Syntactic Formalisms for Parsing Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář (based on slides by Juyeon Kang)

ial61@nlp.fi.muni.cz

Autumn 2013

Course materials and homeworks are available on the following web site

https://is.muni.cz/course/fi/autumn2011/IA161

IA161	Syntactic Formalisms for Parsing Natural Languages	1/31	IA161	Syntactic Formalisms for Parsing Natural Languages	2 / 31
	Lecture 10		Lecture 10		
Outline			1. Introduct	ion to statistical parsing	

Introduction to Statistical parsing methods

Statistical Parsers

- RASP system
- Stanford parser
- Collins parser
- Charniak parser
- Berkeley parser

- The main theoretical approaches behind modern statistical parsers
- Over the last 12 years statistical parsing has succeeded significantly!
- NLP researchers have produced a range of statistical parsers
- \rightarrow wide-coverage and robust parsing accuracy
 - They continues to improve the parsers year on year.

IA161	Syntactic Formalisms for Parsing Natural Languages	5/31	IA161	Syntactic Formalisms for Parsing Natural Languages	6 / 31
	Lecture 10		Lecture 10		
NLP parsi	ng problem and solution		Improved r	nethodology for robust parsir	ng

NLP parsing solution

We need mechanisms that allow us to find the most likely parses

 \rightarrow statistical parsing lets us work with very loose grammars that admit millions of parses for sentences but to still quickly find the best parses

The annotated data: Penn Treebank (early 90's)

- Building a treebank seems a lot slower and less useful than building a grammar
- But it has many helpful things
 - Reusability of the labor
 - Broad coverage
 - Frequencies and distributional information
 - A way to evaluate systems

Lecture 10	Lecture 10		
Characterization of Statistical parsing	Characterization of Statistical parsing		
What the grammar which determines the set of legal syntactic			
structures for a sentence? How is that grammar obtained?	$T_{best} = arg max Score(T, S)$		
What is the algorithm for determining the set of legal parses for a sentence?	Two components:		
What is the model for determining the probability of different parses for a sentence?	 The <u>model</u>: a function Score which assigns scores (probabilities) to tree and sentence pairs The <u>parser</u>: the algorithm which implements the search for T_{best} 		
What is the algorithm, given the model and a set of possible parses which finds the best parse?			
IA161 Syntactic Formalisms for Parsing Natural Languages 9 / 31 Lecture 10	IA161 Syntactic Formalisms for Parsing Natural Languages 10 / 31 Lecture 10		
Characterization of Statistical parsing	Statistical parsing models		
Statistical parsing seen as more of a	Probabilistic approach would suggest the following for the Score function		
pattern recognition/Machine Learning problem plus	Score($T S$) - $P(T S)$		

search

The grammar is only implicitly defined by the training data and the method used by the parser for generating hypotheses Score(I,S) = P(I|S)

Lots of research on different probability models for Penn Treebank trees

Generative models, log-linear (maximum entropy) models, ...

Lecture 10	Lecture 10
2. Statistical parsers	RASP system
	Robust Accurate Statistical Parsing (2 nd release): [Briscoe&Carroll, 2002; Briscoe et al. 2006]
 Many kinds of parsers based on the statistical methods:probability, machine learning 	system for syntactic annotation of free text
Different objectives: research, commercial, pedagogical	Semantically-motivated output representation
RASP, Stanford parser, Berkeley parser,	Enhanced grammar and part-of-speech tagger lexicon
	Elovible and comi supervised training method for structural

 Flexible and semi-supervised training method for structural parse ranking model

Useful links to RASP

http://ilexir.co.uk/applications/rasp/download/ http://www.informatics.susx.ac.uk/research/groups/nlp/rasp/

IA161	Syntactic Formalisms for Parsing Natural Languages	13 / 31	IA161 Syntactic Formalisms for Parsing Natural Languages 1		14 / 31
	Lecture 10		Lecture 10		
Components of system		Component	s of system		

Input:

unannotated text or transcribed (and punctuated) speech

1st step:

sentence boundary detection and tokenisation modules

■ 2nd step:

Tokenized text is tagged with one of 150 POS and punctuation labels (derived from the CLAWS tagset)

 \rightarrow first-order ('bigram') HMM tagger

 \rightarrow trained on the manually corrected tagged version of the Susanne, LOB and BNC corpora

■ 3rd step:

Morphological analyzer

■ 4th step:

Manually developed wide-coverage tag sequence grammar in the parser

 \rightarrow 689 unification based phrase structure rules

 \rightarrow preterminals to this grammar are the POS and punctuation tags

 \rightarrow terminals are featural description of the preterminals

 \rightarrow non-terminals project information up the tree using an X-bar scheme with 41 attributes with a maximum of 33 atomic values

IA161

Lecture 10

Components of system

Components of system

■ 5th step:

Generalized LR Parser

 \rightarrow a non-deterministic LALR table is constructed automatically from CF 'backbone' compiled from the featurebased grammar

 \rightarrow the parser builds a packed parse forest using this table to guide the actions it performs

 $\begin{array}{l} \rightarrow \mbox{ the n-best parses can be efficiently} \\ \mbox{extracted by unpacking sub-analyses,} \\ \mbox{following pointers to contained} \\ \mbox{subanalyses and choosing alternatives in} \\ \mbox{order of probabilistic ranking} \\ \end{array}$

Output:

set of named grammatical relations (GRs)

 \rightarrow resulting set of ranked parses can be displayed or passed on for further processing

 $\rightarrow\,$ transformation of derivation trees into a set of named GRs

 \rightarrow GR scheme captures those aspects of predicate-argument structure

IA161	Syntactic Formalisms for Parsing Natural Languages	17 / 31	IA161	Syntactic Formalisms fo	or Parsing Natural Languages	18 / 31
	Lecture 10			Lecture 10	D	
Evaluation			Evaluatio	on		
 The system PARC dependence of the PARC dependence of te	m has been evaluated using the re-annota endency bank (DepBank, King <i>et al.</i> , 2003 of 560 sentences chosen randomly from ith grammatical relations compatible with elations lation subtype head dependent initial) relationship the head and lependent Encoding additional specifications of the type for some relations and the initial of logical relation of the grammatical so constructions such as passive	ation of the s) section 23 of n RASP	Relation I dependent aux conj ta det arg_mod mod ncmod xmod cmod pmod arg subj_or_dobj subj csubj csubj comp obj dobj obj clausal xcomp ccomp pcomp macroaverage microaverage	PrecisionRecall F_1 std GRs79.7677.4978.611069693.3391.0092.1540072.3972.2772.3359542.6151.3746.5829287.7390.4889.09111479.1875.4777.28829574.4367.7870.95390875.7269.9472.72355053.2146.6349.7017845.9530.3636.5616830.7733.3332.001277.4276.4576.94438782.3674.5178.24312778.5566.9172.27136379.1667.0672.61135433.3328.5730.77712.5050.0020.00275.8979.5377.67302479.4979.4279.46232883.6379.0881.29176423.0830.0026.092070.7776.1073.3454460.9874.4067.0267276.8877.6977.2838146.4469.4255.5529172.7366.6769.572662.1263.7762.9477.6674.9876.29	 Micro-averaged precorecall and F₁ score a calculated from the orall relations in the hi Macro-averaged score the mean of the indirectores for each relat Micro-averaged F₁ so 76.3% across all relations 	ision, re counts for erarchy res are vidual ion core of tions

A161	Syntactic Formalisms for Parsing Natural Languages	19 / 31	IA161	Syntactic Formalisms for Parsing Natural Languages	20 / 31
------	--	---------	-------	--	---------

Lecture 10

Java implementation of probabilistic natural language

parsers (version 1.6.9)

: [Klein and Manning, 2003]

Parsing system for English and has been used in Chinese,

Implementation, both highly optimized PCFG and lexicalized

http://nlp.stanford.edu/software/lex-parser.shtml

German, Arabic, Italian, Bulgarian, Portuguese

dependency parser, and lexicalized PCFG parser

http://nlp.stanford.edu:8080/parser/

Stanford parser

Useful links

Stanford parser

Input

various form of plain text

Output

Various analysis formats

 \rightarrow Stanford Dependencies (SD): typed dependencies as GRs

Lecture 10

- \rightarrow phrase structure trees
- \rightarrow POS tagged text

Graphical representation of the SD for the sentence

"Bell, based in Los Angeles, makes and distributes electronic, computer and building products."

IA161	Syntactic Formalisms for Parsing Natural Languages	21 / 31	IA161	Syntactic Formalisms for Parsing Natural Languages	22 / 31
	Lecture 10			Lecture 10	
Standford Manning, 2	typed dependencies [De Marı 2008]	mette and	Standford Manning, 2	typed dependencies [De Mari 2008]	nette and

provide a simple description of the grammatical relationships in a sentence

- represents all sentence relationships uniformly as typed dependency relations
- quite accessible to non-linguists thinking about tasks involving information extraction from text and is quite effective in relation extraction applications.

For an example sentence:

Bell, based in Los Angeles, makes and distributes electronic, computer and building products.

Stanford Dependencies (SD) representation is:

nsubj(makes-8, Bell-1) nsubj(distributes-10, Bell-1) partmod(Bell-1, based-3) nn(Angeles-6, Los-5) prep_in(based-3, Angeles-6) root(ROOT-0, makes-8) conj_and(makes-8, distributes-10) amod(products-16, electronic-11) conj_and(electronic-11, computer-13) amod(products-16, computer-13) conj_and(electronic-11, building-15) amod(products-16, building-15) dobj(makes-8, products-16) dobj(distributes-10, products-16)

Lecture 10	Lecture 10
Output	Berkeley parser
A lineup of masseurs was waiting to take the media in hand.	
POS tagged text Parsing [sent. 4 len. 13]: [A, lineup, of, masseurs, was, waiting, to, take, the, media, in, hand, .]	Learning PCFGs, statistical parser (release 1.1, version 09.2009) : [Petrov <i>et al.</i> , 2006; Petrov and Klein, 2007]
CEPSG representation(ROOT (\$ (NP (DT A) (NN lineup)) (PP (IN of) (VP (VBD was) (VP (VBG waiting) (\$ (\$ (\$ (VP (VB take) 	 Parsing system for English and has been used in Chinese, German, Arabic, Bulgarian, Portuguese, French Implementation of unlexicalized PCFG parser Useful links http://nlp.cs.berkeley.edu/ http://tomato.banatao.berkeley.edu: 8080/parser/parser.html http://code.google.com/p/berkeleyparser/
IA161 Syntactic Formalisms for Parsing Natural Languages 25 / 31 Lecture 10	IA161 Syntactic Formalisms for Parsing Natural Languages 26 / 31 Lecture 10
Comparison of parsing an example sentence	charniak parser
A lineup of masseurs was waiting to take the media in hand.	

Probabilistic LFG F-Structure Parsing : [Charniak, 2000; Bikel, 2002] Parsing system for English PCFG based wide coverage LFG parser

Useful links

http://nclt.computing.dcu.ie/demos.html
http://lfg-demo.computing.dcu.ie/lfgparser.html

Lecture 10	Lecture 10			
Collins parser	Bikel's parser			
Head-Driven Statistical Models for natural language parsing (Release 1.0, version 12.2002) : [Collins, 1999]	Multilingual statistical parsing engine (release 1.0, version 06.2008) : [Charniak, 2000; Bikel, 2002]			
Parsing system for English	Parsing system for English, Chinese, Arabic, Korean			
Useful links	http://www.cis.upenn.edu/~dbikel/#stat-parser			
http://www.cs.columbia.edu/~mcollins/code.html	<pre>http://www.cis.upenn.edu/~dbikel/software.html</pre>			
IA161 Syntactic Formalisms for Parsing Natural Languages 29 / 31	IA161 Syntactic Formalisms for Parsing Natural Languages 30 / 31			
Lecture 10				
Comparing payment an easting 22 of WCI Down				

Comparing parser spe	ed on section 23 of WS	Penn
Treebank		

Parser	Time (min.)
Collins	45
Charniak	28
Sagae	11
CCG	1.9