, 1994:348)

$$\begin{bmatrix} \text{phrase} \\ \text{SS} \mid \text{LOC} \mid \text{CAT} \mid \text{VAL} & \begin{bmatrix} \text{SUB} & [a] \\ \text{COMPS} & [b] \end{bmatrix} \\ \\ \text{DTRS} & \begin{bmatrix} \text{HEAD-DTR} & \left\langle \begin{bmatrix} \text{SS} \mid \text{LOC} \mid \text{CAT} \mid \text{VAL} \begin{bmatrix} \text{SUB} & [1] \oplus [a] \\ \text{COMPS} & [2],...,[n] \oplus [b] \end{bmatrix} \right\rangle \\ \\ \text{SUB} \text{DTR} & \left\langle \begin{bmatrix} \text{SS} \mid 1 \end{bmatrix} \right\rangle \\ \\ \text{COMP-DTR} & \left\langle \begin{bmatrix} \text{SS} \mid 2 \end{bmatrix} & ..., \begin{bmatrix} \text{ss[n]} \end{bmatrix} \right\rangle \\ \end{bmatrix}$$

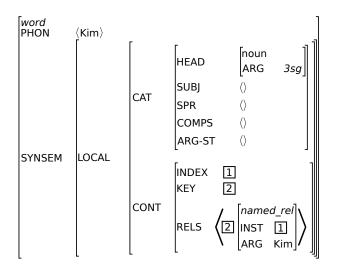

- Note: Valence Principle constrains the way in which information is shared between phrases and their head daughters.
 - F can be any one of SUBJ, COMPS, SPR
 - When the F-DTR is empty, the F valence feature of the head daughter will be copied to the mother phrase

- Note that agreement is handled neatly, simply by the fact that the SYNSEM values of a word's daughters are token-identical to the items on the VALENCE lists
- How exactly do we decide on a syntactic structure?
- Why the subject is checked off at a higher point in the tree?

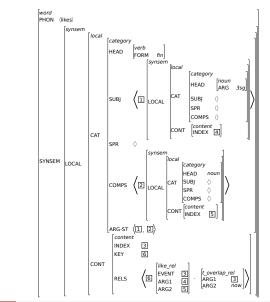

IA161	IA161 Syntactic Formalisms for Parsing Natural Languages		IA161 Syntactic Formalisms for Parsing Natural Languages		26 / 64	
	Lecture 7			Lecture 7		
Immediate	e Dominance (ID) Principle		Immediate	Dominance (ID) Schemata		

Every headed phrase must satisfy exactly one of the ID schemata

- The exact inventory of valid ID schemata is language specific
- We will introduce a set of ID schemata for English

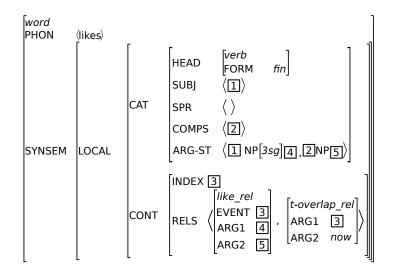


27 / 64

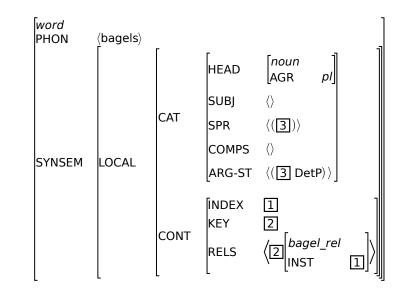


IA161	IA161 Syntactic Formalisms for Parsing Natural Languages		IA161	Syntactic Formalisms for Parsing Natural Languages	30 / 64
Lecture 7				Lecture 7	
Example 2			Example 2		

Kim likes bagels

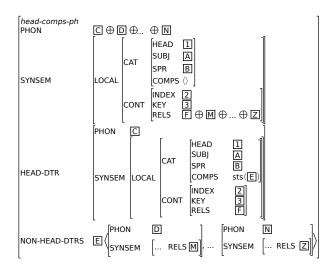


Kim **likes(1)** bagels

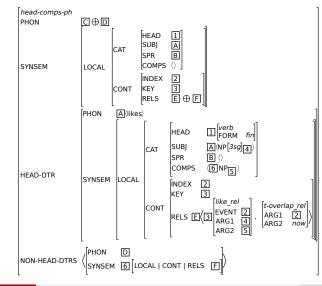


Lecture 7 Lecture 7 Example 2 Example 2

Kim likes(2) bagels

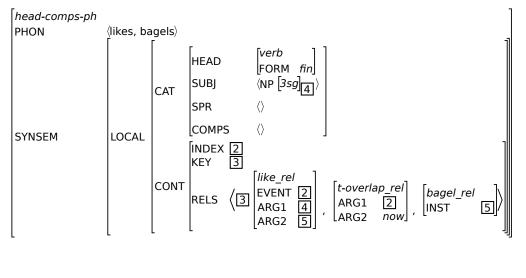


Kim likes **bagels**

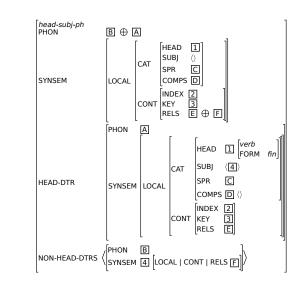


IA161 Syntactic Formalisms for Parsing Natural Languages	IA161 Syntactic Formalisms for Parsing Natural Languages 33 / 64		Syntactic Formalisms for Parsing Natural Languages	34 / 64
Lecture 7	Lecture 7			
Example 2		Example 2		

head-complement schema

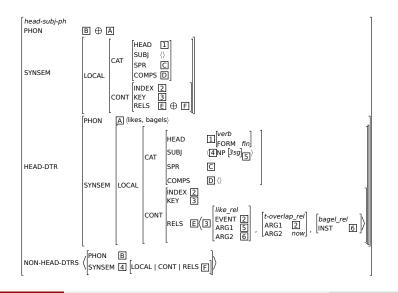


head-complement schema headed by likes

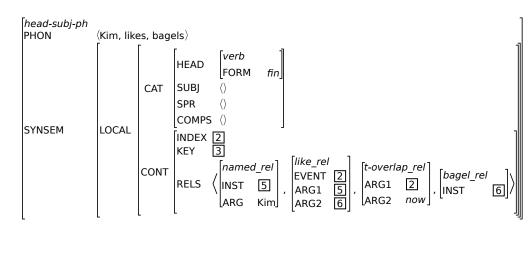


	Lecture 7		Lecture 7
Example 2		Example 2	

Kim likes bagels



head-subject schema



IA161	Syntactic Formalisms for Parsing Natural Languages	37 / 64	IA161	Syntactic Formalisms for Parsing Natural Languages	38 / 64
Lecture 7		Lecture 7			
Example 2			Example 2		

head-subject schema headed by likes bagels

Kim likes bagels

Example 2 Co	
	ompare HPSG to CFG
HEAD verb SUBJ ()	 Each sign or HPSG rule consists of SYNSEM, DTRS, and PHON parts. The SYNSEM part specifies how the syntax and semantics of the
	phrase (or word) are constrained. It corresponds roughly to the left-hand side of CFG rules but contains much more information.
SUBJ () SPR () COMPS () Image: Comps Image: Comps	The DTRS part specifies the constituents that make up the phrase (if it is a phrase). (Each of these constituents is a complete sign.) This corresponds to part of the information on the right-hand side of CFG rules, but not to ordering information.
Kim Hold Hold HEAD verb HEAD SUBJ (1) [2] SPR (2) COMPS [2] Ikes bagels	The PHON part specifies the ordering of the constituents in DTRS (where this is constrained) and the pronunciation of these (if this is specifiable). This corresponds to the the ordering information on the right-hand side of CFG rules.
IA161 Syntactic Formalisms for Parsing Natural Languages 41 / 64	IA161 Syntactic Formalisms for Parsing Natural Languages 42 / 64

Simulation of Bottom-up parsing algorithm in HPSG Example 2: processing of unification

- Unify input lexical-signs with lexical-signs in the lexicon.
- Until no more such unifications are possible
 - Unify instantiated signs with the daughters of instantiated phrasal signs or with phrasal signs in the grammar.

if

all instantiated signs but one saturated one (S) are associated with daughters of other instantiated signs and the PHON value of all instantiated signs is completely specified

return the complete S structure

<u>else</u> fail.

IA161

Kim walks

The words in the sentence specify only their pronunciations and their positions.

1 [PHON ((0 1 kim))] 2 [PHON ((1 2 walks))]

STEP 1: Unifying 1 with the lexical entry for Kim gives

3 [PHON ((0 1 kim)) SYNSEM [CAT [HEAD noun SUBCAT ()] CONTENT [INDEX 1 [PER 3rd NUM sing]] CONTEXT [BACKGR {[RELN naming BEARER 1 NAME Kim]}]]]

We now know something about the meaning of Kim (it refers to somebody named Kim) and something about its syntactic properties (it is third person singular).

Lecture 7	Lecture 7
Example 2: processing of unification	Example 2: processing of unification
1 [PHON ((0 1 kim))] 2 [PHON ((1 2 walks))] STEP 2: Unifying 2 with the lexical entry for walks gives	HEAD-DTR rule [SYNSEM [CAT [HEAD 1 SUBCAT (2)] CONTENT 4] DTRS [HEAD-DTR [SYNSEM [CAT [HEAD 1 SUBCAT (2)] CONTENT 4] PHON 3]
 4 [PHON ((1 2 walks)) SYNSEM [CAT [HEAD [VFORM fin] SUBCAT ([CAT [HEAD noun SUBCAT ()] CONTENT [INDEX 1 [PER 3rd NUM sing]]])] CONTENT [RELN walk WALKER 1]]] We know that walks refers to walking and that it requires a subject noun phrase which refers to the walker but doesn't require any object. 	SUBJ-DTRS ()] PHON 3] STEP 3: Unifying 4 with the HEAD-DTR of this rule gives 5 [SYNSEM [CAT [HEAD [VFORM fin] SUBCAT 2([CAT [HEAD noun SUBCAT ()] CONTENT 2([CAT [HEAD noun SUBCAT ()] CONTENT 4[RELN walk WALKER 1]] DTRS [HEAD-DTR [SYNSEM [CAT [HEAD [VFORM fin] SUBCAT (2)]] CONTENT [4] PHON 3((1 2 walks))] SUBJ-DTRS ()] PHON 3((1 2 walks))]
IA161 Syntactic Formalisms for Parsing Natural Languages 45 / 64 Lecture 7 Example 2: processing of unification	Now we have a VP with the transitive verb walks as its head (and only constituent). IA161 Syntactic Formalisms for Parsing Natural Languages 46 / 64 Lecture 7 Example 2: processing of unification
HEAD-DTR rule 6 [SYNSEM [CAT [HEAD 1 SUBCAT ()] CONTENT 4] DTRS [HEAD-DTR [SYNSEM [CAT [HEAD 1 SUBCAT (2)] CONTENT 4] PHON 3] SUBJ-DTRS ([PHON 5 SYNSEM 2])] PHON (5 < 3)] STEP 4: Unifying 5 with the HEAD-DTR of this rule gives 7 [SYNSEM [CAT [HEAD 1[VFORM fin SUBCAT ()]] CONTENT 4[RELN walk WALKER]]	STEP 5: Unifying 3 with the SUBJ-DTR of 7 gives 8 [SYNSEM [CAT [HEAD [VFORM fin SUBCAT ()]] CONTENT [RELN walk WALKER [PER 3rd NUM sing]]] DTRS [HEAD-DTR [SYNSEM [CAT [HEAD [VFORM fin] SUBCAT ([CAT [HEAD noun SUBCAT ()] CONTENT [INDEX [PER 3rd NUM sing]]]) CONTENT [RELN walk WALKER [PER 3rd NUM sing]]] PHON ((1 2 walks))] SUBJ-DTRS ([PHON ((0 1 kim)) SYNSEM [CAT [HEAD noun SUBCAT ()] CONTENT [INDEX [PER 3rd NUM sing]]])]
DTRS [HEAD-DTR [SYNSEM [CAT [HEAD 1[VFORM fin] SUBCAT 2([CAT [HEAD noun SUBCAT ()] CONTENT [INDEX [PER 3rd NUM sing]]])] CONTENT [RELN walk WALKER 4]] PHON 3((1 2 walks))] SUBJ-DTRS ([PHON 5 SYNSEM 2[CAT [HEAD noun SUBCAT ()] CONTENT [INDEX]]])] PHON (5 < 3((1 2 walks)))]	PHON ((0 1 kim) (1 2 walks))] Now the subject of the sentence is pronounceable, and we're done.

IA161 Syntactic Formalisms for Parsing Natural Languages

47 / 64

Lecture 7	Lecture 7		
nenomena covered by HPSG parsers	Example 3: unbounded dependency construction		
Case assignment			
 Word order : scrambling Long distance dependency Coordination Scope of adverbs and negation Topic drop Agreement Relative clause 	 An unbounded dependency construction involves constituents with different functions involves constituents of different categories is in principle unbounded Two kind of unbounded dependency constructions (UDCs) Strong UDCs Weak UDCs 		
IA161 Syntactic Formalisms for Parsing Natural Languages 49 / 64 Lecture 7	IA161 Syntactic Formalisms for Parsing Natural Languages 50 / 64 Lecture 7		
trong UDCs	Weak UDCs		
 An overt constituent occurs in a non-argument position: Topicalization: <i>Kim_i</i>, <i>Sandy loves_i</i>. Wh-questions: <i>I wonder [who_i Sandy loves_i</i>]. Wh-relative clauses: 	 No overt constituent in a non-argument position: Purpose infinitive (for -to clauses): I bought it_i for Sandy to eat_i. Tough movement: Sandy_i is hard to love i. 		

IA161

51 / 64

Lecture 7	Lecture 7
Using the feature SLASH	The bottom of a UDC: Traces

- To account for UDCs, we will use the feature SLASH (so-named because it comes from notation like S/NP to mean an S missing an NP)
- This is a non-local feature which originates with a trace, gets passed up the tree, and is finally bound by a filler

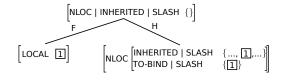
<i>word</i> PHON	$\langle \rangle$		
	LOCAL	1]
SYNSEM	NONLOC	INHERITED SLASH TO-BIND SLASH	{] } {}

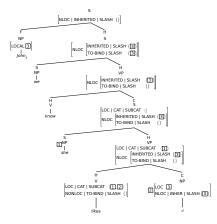
phonologically null, but structure-shares local and slash values

IA161	Syntactic Formalisms for Parsing Natural Languages	53 / 64	IA161	Syntactic Formalisms for Parsing Natural Languages	54 / 64
	Lecture 7			Lecture 7	
Traces				e of a UDC: The Nonlocal Featur	е
			Principle (NFP)	

- Because the *local* value of a trace is structure-shared with the slash value, constraints on the trace will be constraints on the filler.
 - For example, hates specifies that its object be accusative, and this case information is local
 - So, the trace has [synsem|local|cat|head|case acc] as part of its entry, and thus the filler will also have to be accusative *He_i/Him_i, John likes_ i
- For each NON-LOCAL feature, the *inherited* value on the mother is the union of the *inherited* values on the daughter minus the *to-bind* value on the head daughter.
- In other words, the slash information (which is part of inherited) percolates "up" the tree
- This allows the all the local information of a trace to "move up" to the filler

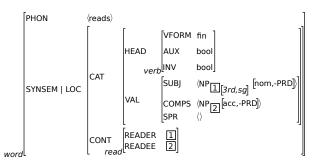
Lecture 7	Lecture 7
The middle of a UDC: The Nonlocal Feature	The middle of a UDC: The Nonlocal Feature
Principle (NFP)	Principle (NFP)

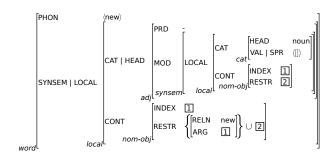

Principle (NFP)


The analysis of the UDC example

John; we know She likes ;

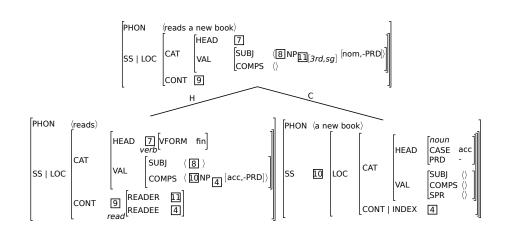
■ The top of a UDC: *filler-head* structures


Example for a structure licensed by the *filler-head* schema

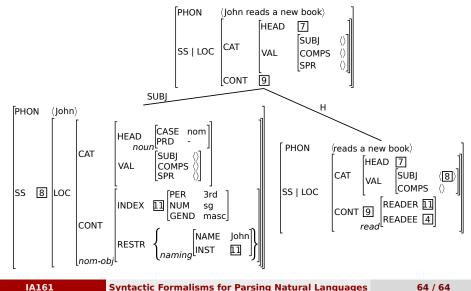


IA161	Syntactic Formalisms for Parsing Natural Languages	57 / 64	IA161	Syntactic Formalisms for Parsing Natural Languages	58 / 64
Lecture 7		Lecture 7			
Example 4			Example 4		

John **reads** a new book



John reads a *New* book



Lecture 7	Lecture 7
Example 4	Example 4
John reads a new book $I onte: apply head-adjunct schema $ $PHON (new book) (SI LOC (AT (HEAD (I))) (DOK) (I) (DOK) (I) (DOK) (I) (DOK) (I) (DOK) (I) (I) (DOK) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I$	$John reads a new book)$ $\begin{bmatrix} PHON & (a new book) \\ SS LOC & AT & HEAD \\ CONT & OT &$
IA161 Syntactic Formalisms for Parsing Natural Languages 61 / 64 Lecture 7	IA161 Syntactic Formalisms for Parsing Natural Languages 62 / 64 Lecture 7
Example 4	Example 4

John reads a new book

John reads a new book - completed analysis

