

IA161	Syntactic Formalisms for Parsing Natural Languages	1 / 29	IA161	Syntactic Formalisms for Parsing Natural Languages	2 / 29
Lecture 7		Lecture 7			
Applicative system			Combinato	rs	

CL (Curry & Feys, 1958, 1972) as an applicative system

CL is an applicative system because the basic unique operation in CL is the application of an **operator** to an **operand**

CL defines general operators, called Combinators.

- Each combinator composes between them the elementary combinators and defines the complexe combinators.
- Certains combinators are considered as the basic combinators to define the other combinators.

Lecture 7	Lecture 7	
Elementary combinators	β -reductions	

1	$=_{def}$	$\lambda \mathbf{X}.\mathbf{X}$	(identificator)
Κ	=def	$\lambda \mathbf{x}.\lambda \mathbf{y}.\mathbf{x}$	(cancellator)
W	$=_{def}$	$\lambda x. \lambda y. xyy$	(duplicator)
С	$=_{def}$	$\lambda x. \lambda y. \lambda z. xzy$	(permutator)
В	$=_{def}$	$\lambda x. \lambda y. \lambda z. x(yz)$	(compositor)
S	$=_{def}$	$\lambda x. \lambda y. \lambda z. x z(yz)$	(substitution)
Φ	$=_{def}$	$\lambda x.\lambda y.\lambda z.\lambda u.x(yu)(zu)$	(distribution)
Ψ	$=_{def}$	$\lambda x.\lambda y.\lambda z.\lambda u.x(yz)(yu)$	(distribution)

The combinators are associated with the β -reductions in a canonical form:

 β -reduction relation between X and Y

 $X \ge_{eta} Y$

Y was obtained from X by a β -reduction

IA161	Syntactic Formalisms for Parsing Natural Languages	5 / 29	IA161	Syntactic Formalisms for Parsing Natural Languages	6 / 29
β -reduction	S		β-reductio)ns	
	$egin{array}{llllllllllllllllllllllllllllllllllll$		Intuitive integiven by the The com The com The com The com duplicati The com permuta The com operator	erpretations of the elementary combined associated β -reductions. binator <i>I</i> expresses the identity. binator <i>K</i> expresses the constant function binator <i>W</i> expresses the diagonalisation on of an argument. binator <i>C</i> expresses the conversion, that tion of two arguments of an binary opera binator <i>B</i> expresses the functional compo- s.	nators are n. or the is, the itor. osition of two
Each combinator is sequences of th	an operator which has a certain number of argu e arguments which follow the comnator are calle combinator".	uments (operands); ed "the scope of	 The com duplicati The com operator The com 	binator S expresses the functional composition of argument. binator Φ expresses the composition in p s acting on the common data. binator Ψ expresses the composition by o	osition and the arallel of distribution.
IA161	Syntactic Formalisms for Parsing Natural Languages	7 / 29	IA161	Syntactic Formalisms for Parsing Natural Languages	8 / 29

	Lecture 7		Lecture 7 Introduction and elimination rules of combinators		
1	ntroduction and elimina	tion rules of combinators			
l	ntroduction and elimination ru presented in the style of Gent	ules of combinators can be zen (<i>natural deduction</i>).	Elim. Rules	Intro. Rules	
	Elim. Rules	Intro. Rules	C fx [e- C] xf	xf [i-C] Cfx	
	lf [e- l] f	f [i-l] If	Β fxy [e- Β]	f(xy) [i- B] B fxy/	
	Kfx [e- K]	f [i- K]	Φfxyz	f(xz)(yz)	

IA161	Syntactic Formalisms for Parsing Natural Languages Lecture 7	9 / 29	IA161	Syntactic Formalisms for Parsing Natural Languages Lecture 7	10 / 29
Combinators vs. λ -expressions			Application	to natural language parsing	
			Iohn is brilliai	nt	

The most important difference between the CL and λ -calculus is the use of the bounded variables.

Kfx

Every combinator is an λ -expression.

- The predicate *is brilliant* is an operator which operate on the operand John to construct the final proposition.
- The applicative representation associated to this analysis is the following:

---- [i-Φ]

12 / 29

 Φ fxyz

(is-brillant)John

■ We define the operator **John*** as being constructed from the lexicon John by

[John* = **C*** John].

- 1 John* (is-brillant)
- 2 [John* = **C*** John]
- **3 C***John (is-brillant)

----- [e-Φ]

f(xz)(yz)

f

Lecture 7	Lecture 7			
Application to natural language parsing	Passivisation			
John is brilliant in λ -term				
Operator John* by λ -expression	Consider the following sentences			
	a. The man has been killed.			
$[Jonn^* = \lambda x.x (Jonn)]$	b. One has killed him.			
1 John*($\lambda x.is$ -brilliant'(x))	ightarrow Invariant of meaning			
$2 \left[\text{lohn}^* = \lambda x.x \left(\text{lohn}' \right) \right]$	ightarrow Relation between two sentences			
$(\lambda x x(lohn'))(\lambda x is-brilliant'(x))$:a. unary passive predicate (<i>has-been-killed</i>)			
$(\lambda x is brilliant'(x))(lobp')$:b. active transitive predicate (have-killed)			
<pre>4 (AA.IS-Diminist (A))(joint)</pre>				
S IS-DHIINAL (JOHN)				

IA161	Syntactic Formalisms for Parsing Natural Languages	13 / 29	IA161	Syntactic Formalisms for Parsing Natural Languages	14 / 29
	Lecture 7		Lecture 7		
Definition o	f the operator of passivisati	on 'PASS'	Definition of	of the operator of passivisation	on 'PASS'

 $[\mathsf{PASS} = \mathsf{B} \sum \mathsf{C} = \sum \circ \mathsf{C}]$

1/	has-been-killed (the-man)	hypothesis
2/	[has-been-killed=PASS(has killed)]	passive lexical predicate
3/	PASS (has-killed)(the-man)	repl.2.,1.
4/	[PASS = B ∑ C]	definition of 'PASS'
5/	$m{B} \sum m{C}$ (has-killed)(the-man)	repl.4.,3.
6/	\sum (C (has-killed))(the-man)	[e- B]
7/	(C (has-killed)) x (the-man)	[e-∑]
8/	(has-killed)(the-main) x	[e- C]
9/	[x in the agentive subject position = one]	definition of 'one'
10/	(has-killed)(the-man) <i>one</i>	repl.9.,8., normal form

 $[PASS = B \sum C = \sum \circ C]$

where B and C are the combinator of composition and of conversion and where \sum is the existential quantificator which, by applying to a binary predicate, transforms it into the unary predicate.

Definition of the operator of passivisation 'PASS' Combinators used in CCG

- 1/ (receive-from) z y x
- 2/ **C**((receive-from) z) x y
- 3/ **BC**(receive-from) z x y
- 4/ **C(BC**(receive-from)) z x y
- 5/ C(C(BC(receive-from)) x) y z
- 6/ **BC(C(BC**(receive-from))) x y z
- 7/ [give-to=**BC(C(BC**(receive-from)))]
- 8/ give-to x y z

Motivation of applying the combinators to natural language parsing

- Linguistic: complex phenomena of natural language applicable to the various languages
- Informatics: left to right parsing (LR) ex: reduce the spurious-ambiguity

Lecture 7

Parsing a sentence in CCG

Step 1: tokenization

Step 2: tagging the concatenated lexicon

Step 3: calculate on types attributed to the concatenated lexicons by applying the adequate combinatorial rules

Step 4: eliminate the applied combinators (we will see how to do on next week)

Step 5: finding the parsing results presented in the form of an operator/operand structure (predicate -argument structure)

Parsing a sentence in CCG

Example: I requested and would prefer musicals

STEP 1 : tokenization/lemmatization \rightarrow ex) POS Tagger, tokenizer, lemmatizer

a. I-requested-and-would-prefer-musicals

b. I-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions \rightarrow ex)

Supertagger, Inventory of typed words

1	NP
Requested	$(S \setminus NP) / NP$
And	CONJ
Would	$(S \setminus NP) / VP$
Prefer	VP/NP
musicals	NP

IA161 Syntactic Formalisms for Parsing Natural Languages 21 / 29 Lecture 7	IA161 Syntactic Formalisms for Parsing Natural Languages 22 / 29 Lecture 7
Parsing a sentence in CCG	Parsing a sentence in CCG
STEP 3 : categorial calculus a. apply the type-raising rules \longrightarrow Subject Type-raising (> $NP : a \Rightarrow T/(T \setminus NP) : Ta$	STEP 4 : semantic representation (predicate-argument structure)
b. apply the functional composition rules \longrightarrow Forward Composition: ($X/Y : f Y/Z : g \Rightarrow X/Z :$ c. apply the coordination rules \longrightarrow Coordination: (< & >) $X \text{ conj } X \Rightarrow X$	B) Bfg I requested and would prefer musicals 1/ :i' :request' :and' : will' :prefer' : musicals'
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2/: $\lambda f.f I'$ 3/ : $\lambda x.\lambda y.will'(prefer'x)y$ 4/ : $\lambda x\lambda y.and'(will'(prefer'x)y)(request'xy)$ 5/ : $\lambda x\lambda y.and'(will'(prefer'x)y)(request'xy)$ 6/ : $\lambda y.and'(would'(prefer' musicals')y)(request' musicals' y)$ 7/S: and'(will'(prefer' musicals') i')(request' musicals' i')

- S/(S\NP) C*I S/(S\NP) C*I S/(S\NP) C*I S/NP	requested (S\NP)/NP (S\NP)/NP requested (S\NP reque (S Φ and	and- CONJ (CONJ (and)/NP CC sted and S\NP)/NP requeste	would- S\NP)/VP S\NP)/VP would DNJ (S\N B would	prefer VP/NP VP/NP prefer IP)/NP prefer prefer)	mus NP NP NP MP NP musica	icals (>T) sicals (>B) usicals $(>\Phi)$ als (>B)
B((C*I)(Φ and B((C*I)(Φ	requested (S and request	B would p	orefer))) n uld prefer)))	nusicals musical	S	(>)

Lecture 7

Semantic representation in term of the

combinators

1/ 2/

3/

4/

5/

6/

Semantic representation in term of the *combinators*

S:	B((C*I)(Φ and requested (B would prefer))) musicals	
1/	B((C*I)(Φ and requested (B would prefer))) musicals	
2/	(C*I)((Φ and requested (B would prefer))) musicals)	[e-B]
3/	((Φ and requested (B would prefer))) musicals) I	[e-C*]
4/	(and (requested musicals) ((B would prefer) musicals)) I	[e- Φ]
5/	((and (requested musicals) (would (prefer musicals))) [)	[e-B]

I requested and would prefer musicals

IA161	Syntactic Formalisms for Parsing Natural Languages	25 / 29	IA161	Syntactic Formalisms for Parsing Natural Languages	26 / 29
Lecture 7		Lecture 7			
Normal form	1		Normal form	n	

A <u>normal form</u> is a combinatory expression which is irreducible in the sense that it contain any occurrence of a redex.

If a combinatory expression X reduce to a combinatory expression N which is in <u>normal form</u>, so N is called the <u>normal form</u> of X.

Example

Bxyz is reducible to x(yz). x(yz) is a normal form of the combinatory expression **B**xyz.

Example						
Prove xyz is the normal form of BBC xyz.						
$BBCxyz \to_\beta xyz$						
1/	BBC xyz					
2/	C(Cx)yz	[e- B]				
3/	Cxzy	[e- C]				
4/	xyz	[e- C]				

	Lecture 7	
Classwork		

Give the semantic representation in term of combinators. Please refer to the given paper on last lecture on CCG Parsing.

Syntactic Formalisms for Parsing Natural Languages