ecture	12	

Syntactic Formalisms for Parsing Natural Languages

Parsing Evaluation

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář (based on slides by Juyeon Kang)

ial61@nlp.fi.muni.cz

Autumn 2013

IA161	Syntactic Formalisms for Parsing Natural Languages	1 / 24	IA161	Syntactic Formalisms for Parsing Natural Languages	2 / 24
	Lecture 12			Lecture 12	
Parsing R	esults		Extrinsic v	s. Intrinsic Evaluation	

- usually some complex (i.e. non-scalar) structure, mostly a tree or a graph-like structure
- crucial question: how to measure the "goodness" of the result?

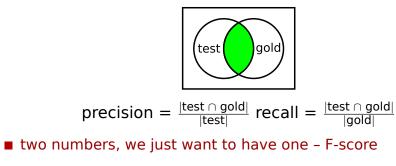
Intrinsic

■ by comparing to a "gold", i.e. correct, representation

Extrinsic

by exploiting the result in a 3rd party task and evaluating its results

Which is better?


Lecture 12	Lecture 12
Intrinsic Evaluation - Phrase-Structure Syntax	PARSEVAL metric

- i.e. compare two phrase-structure trees and tell a number
- PARSEVAL metric
- LAA (Leaf-ancestor assessment) metric

- basic idea: penalize crossing brackets in the tree
- i.e. compare all constituents in the test tree to the gold tree
- \blacksquare \Rightarrow parsing viewed as classification problem

for classification problems in NLP, the standard evaluation is by means of precision and recall

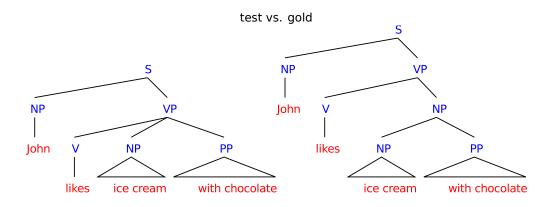
 F_1 score = $\frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

- also F-measure
- **general form:** F_{β} score

$$\mathsf{F}_{\beta} \operatorname{score} = (1 + \beta^2) \cdot \frac{\operatorname{precision} \cdot \operatorname{recall}}{(\beta^2 + \operatorname{precision}) + \operatorname{recall}}$$

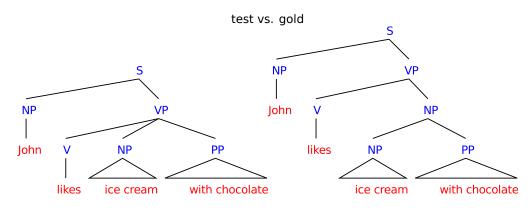
- special case of $\beta = 1$ corresponds to the harmonic mean of precision and recall
- β can be used for favouring precision over recall (for β < 1) or vice versa (for β > 1)

IA161


Lecture 12

Lecture 12

PARSEVAL metric - example


PARSEVAL metric

- basic idea: penalize crossing brackets in the tree
- i.e. compare all constituents in the test tree to the gold tree
- \blacksquare \Rightarrow parsing viewed as classification problem
- $\blacksquare \Rightarrow F\text{-score on correct bracketings/constituents}$
- might even disregard non-terminal names
- sort of standardized tool available: the evalb script at http://nlp.cs.nyu.edu/evalb/

test:[S [NP John][VP [V likes][NP ice cream] [PP with chocolate]]]
gold:[S [NP John][VP [V likes][NP [NP ice cream] [PP with chocolate]]]]
precision = 6/6 = 1.0, recall = 6/7 = 0.86, F-score = 0.92

IA161	Syntactic Formalisms for Parsing Natural Languages	9 / 24	IA161	Syntactic Formalisms for Parsing Natural Languages	10 / 24
Lecture 12		Lecture 12			
PARSEVAL metric		PARSEVAL r	netric		

test:[S [NP John][VP [V likes][NP ice cream] [PP with chocolate]]]
gold:[S [NP John][VP [V likes][NP [NP ice cream] [PP with chocolate]]]]
precision = 6/6 = 1.0, recall = 6/7 = 0.86, F-score = 0.92

- often subject to criticism (see e.g. Sampson, 2000)
- Sampson proposed another metric, the leaf-ancestor assessment (LAA)

12/24

Lecture 12	Lecture 12	
LAA metric	Intrinsic Evaluation - Dependency Syntax	(

- basic idea: for each leaf (word), compare the path to the root of the tree, compute the edit distance between both paths, finally take the average of all words
- in the previous example, the paths (lineages) are:
 - (John) NP S vs. (John) NP S
 - (likes) V VP S vs. (likes) V VP S
 - (ice cream) NP VP S vs. (ice cream) NP NP VP S
 - (with chocolate) PP VP S vs. (with chocolate) PP NP VP S

- much easier
- just precision, labeled or unlabeled (as the number of correct dependencies)

IA161	Syntactic Formalisms for Parsing Natural Languages	13 / 24	IA161	Syntactic Formalisms for Parsing Natural Languages	14 / 24
	Lecture 12			Lecture 12	
Intrinsic Evaluation - Building Treebanks		Measuring I	ΑΑ		

- treebank = a syntactically annotated text corpus
- manual annotation according to some guidelines
- from the evaluation point of view: inter-annotator agreement (IAA) is a crucial property
- naïve approach: count how many times people agreed on
- problem: it does not account for agreement by chance

15/24

Lecture 12

Chance-corrected coefficients for IAA

- S (Benett, Alpert and Goldstein, 1954)
- *π* (Scott, 1955)
- κ (Cohen, 1960)
- (there is lot of terminology confusion, we follow Ron Artstein, Massimo Poesio: Inter-coder Agreement for Computational Linguistics, 2008)
- \blacksquare *A_o* observed agreement
- *A_e* expected (chance) agreement
- for all coefficients, they compute:

$$\boldsymbol{S}, \boldsymbol{\pi}, \boldsymbol{\kappa} = \frac{\boldsymbol{A}_{o} - \boldsymbol{A}_{e}}{1 - \boldsymbol{A}_{e}}$$

Chance-corrected coefficients for IAA

- S (Benett, Alpert and Goldstein, 1954)
 - assumes that all categories and all annotators have uniform probability distribution
- π (Scott, 1955)
 - assumes that different categories have different distributions shared across annotators
- κ (Cohen, 1960)
 - assumes that different categories and different annotators have different distributions
- devised for 2 annotators, various modifications for more than 2 annotators available

IA161	Syntactic Formalisms for Parsing Natural Languages	17 / 24	IA161	Syntactic Formalisms for Parsing Natural Languages	18 / 24
	Lecture 12			Lecture 12	
Intrinsic Evaluation - Conclusions		Extrinsic Ev	aluation		

- generally not easy
- builds on the assumption of having THE correct parse
- there is evidence that it does not correlate with extrinsic evaluation, i.e. how good the tool is for some particular job

- evaluation on a particular task/application
- advantages: measures direct fitness for that task
- disadvantages: may not generalize for other tasks
- leads to crucial question: what can be parsing used for?

Lecture 12	Lecture 12
What can parsing be used for?	What can parsing be used for?

- in theory, (full) parsing is suitable/appropriate/necessary for many NLP tasks
- practically it turns out to be:
 - often not accurate enough
 - often too complicated to exploit
 - sometimes just an overkill compared to shallow parsing or yet simpler approaches

in theory, (full) parsing is suitable/appropriate/necessary for many NLP tasks

- information extraction
- information retrieval
- machine translation
- corpus linguistics
- computer lexicography
- question answering
- ····

IA161	Syntactic Formalisms for Parsing Natural Languages	21 / 24	IA161	Syntactic Formalisms for Parsing Natural Languages	22 / 24
	Lecture 12			Lecture 12	
Where is parsing actually used now?		What to eva	aluate parsing on		

prototype systems

- academia work
- production systems ???

Sample (more or less well defined) applications

- (partial) morphological disambiguation
- text correcting systems
- word sketches
- phrase extraction
- simple treebank of high IAA