Syntactic Formalisms for Parsing Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář (based on slides by Juyeon Kang) ia161@nlp.fi.muni.cz

Autumn 2013

Parsing Evaluation

2 / 24

Parsing Results

- usually some complex (i.e. non-scalar) structure, mostly a tree or a graph-like structure
- crucial question: how to measure the "goodness" of the result?

Extrinsic vs. Intrinsic Evaluation

Intrinsic

by comparing to a "gold", i.e. correct, representation

Extrinsic

by exploiting the result in a 3rd party task and evaluating its results

Which is better?

Intrinsic Evaluation - Phrase-Structure Syntax

- i.e. compare two phrase-structure trees and tell a number
- PARSEVAL metric

IA161

LAA (Leaf-ancestor assessment) metric

PARSEVAL metric

- basic idea: penalize crossing brackets in the tree
- i.e. compare all constituents in the test tree to the gold tree
- $\blacksquare \Rightarrow$ parsing viewed as classification problem

Precision, recall

IA161

 for classification problems in NLP, the standard evaluation is by means of precision and recall

two numbers, we just want to have one - F-score

$$F_1$$
 score = $\frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

F-score

- also F-measure
- **general form:** F_{β} score

$$F_{\beta}$$
 score = $(1 + \beta^2) \cdot \frac{\text{precision} \cdot \text{recall}}{(\beta^2 + \text{precision}) + \text{recall}}$

- special case of $\beta = 1$ corresponds to the harmonic mean of precision and recall
- β can be used for favouring precision over recall (for $\beta < 1$) or vice versa (for $\beta > 1$)

PARSEVAL metric

- basic idea: penalize crossing brackets in the tree
- i.e. compare all constituents in the test tree to the gold tree
- \blacksquare \Rightarrow parsing viewed as classification problem
- $\blacksquare \Rightarrow F\text{-score on correct bracketings/constituents}$
- might even disregard non-terminal names
- sort of standardized tool available: the evalb script at http://nlp.cs.nyu.edu/evalb/

PARSEVAL metric - example

test:[S [NP John][VP [V likes][NP ice cream] [PP with chocolate]]]
gold:[S [NP John][VP [V likes][NP [NP ice cream] [PP with chocolate]]]]
precision = 6/6 = 1.0, recall = 6/7 = 0.86, F-score = 0.92

PARSEVAL metric

test:[S [NP John][VP [V likes][NP ice cream] [PP with chocolate]]]
gold:[S [NP John][VP [V likes][NP [NP ice cream] [PP with chocolate]]]]
precision = 6/6 = 1.0, recall = 6/7 = 0.86, F-score = 0.92

PARSEVAL metric

- often subject to criticism (see e.g. Sampson, 2000)
- Sampson proposed another metric, the leaf-ancestor assessment (LAA)

LAA metric

- basic idea: for each leaf (word), compare the path to the root of the tree, compute the edit distance between both paths, finally take the average of all words
- in the previous example, the paths (lineages) are:
 - (John) NP S vs. (John) NP S
 - (likes) V VP S vs. (likes) V VP S
 - (ice cream) NP VP S vs. (ice cream) NP NP VP S
 - (with chocolate) PP VP S vs. (with chocolate) PP NP VP S

Intrinsic Evaluation - Dependency Syntax

much easier

IA161

 just precision, labeled or unlabeled (as the number of correct dependencies)

Intrinsic Evaluation - Building Treebanks

- treebank = a syntactically annotated text corpus
- manual annotation according to some guidelines

IA161

 from the evaluation point of view: inter-annotator agreement (IAA) is a crucial property

Measuring IAA

IA161

naïve approach: count how many times people agreed onproblem: it does not account for agreement by chance

Chance-corrected coefficients for IAA

- S (Benett, Alpert and Goldstein, 1954)
- π (Scott, 1955)
- κ (Cohen, 1960)

- (there is lot of terminology confusion, we follow Ron Artstein, Massimo Poesio: Inter-coder Agreement for Computational Linguistics, 2008)
- A_o observed agreement
- A_e expected (chance) agreement
- for all coefficients, they compute:

$$\boldsymbol{S}, \boldsymbol{\pi}, \boldsymbol{\kappa} = \frac{\boldsymbol{A}_{o} - \boldsymbol{A}_{e}}{1 - \boldsymbol{A}_{e}}$$

Chance-corrected coefficients for IAA

■ S (Benett, Alpert and Goldstein, 1954)

 assumes that all categories and all annotators have uniform probability distribution

π (Scott, 1955)

assumes that different categories have different distributions shared across annotators

κ (Cohen, 1960)

 assumes that different categories and different annotators have different distributions

devised for 2 annotators, various modifications for more than 2 annotators available

Intrinsic Evaluation - Conclusions

generally not easy

- builds on the assumption of having THE correct parse
- there is evidence that it does not correlate with extrinsic evaluation, i.e. how good the tool is for some particular job

Extrinsic Evaluation

- evaluation on a particular task/application
- advantages: measures direct fitness for that task
- disadvantages: may not generalize for other tasks
- leads to crucial question: what can be parsing used for?

What can parsing be used for?

- in theory, (full) parsing is suitable/appropriate/necessary for many NLP tasks
- practically it turns out to be:
 - often not accurate enough
 - often too complicated to exploit
 - sometimes just an overkill compared to shallow parsing or yet simpler approaches

What can parsing be used for?

in theory, (full) parsing is suitable/appropriate/necessary for many NLP tasks

- information extraction
- information retrieval
- machine translation
- corpus linguistics
- computer lexicography
- question answering
- · · · ·

Where is parsing actually used now?

- prototype systems
- academia work

IA161

production systems ???

What to evaluate parsing on

Sample (more or less well defined) applications

- (partial) morphological disambiguation
- text correcting systems
- word sketches

- phrase extraction
- simple treebank of high IAA