Study mate

Syntactic Formalisms for Parsing Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář (based on slides by Juyeon Kang)

ial61@nlp.fi.muni.cz

Autumn 2013

- Course materials and homeworks are available on the following web site: https://is.muni.cz/course/fi/autumn2011/IA161
- Refer to Dependency Parsing, Synthesis: Lectures on Human Language Technologies, S. kübler, R. McDonald and J. Nivre, 2009

IA161	IA161 Syntactic Formalisms for Parsing Natural Languages		IA161	Syntactic Formalisms for Parsing Natural Languages	2 / 31
Lecture 11			Lecture 11		
Outline			Introductio	n to Dependency parsing	

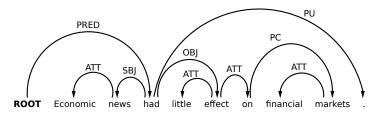
Motivation

- a. dependency-based syntactic representation seem to be useful in many applications of language technology: machine translation, information extraction
 - \rightarrow transparent encoding of predicate-argument structure
- b. dependency grammar is better suited than phrase structure grammar for language with free or flexible word order
 - \rightarrow analysis of diverse languages within a common framework
- c. leading to the development of accurate syntactic parsers for a number of languages

 \rightarrow combination with machine learning from syntactically annotated corpora (e.g. treebank)

Introd	luct	ion	to [Depend	lency	parsin	g m	eth	od	5

Dependency Parsers


Lecture 11 Introduction to Dependency parsing Definitions of de

Dependency parsing

"Task of automatically analyzing the dependency structure of a given input sentence"

Dependency parser

"Task of producing a labeled dependency structure of the kind depicted in the follow figure, where the words of the sentence are connected by typed dependency relations"

Definitions of dependency graphs and dependency parsing

Dependency graphs: syntactic structures over sentences

Def. 1.: A sentence is a sequence of tokens denoted by

Lecture 11

 $S = W_0 W_1 \dots W_n$

Def. 2.: Let $R = \{r_1, ..., r_m\}$ be a finite set of *possible* dependency relation types that can hold between any two words in a sentence. A relation type $r \in R$ is additionally called an *arc label*.

IA161	Syntactic Formalisms for Parsing Natural Languages	5 / 31	IA161	Syntactic Formalisms for Parsing Natural Languages	6/31		
	Lecture 11		Lecture 11				
	ns of dependency graphs and de	ependency	Approach to	o dependency parsing			
parsing							

Dependency graphs: syntactic structures over sentences

Def. 3.: A dependency graph G = (V, A) is a labeled directed graph, consists of nodes, V, and arcs, A, such that for sentence $S = w_0 w_1 \dots w_n$ and label set R the following holds:

 $1 \quad V \subseteq \{W_0 W_1 \dots W_n\}$

2 $\quad A \subseteq V \times R \times V$

3 if $(w_i, r, w_j) \in A$ then $(w_i, r', w_j) \notin A$ for all $r' \neq r$

a. data-driven

it makes essential use of machine learning from linguistic data in order to parse new sentences

b. grammar-based

it relies on a formal grammar, defining a formal language, so that it makes sense to ask whether a given input is in the language defined by the grammar or not.

\rightarrow Data-driven have attracted the most attention in recent years.

Lecture 11

Data-driven approach

Lecture 11

Data-driven approach

according to the type of parsing model adopted,

the algorithms used to learn the model from data the algorithms used to parse new sentences with the model

a. transition-based

start by defining a transition system, or state machine, for mapping a sentence to its dependency graph.

b. graph-based

start by defining a space of candidate dependency graphs for a sentence.

a. transition-based

- learning problem: induce a model for predicting the next state transition, given the transition history
- parsing problem: construct the optimal transition sequence for the input sentence, given induced model

b. graph-based

- learning problem: induce a model for assigning scores to the candidate dependency graphs for a sentence
- parsing problem: find the highest-scoring dependency graph for the input sentence, given induced model

IA161	IA161 Syntactic Formalisms for Parsing Natural Languages		IA161	Syntactic Formalisms for Parsing Natural Languages	10 / 31
	Lecture 11	Lecture 11			
Transition	-based Parsing		Transition-b	based Parsing	

- Transition system consists of a set C of parser configurations and of a set D of transitions between configurations.
- Main idea: a sequence of valid transitions, starting in the initial configuration for a given sentence and ending in one of several terminal configurations, defines a valid dependency tree for the input sentence.

$$\boldsymbol{D}_{1'\boldsymbol{m}} = \boldsymbol{d}_1(\boldsymbol{c}_1), \ldots, \boldsymbol{d}_{\boldsymbol{m}}(\boldsymbol{c}_{\boldsymbol{m}})$$

Definition

Score of $D_{1'm}$ factors by configuration-transition pairs (c_i, d_i) :

$$s(D_{1'm}) = \sum_{i=1}^m s(c_i, d_i)$$

■ Learning Scoring function $s(c_i, d_i)$ for $d_i(c_i) \in D_{1'm}$

■ Inference Search for highest scoring sequence $D_{1/m}^*$ given $s(c_i, d_i)$

Inference for transition-based parsing

Lecture 11

Common inference strategies:

- Deterministic [Yamada and Matsumoto 2003, Nivre et al. 2004]
- Beam search [Johansson and Nugues 2006, Titov and Henderson 2007]
- Complexity given by upper bound on transition sequence length

Transition system

- Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
- Limited non-projective O(n) [Attardi 2006, Nivre 2007]
- Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

Learning for transition-based parsing

Typical scoring function:

Transition-based Parsing

■ s(c_i, d_i) = w · f(c_i, d_i) where f(c_i, d_i) is a feature vector over configuration c_i and transition d_i and w is a weight vector [w_i = weight of featuref_i(c_i, d_i)]

Transition system

- Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
- Limited non-projective O(n) [Attardi 2006, Nivre 2007]
- Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

Problem

Learning is local but features are based on the global history

IA161	Syntactic Formalisms for Parsing Natural Languages 13 / 31		IA161 Syntactic Formalisms for Parsing Natural Langua		14 / 31
	Lecture 11			Lecture 11	
Graph-bas	ed Parsing		Graph-base	ed Parsing	

■ For a input sentence *S* we define a graph $G_s = (V_s, A_s)$ where $V_s = \{w_0, w_1, \dots, w_n\}$ and $A_s = \{(w_i, w_i, I) | w_i, w_i \in V \text{ and } I \in L\}$

Score of a dependency tree *T* factors by subgraphs G_s, \ldots, Gs :

$$s(T) = \sum_{i=1}^{m} s(G_i)$$

- Learning: Scoring function $s(G_i)$ for a subgraph $G_i \in T$
- Inference: Search for maximum spanning tree scoring sequence *T*^{*} of *G_s* given *s*(*G_i*)

Learning graph-based models

Typical scoring function:

■ s(G_i) = w · f(G_i) where f(G_i) is a high-dimensional feature vector over subgraphs and w is a weight vector [w_j = weight of feature f_j(G_i)]

Structured learning [McDonald et al. 2005a, Smith and Johnson 2007]:

Learn weights that maximize the score of the correct dependency tree for every sentence in the training set

Problem

Learning is global (trees) but features are local (subgraphs)

Lecture 11

Grammar-based approach

Lecture 11

Grammar-based approach

a. context-free dependency parsing

exploits a mapping from dependency structures to CFG structure representations and reuses parsing algorithms originally developed for CFG \rightarrow chart parsing algorithms

b. constraint-based dependency parsing

- parsing viewed as a constraint satisfaction problem
- grammar defined as a set of constraints on well-formed dependency graphs
- finding a dependency graph for a sentence that satisfies all the constraints of the grammar (having the best score)

a. context-free dependency parsing

Advantage: Well-studied parsing algorithms such as CKY, Earley's algorithm can be used for dependency parsing as well.

 \rightarrow need to convert dependency grammars into efficiently parsable context-free grammars; (e.g. bilexical CFG, Eisner and Smith, 2005)

b. constraint-based dependency parsing

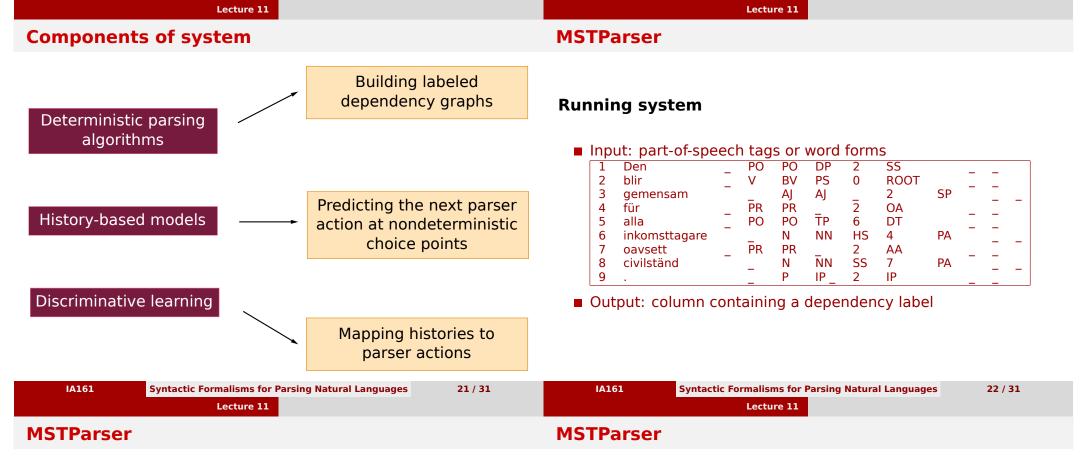
defines the problem as constraint satisfaction

- Weighted constraint dependency grammar (WCDG, Foth and Menzel, 2005)
- Transformation-based CDG

IA161	Syntactic Formalisms for Parsing Natural Languages	17 / 31	IA161	Syntactic Formalisms for Parsing Natural Languages	18 / 31
	Lecture 11	Lecture 11			
Depender	ncy parsers		MaltParser		

Trainable parsers

- Probabilistic dependency parser (Eisner, 1996, 2000)
- MSTParser (McDonald, 2006)-graph-based
- MaltParser (Nivre, 2007, 2008)-transition-based
- K-best Maximum Spanning Tree Dependency Parser (Hall, 2007)
- Vine Parser
- ISBN Dependency Parser


Parsers for specific languages defines the problem as constraint satisfaction

- Minipar (Lin, 1998)
- WCDG Parser (Foth *et al.*, 2005)
- Pro3Gres (Schneider, 2004)
- Link Grammar Parser (Lafferty et al., 1992)
- CaboCha (Kudo and Matsumoto, 2002)

Data-driven dependency parsing system (Last version, 1.6.1, J. Hall, J. Nilsson and J. Nivre)

- Transition-based parsing system
- Implementation of inductive dependency parsing
- Useful for inducing a parsing model from treebank data
- Useful for parsing new data using an induced model

Useful links http://maltparser.org

Minimum Spanning Tree Parser (Last version, 0.2, R. McDonald et al., 2005, 2006)

Graph-based parsing system

Useful links

http://www.seas.upenn.edu/strctlrn/MSTParser/MSTParser.html

Running system

Input data format: Where

			where,
w1	w2	 wn	w1 wn are the n words of the sentence (tab deliminated)
p1	p2	 pn	p1 pn are the POS tags for each word
11	12	 In	I1 In are the labels of the incoming edge to each word
d1	d2	 d2	d1 dn are integers representing the postition of each words parent

Example:

For example, the sentence "John hit the ball" would be:

John N	hit V	the D	ball N
SBJ	ROOT		MOD OBJ
2	0	4	2

24/31

Lecture 11	Lecture 11
Parser	Comparing parsing accuracy

MSTParser

Running system

Output: column containing a dependency label

		1000						~ ~				
Lä 🚞	Open	🔻 🛃 Sav	/e 📳			~ K E		Q 94				
E READ	1E 38	out.txt \$	c									
no		it	was	n't	black	monday						
UH	1	PRP	VBD	RB	33	NNP	1					
4	4	4	0	6	4	6	4					
but	while	the	new	york	stock	exchange		did	n't	fall	apart	frida
as	the	dow	jones	industr	ial		plunged		points		nost	01
it	in	the	final	hour		it	barely	nanaged	to	stay	this	side
of	chaos											
CC	IN	DT	NNP	NNP	NNP	NNP	VBD	RB	VB	RB	NNP	IN
DT	NNP	NNP	NNP	NNP	VBD	CD	NNS	1.00	JJS	IN	PRP	IN
DT	33	NN	1	PRP	RB	VBD	то	VB	DT	NN	IN	NN
8	7	7	7	7	7	8	0	8	8	10	10	10
18	18	18	18	19	33	21	19	23	21	23	24	25
29	29	26	23	33	33	8	35	33	37	35	37	38
some		circuit	breaker	s		install	ed	after	the	october		crash
failed	their	first	test		traders			unable	to	cool	the	selli
panic	1n	both	stocks	and	futures							
DT		NN	NNS		VBN	IN	DT	NNP	CD	NN	VBD	PRPS
33	NN		NNS	VBP		33	TO	VB	DT	NN	NN	IN
DT	NNS	CC .	NNS									
4	4	4	12	4	4	6	11	11	11	7	0	15
15	12	18	18	20	18	15	22	20	25	25	22	25
30	30	30	26	12								
the	<num></num>	stock	special	ist	firms	on	the	big	board	floor		the
buvers	and	sellers	of	last	resort	who	were	critici	zed	after	the	<num></num>
crash		once	again	could	n't	handle	the	selling	pressur	e		
DT	CD	NN	NN	NNS	TN	DT	NNP	NNP	NN		DT	NNS
CC	NNS	IN	33	2424	WP	VBD	VBN	IN	DT	CD	NN	
RB	RB	MD	BB	VB	DT	NN	NN					
5	5	5	5	29	5	10	10	10	6	10	15	15
15	10	15	18	10	18	19	20	21	25	25	22	21
29	29	0	29	29	34	34	31	29				
big	investr	ient	banks	refused	to	step	UD	to	the	plate	to	suppo
the	beleagu		floor	traders	by	buying	big	blocks	of	stock		trade
say					-		-					
33	NN	NNS	VBD	TO	VB	RP	то	DT	NN	TO	VB	DT
33	NN	NNS	IN	VBG	33	NNS	IN	NN		NNS	VBP	
3	3	4	0	6	4	6	6	10	8	12	10	16
16	16	12	12	17	20	18	20	21	25	25	21	4
heavy	selling	of	standar	d	6	poor	's	500-sto	ck	index	futures	in
chicago	relent	lessly	beat	stocks	downwar	d						
33	NN	IN	NNP	CC	NNP	POS	33	NN	NNS	IN	NNP	RB
	NNS	RB										

Graph-based Vs. Transition-based MST Vs. Malt

Language	MST	Malt
Arabic	66.91	66.71
Bulgarian	87.57	87.41
Chinese	85.90	86.92
Czech	80.18	78.42
Danish	84.79	84.77
Dutch	79.19	78.59
German	87.34	85.82
Japanese	90.71	91.65
Portuguese	86.82	87.60
Slovene	73.44	70.30
Spanish	82.25	81.29
Swedish	82.55	84.58
Turkish	63.19	65.68
Average	80.83	80.75

Presented in Current Trends in Data-Driven Dependency Parsing by Joakim Nivre, 2009

IA161	IA161 Syntactic Formalisms for Parsing Natural Languages		IA161	Syntactic Formalisms for Parsing Natural Languages	26 / 31	
	Lecture 11		Lecture 11			
Link Parse	er		Link Parser			

Syntactic parser of English, based on the Link Grammar (version, 4.7.4, Feb. 2011, D. Temperley, D, Sleator, J. Lafferty, 2004)

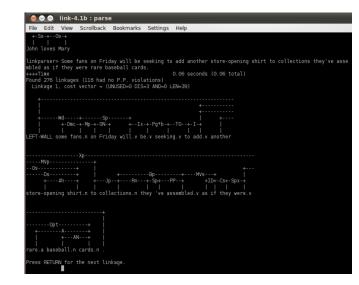
- Words as blocks with connectors + or -
- Words rules for defining the connection between the connectors
- Deep syntactic parsing system

Useful links http://www.link.cs.cmu.edu/link/index.html http://www.abisource.com/ Example of a parsing in the Link Grammar:

let's test our proper sentences!

http://www.link.cs.cmu.edu/link/submit-sentence-4.html

Lecture 11


Link Parser

John gives a book to Mary.

++++ Time	s a book to Mary.	0.00 seconds (0.	06 total)
	ad no P.P. violations) tor = (UNUSED=0 DIS=0 A	ND=0 LEN=9)	
	Vn .		
+	-Xp+ MVp+		
	0s+		
+Wd+Ss-+	+-Ds-+ +-Js+		
LEFT-WALL John gives.	v a book.n to Mary .		
Press RETURN for the linkparser>	next linkage.		
	tor = (UNUSED=0 DIS=1 #	ND=0 LEN=7)	
	-Xp+		
+Wd+Ss-+	+-Ds-+-Mp-+-Js+		
LEFT-WALL John gives.	v a book.n to Mary .		
linkparser>			

Link Parser

Some fans on Friday will be seeking to add another store-opening shirt to collections they've assembled as if they were rare baseball cards.

IA161	Syntactic Formalisms for Parsing Natural Languages	29 / 31	IA161	Syntactic Formalisms for Parsing Natural Languages	30 / 31
Lecture 11					
WCDG parser					

Weighted Constraint Dependency Grammar Parser (version, 0.97-1, May, 2011, W. Menzel, N. Beuck, C. Baumgärtner)

- incremental parsing
- syntactic predictions for incomplete sentences
- Deep syntactic parsing system

Useful links http://nats-www.informatik.unihamburg.de/view/CDG/ParserDemo