
.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 1 / 476

CZ.1.07/2.2.00/28.0041
Centrum interaktivních a multimediálních studijních opor pro inovaci výuky a efektivní učení

IA161 Syntactic Formalisms for Parsing Natural Languages 2 / 476

Introducing

Course objective

Introducing
theoretical backgrounds on parsing
parsing methods focused on syntax
practical implementation methods
possible applications and evaluations

IA161 Syntactic Formalisms for Parsing Natural Languages 3 / 476

Introducing

Course syllabus

PART I : Theoretical backgrounds
Historical overview
State of the art parsing methods and trends
Advanced syntactic formalisms

PART II : Practical applications
Applications & Use Cases
Practical Implementations
Parsing Evaluation

IA161 Syntactic Formalisms for Parsing Natural Languages 4 / 476

Introducing

Course format

Weekly lectures (2 hours)
Final written exam
Two homework assignments
Grading

Final exam: 60 points
Each homework: 20 points
For each homework 10 % top scoring individuals
receive 5 bonus points
Points required for colloquium: 60 points

IA161 Syntactic Formalisms for Parsing Natural Languages 5 / 476

Lecture 1

.

......
Introductive and Historical Overview

on Natural Languages Parsing

IA161
Syntactic Formalisms for
Parsing Natural Languages

IA161 Syntactic Formalisms for Parsing Natural Languages 6 / 476

Lecture 1

Main points

Introduction to Natural Language Processing
Issues in Syntax
What is a parsing?
Overview of Parsing methods and trends

IA161 Syntactic Formalisms for Parsing Natural Languages 7 / 476

Lecture 1

Why natural language processing ?

Huge amounts of data from Internet and Intranet
Applications for processing large amounts of texts need NLP
expertise

Classify text into categories
Index and search large texts
Automatic translation
Speech recognition
Information extraction
Automatic summarization
Question answering
Knowledge acquisition
Text generation/dialogues

IA161 Syntactic Formalisms for Parsing Natural Languages 8 / 476

Lecture 1

History of Natural Language Processing

1948 – 1st NLP application?

dictionary look-up system by Andrew Booth,
for machine translation purposes
developed at Birkbeck College, London
University

IA161 Syntactic Formalisms for Parsing Natural Languages 9 / 476

• So far, it turns out, they have not considered at all the problem of multiple
meaning (!), and have been concerned only with the mechanics of looking up
words in a dictionary. First, you sense the first letter of a word, and then
have the machine see whether or not the memory contains precisely the word
in question. If so, the machine simply produces the translation (…) of this
word. If this exact word is not contained in the memory, then the machine
discards the last letter of the word, and tries over. If this fails, it discards
another letter, and tries again. After it has found the largest initial
combination of letters which is in the dictionary, it “looks up” the whole
discarded portion in a special “grammatical annex” of the dictionary. Thus
confronted by “running,” it might find “run” and then find out what the
ending (n)ing does to “run.” (Warren Weaver on Booth’s machine)

• This first application shows how closely NLP stands to the origins of
computer science.

• Booth was formerly (during WWII) doing research on X-ray crystallography
of explosives. This involved lots of arithmetics, hence after WWII he tried to
develop electronic computers, the first was an Automatic Relay Calculator
(ARC) – 1946.

• In the same year he was funded by Rockefeller Foundation (RF) to visit US
researchers, reported that only von Neumann gave him any time. He got in
love with (and later married) von Neumann’s research assistant Kathleen and
redesigned ARC according to von Neumann’s architecture.

• In 1947 he visited RF’s Natural Sciences Division Director Warren Weaver,
who refused to fund a computer for mathematical calculations, but suggested
funding a computer for machine translation of natural languages (!).

• Booth developed techniques for parsing text and also for building dictionaries.
November 11, 1955 Booth gave an early public demonstration of natural
language machine translation (in Figure).

• Later on Booth was very successful in building computers, his wife Kathleen
was programming them and wrote one of the first books on programming.

• 1958 Kathleen did research on simulating neural networks to investigate ways
in which animals recognise patterns, 1959 then a neural network for character
recognition.

Lecture 1

History of Natural Language Processing

IA161 Syntactic Formalisms for Parsing Natural Languages 10 / 476

Lecture 1

History of Natural Language Processing

1949 – Warren Weaver
Natural Sciences Division Director in the Rockefeller
Foundation
Mathematician, Science Advocate
WWII code breaker
He viewed Russian as English in code – the
”Translation” memorandum

Also knowing nothing official about, but having guessed and inferred
considerable about powerful new mechanized methods in
cryptography – methods which I believe succeed even when one
does not know what language has been coded – one naturally
wonders if the problem of translation could conceivably be treated
as a problem in cryptography. When I look at an article in Russian, I
say “This is really written in English, but it has been coded in some
strange symbols. I will now proceed to decode.”

IA161 Syntactic Formalisms for Parsing Natural Languages 11 / 476

• Weaver was one of the Machine Translation pioneers and one of the most
important science managers at the time. All the time he was meeting
scientists, putting them together, organizing funding, and investigating
potential research areas; while being a top-scientist – in 1949 he co-authored
the The Mathematical Theory of Communication with Claude Shannon.

Lecture 1

History of Natural Language Processing

1966 – Over-promised under-delivered
Machine Translation worked only word by word
NLP brought the first hostility of research funding agencies

NLP gave AI a bad name before AI had a name.
All funding of NLP came to a grinding halt due to the infamous
ALPAC report.

Public spent 20 million with very limited outcomes.

1966–1976 – “A lost decade”
Revival in 1980’s

Martin Kay: The Proper Place of Men and Machines in Language
Translation

IA161 Syntactic Formalisms for Parsing Natural Languages 12 / 476

• ALPAC (Automatic Language Processing Advisory Committee) was a
committee of seven scientists led by John R. Pierce, established in 1964 by the
U. S. Government in order to evaluate the progress in computational
linguistics in general and machine translation in particular. Its report, issued
in 1966, gained notoriety for being very skeptical of research done in machine
translation so far, and emphasizing the need for basic research in
computational linguistics; this eventually caused the U. S. Government to
reduce its funding of the topic dramatically.

• ALPAC’s final recommendations were that research should be supported on:
• 1. practical methods for evaluation of translations;
• 2. means for speeding up the human translation process;
• 3. evaluation of quality and cost of various sources of translations;
• 4. investigation of the utilization of translations, to guard against production

of translations that are never read;
• 5. study of delays in the over-all translation process, and means for

eliminating them, both in journals and in individual items;
• 6. evaluation of the relative speed and cost of various sorts of machine-aided

translation;
• 7. adaptation of existing mechanized editing and production processes in

translation;
• 8. the over-all translation process; and
• 9. production of adequate reference works for the translator, including the

adaptation of glossaries that now exist primarily for automatic dictionary
look-up in machine translation

• Kay’s counterargument: “The goal of MT should not be the fully automatic
high quality translation (FAHQT) that can replace human translators.
Instead, MT should adopt less ambitious goals, e.g. more cost-effective
human-machine interaction and aim at enhancement of human translation
productivity.”

Lecture 1

NLP looked to Linguistics
Linguistics is language described, not prescribed.
Linguistics had few applicable theories for Machine Translation

1957 – Noam Chomsky’s Syntactic Structures revolutionized
Linguistics as it applies to Machine Translation.

Rule based system of syntactic structures.
Believed there are features common to all
languages that enable people to speak
creatively and freely.
Hypothesized all children go through the
same stages of language development
regardless of the language they are learning
– a concept of an innate Universal Grammar
(never proven)
One of the most prominent persons of NLP in
20th century, though very controversial.

IA161 Syntactic Formalisms for Parsing Natural Languages 13 / 476

• Avram Noam Chomsky (born December 7, 1928) is an American linguist,
philosopher, cognitive scientist, logician, and political commentator and
activist. Working for most of his life at the Massachusetts Institute of
Technology (MIT), where he is currently Professor Emeritus, he has authored
over 100 books on various subjects.

• He is credited as the creator or co-creator of the Chomsky hierarchy, the
universal grammar theory, and the Chomsky–Schützenberger theorem.
Chomsky is also well known as a political activist, and a leading critic of U.S.
foreign policy, state capitalism, and the mainstream news media. Ideologically,
he aligns himself with anarcho-syndicalism and libertarian socialism.

• Highly influential, between 1980 and 1992, Chomsky was cited within the field
of Arts and Humanities more often than any other living scholar, and eighth
overall within the Arts and Humanities Citation Index during the same
period. He has been described as a prominent cultural figure, and was voted
the ”world’s top public intellectual” in a 2005 poll.

Lecture 1

NLP looked to Linguistics

1958 – Bar-Hillel report
Concluded Fully-Automatic High-Quality Translation (FAHQT) could
not be accomplished without human knowledge.

1968 – Case Grammar (Fillmore)
“The case for case” paper
Later evolved into Frame Semantics

1970 – Augmented Transition Networks (Woods)
Procedural Semantics – Theory of the “meaning” of sentence.
Augmented Transition Network (ATN) parser

IA161 Syntactic Formalisms for Parsing Natural Languages 14 / 476

• Yehoshua Bar-Hillel was charged by the US Office of Naval Research to make
a critical assessment of current MT activity in the United States and Great
Britain. Agencies of the US government were funding research on a large and
increasing scale.

• Bar-Hillel had been the first person appointed full-time to work on MT at the
Massachusetts Institute of Technology in 1951.

• His basic contention was that MT research – now a “multimillion dollar
affair”, as he pointed out – was, with few exceptions, set on a mistaken and
unattainable goal, namely, fully automatic translation of a quality equal to
that of a good human translator. This he held to be utterly unrealistic, and in
his view resources were being wasted which could be more fruitfully be
devoted to the development of less ambitious and more practical computer
aids for translators.

• Woods: 2010 ACL Lifetime Achievement Award
• all within the LUNAR project of NASA Apollo 11 Program
• ATN parser was the first properly formalized hand-built parser that could

produce Chomsky-style deep structure analyses for a large, fluent subset of
natural English.

Lecture 1

Successful NLP Systems

1970 – Shrdlu (Terry Winograd)
Human: Pick up a big red block.
Computer: OK.
Human: Grasp the pyramid.
Computer: I don’t understand which pyramid you mean.
Human (changing their mind): Find a block which is taller than the
one you are holding and put it into the box.
Computer: By ”it”, I assume you mean the block which is taller than
the one I am holding.
Computer: OK.
Human: What does the box contain?
Computer: The blue pyramid and the blue block.
Human: What is the pyramid supported by?
Computer: The box.
Human: How many blocks are not in the box?
Computer: Four of them.
Human: Is at least one of them narrower than the one which I told
you to pick up?
Computer: Yes, the red cube.

IA161 Syntactic Formalisms for Parsing Natural Languages 15 / 476

• SHRDLU was an early natural language understanding computer program,
developed by Terry Winograd at MIT in 1968–1970. In it, the user carries on
a conversation with the computer, moving objects, naming collections and
querying the state of a simplified ”blocks world”, essentially a virtual box
filled with different blocks. SHRDLU was written in the Micro Planner and
Lisp programming language on the DEC PDP-6 computer and a DEC
graphics terminal. Later additions were made at the computer graphics labs
at the University of Utah, adding a full 3D rendering of SHRDLU’s ”world”.

• The name SHRDLU was derived from ETAOIN SHRDLU, the arrangement of
the alpha keys on a Linotype machine, arranged in descending order of usage
frequency in English.

Lecture 1

Successful NLP Systems II

1973 – Lunar question answering system (Woods)
WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN HIGH
ALKALI ROCKS?
WHAT SAMPLES CONTAIN P200?
GIVE ME THE MODAL ANALYSES OF P200 IN THOSE SAMPLES
GIVE ME EU DETERMINATIONS IN SAMPLES WHICH CONTAIN ILM

IA161 Syntactic Formalisms for Parsing Natural Languages 16 / 476

• LUNAR is an experimental natural language, information retrieval system. It
was designed to help geologists access, compare, and evaluate
chemical-analysis data on moon rock and soil composition obtained from the
Apollo-11 mission. The primary goal of the designers was research on the
problems involved in building a man-machine interface that would allow
communicate in ordinary English, A ”real world” application was chosen for
two reasons: First, it tends to focus effort on the problems really in need of
solution (sometimes this is implicitly avoided in ”toy” problems) and second,
the possibility of producing a system capable of performing a worthwhile task.

• LUNAR system operates by translating a question entered in English into an
expression in a formal query language (Codd, 1974). The translation is done
with an augmented transition network (ATN) parser coupled with a
rule-driven semantic interpretation procedure, which guides the analysis of
the question.

• The ”query” that results from this analysis is then applied to the database to
produce the answer to the request,The query language is a generalization of
the predicate calculus. Its central feature is a quantifier function that is able
to express, in a simple manner, the restrictions placed on a database-retrieval
request by the user. The function is used in concert with special enumeration
functions for classes of database objects, freeing the quantifier function from
explicit dependence on the structure of the database. LUNAR also served as
a foundation for the early work on speech understanding at BBN.

• The formal query language used by LUNAR system contains three types of
objects: designators, which name classes of objects in the database (including
functionally defined objects); propositions, which are formed from predicates
with designators as arguments; and commands, which initiates actions.

• Request: (DO MY SAMPLES HAVE GREATER THAN 13 PERCENT
ALUMINIUM
Query Language Translation (after parsing):
(TEST (FOR SOME X1 / (SEQ SAMPLES) : T ; (CONTAIN X1
NPR* X2 / ’AL203) (GREATERTHAN 13 PCT))))
Response :
YES

• LUNAR processes these request in the following three steps:
1. Syntactic analysis using an augmented transition network parser and heuristic

information (including semantics) to produce the most likely derivation tree for
the request;

2. Semantic interpretation to produce a representation of the meaning of the
request in a formal query language;

3. Execution of the query language expression on the database to produce the
answer to the request.

• LUNAR’s language processor contains an ATN grammar for a large subset of
English, the semantic rules for interpreting database requests, and a
dictionary of approximately 3,500 words. As an indication of the capabilities
of the processor, it is able to deal with tense and modality, some anaphoric
references and comparatives, restrictive relative clauses, certain adjective
modifiers and embedded complement constructions.

Lecture 1

Successful NLP Systems III

1976 – TAUM-METEO (University of Montreal)
prototype MT system for translating weather forecasts between
English and French

1985 – METEO (John Chandioux)
successor of TAUM-METEO
in operational use at Environnement Canada forecasts until 30th
of September 2001

1970 – SYSTRAN
provided translations for US Air Force’s Foreign Technology
Division
adopted by XEROX (1978)
still developed, present in wide range of systems

Google language tools
Microsoft spell check

IA161 Syntactic Formalisms for Parsing Natural Languages 17 / 476

• The METEO System is a Very High Quality Machine Translation system for
weather bulletins that has been in operational use at Environnement Canada
from 1982 to 2001. It stems from a prototype developed in 1975-76 by the
TAUM Group, known as TAUM-METEO. As many authors confuse the
prototype with the actual system, a bit of history is in order.

• The initial motivation to develop that prototype was that a junior translator
came to TAUM to ask for help in doing the extremely boring (and at the
same time difficult) job of translating weather bulletins at Environment
Canada he had to do at the moment.

• Indeed, since all official communications emanating from the Canadian
government must be available in French and English, because of the official
bilingual services act of 1968, and weather bulletins represent a large amount
of translation in real time, junior translators had to spend several months of
purgatory producing first draft translations, then revised by seniors. That
was in fact a quite difficult job, because of the specificities of the English and
French sublanguages used, and not very motivating, as the lifetime of a
bulletin is only 4 hours.

Lecture 1

Major Issues in NLP

Ambiguity in Language:
Syntactic (structural)
Semantic (word sense)
Referential

IA161 Syntactic Formalisms for Parsing Natural Languages 18 / 476

Lecture 1

Ambiguity Makes NLP difficult

Structural/Syntactic ambiguity
I saw the Grand Canyon flying to New York.
I saw the sheep grazing in the field.

Word Sense ambiguity
The man went to the bank to get some cash.
The man went to the bank and jumped in the river.

Referential ambiguity
Steve hated Paul. He hit him.
He = Steve ? or he = Paul ?

IA161 Syntactic Formalisms for Parsing Natural Languages 19 / 476

Lecture 1

Linguistics levels of analysis

Speech
Written language

Phonetics
Phonology
Morphology
Syntax
Semantics
Beyond: pragmatic, cognitive, logic…

Each level has an input and output representation, output
from one level is the input to the next, sometimes levels might
be skipped (merged) or split.

IA161 Syntactic Formalisms for Parsing Natural Languages 20 / 476

Lecture 1

Issues in syntax

Propagation of errors from lower levels – mainly morphology,
need to correctly identify the part of speech (POS)
“The man did his homework”

Who did what?
man=noun; did=verb; his=genitive; homework=noun

Identify collocations
Mother in law, hot dog, …

IA161 Syntactic Formalisms for Parsing Natural Languages 21 / 476

Lecture 1

More issues in Syntax

Anaphora resolution
“The son of my professor entered my class. He scared me.”

Preposition attachment
“I saw the man in the park with a telescope.“

IA161 Syntactic Formalisms for Parsing Natural Languages 22 / 476

Lecture 1

Syntax input and output

Input: sequence of pairs (lemma, (morphological) tag)
Output: sentence structure (tree) with annotated nodes (all
lemmas, (morpho-syntactic tags, functions) of various forms
Deals with:

The relation between lemmas & morphological categories and the
sentence structure use syntactic categories such as subject, verb,
object,…

IA161 Syntactic Formalisms for Parsing Natural Languages 23 / 476

Lecture 1

Syntactic representation

Tree structure
Two main ideas for the tree

Phrase structure (derivation tree)
Using bracketed grouping
Brackets annotated by phrase type
Heads (often) explicitly marked

Dependency structure
Basic relation: head (governor) – dependent
Links annotated by syntactic functions
Phrase structure implicitly present

IA161 Syntactic Formalisms for Parsing Natural Languages 24 / 476

Lecture 1

Dependency Tree vs. PS Tree

IA161 Syntactic Formalisms for Parsing Natural Languages 25 / 476

Lecture 1

Shallow parsing

“the man chased the bear”

“the man” “chased the bear”
Subject - - Predicate

Identify basic structures
NP-[the man] VP-[chased the bear]

IA161 Syntactic Formalisms for Parsing Natural Languages 26 / 476

Lecture 1

Full parsing

“John loves Mary“

S(Loves(John, Mary))

VP(∃x Loves(x, Mary))

Verb(∃y ∃x Loves(x, y))

loves

NP(John))

Name(John)

John

NP(Mary)

Name(Mary)

Mary

Help figuring out automatically questions like who did what
and when?

IA161 Syntactic Formalisms for Parsing Natural Languages 27 / 476

Lecture 1

What is a natural language parsing ?

One of the most commonly researched tasks in Natural
Language Processing (NLP)

Parsing, in traditional sense, is what happens when
a student takes the words of a sentences one by one, assigns
each to a part of speech, specifies its grammatical categories, and
lists the grammatical relations between words (identifying subject
and various types of object for
a verb, specifying the word with which some other word agrees,
and so on).

IA161 Syntactic Formalisms for Parsing Natural Languages 28 / 476

Lecture 1

Characteristics of parsing

Much of the history of parsing until a few decades ago can be
understood as the direct consequence of the history of
theories of grammar:

Parsing is done by human beings, rather than by physical
machines or abstract machine
What is parsed is a bit of natural language, rather than
a bit of some language-like symbolic system
Parsing is heuristic rather than algorithmic

IA161 Syntactic Formalisms for Parsing Natural Languages 29 / 476

Lecture 1

New notions of parsing

In the second half of 20th century the parsing has come to be
extended to a large collection of operations in relation with
theoretical linguistics, formal language theory, computer
science, artificial intelligence and psycholinguistics:

Parsing is the syntactic analysis of languages.
The objective of Natural Language Parsing is

to determine parts of sentences (such as verbs, noun phrases, or
relative clauses), and the relationships between them (such as
subject or object).

Unlike parsing of formally defined artificial languages (such as
Java or predicate logic), parsing of natural languages presents
problems due to ambiguity, and the productive and creative use
of language.

IA161 Syntactic Formalisms for Parsing Natural Languages 30 / 476

Lecture 1

Parsing

The grammar for Natural Language is ambiguous and typical
sentences have multiple possible analyses (syntactically and
semantically).
Some parsing tools (i.e. grammatical, morphologic, syntactic,
statistic, probabilistic, heuristic, …) help to find the most
plausible parse tree of a given sentence.

IA161 Syntactic Formalisms for Parsing Natural Languages 31 / 476

Lecture 1

Practical function of a parsing

Parsing can tell us when a sentence is in a language defined by
a grammar
Parsing makes the extraction of the information possible by
identifying relations between words, or phrases in sentences.

IA161 Syntactic Formalisms for Parsing Natural Languages 32 / 476

Lecture 1

Practical function of a parsing

Parsers are being used in a number of disciplines:
In computer science

Compiler construction, database interfaces, self-describing
databases, artificial intelligence…

In linguistics
Text analysis, corpora analysis, machine translation…

In document preparation and conversion
In typesetting chemical formulae
In chromosome recognition

IA161 Syntactic Formalisms for Parsing Natural Languages 33 / 476

Lecture 1

Practical function of a parsing

However,
Many different possible syntactic formalisms:

Regular expressions, Context-free grammars, Context-sensitive
grammars, …

Many different ways of representing the results of parsing:
Parse tree, Chart, Graph, …

IA161 Syntactic Formalisms for Parsing Natural Languages 34 / 476

Lecture 1

Historical overview of parsing methods

Basically two ways to parse a sentence
Top-down vs. Bottom-up

We can characterize the search strategy of parsing algorithms in
terms of the direction in which a structure is built:
from the words upwards (bottom-up) or
from the root node downwards (top-down)

IA161 Syntactic Formalisms for Parsing Natural Languages 35 / 476

Lecture 1

Historical overview of parsing methods

Directionality in these two ways
Directional vs. Non-directional

Non-directional top-down methods by S. Unger (1968)
Non-directional bottom-up methods by CYK
Directional top-down methods:

The predict/match automaton, Depth-first search (backtrack),
Breadth-first search (Greibach), Recursive descent, Definite Clause
grammars

Directional bottom-up methods:
The shift/reduce automaton, Depth-first search (backtrack),
Breadth-first search, restricted by Earley(1970)

IA161 Syntactic Formalisms for Parsing Natural Languages 36 / 476

Lecture 1

Historical overview of parsing methods

Methods originating at parsing of formal languages
Linear directional top-down methods:

LL(K)

Linear directional bottom-up methods:
Precedence, bounded-context, LR (k), LALR(1), SLR(1)

Methods specifically devised for parsing of natural languages
Generalized LR (Masaru Tomita)
Chart parsing (Martin Kay)

IA161 Syntactic Formalisms for Parsing Natural Languages 37 / 476

Lecture 1

Summary

Natural language parsing as one of the NLP domain
Extended notion of parsing in relation with different fields
Ambiguity of language
What is it to “parse”?
Overview of basic parsing methods

IA161 Syntactic Formalisms for Parsing Natural Languages 38 / 476

Lecture 1

References I

H. Bunt, J. Carroll & G. Satta (eds.): New Developments in Parsing
Technology, Kluwer, Dordrecht/Boston/London 2004

H. Bunt, P. Merlo, & J. Nivre (eds.): Trends in Parsing Technology:
Dependency Parsing, Domain Adaptation, and Deep Parsing, Springer
Dordrecht, Heidelberg/London/New York 2010

H. Bunt, M. Tamita (eds.): Recent advances in parsing technology,
Kluwer, Boston, 1996

G. Dick: Parsing techniques: a practical guide, Springer, 2008

Roger G. Johnson: Andrew D. Booth – Britain’s Other “Fourth Man”. In:
History of Computing. Learning from the Past, Springer Berlin
Heidelberg, 2010.

J. Hutchins: From First Conception to First Demonstration: the Nascent
Years of Machine Translation, 1947–1954. A Chronology. In: Machine
Translation, Volume 12, Issue 3, Kluwer, 1997.

IA161 Syntactic Formalisms for Parsing Natural Languages 39 / 476

Lecture 1

References II

J. Hutchins: Milestones no.6: Bar-Hillel and the nonfeasibility of FAHQT.
In: International Journal of Language and Documentation no.1, 1999.

M. Kay: The proper place of men and machines in language translation.
In: Machine Translation, Volume 12, Issue 1–2, Kluwer 1997 (reprint of
1980).

More on history of MT:
http://www.hutchinsweb.me.uk/history.htm

IA161 Syntactic Formalisms for Parsing Natural Languages 40 / 476

http://www.hutchinsweb.me.uk/history.htm

Lecture 2

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 41 / 476

Lecture 2

.

...... Basic parsing methods

IA161 Syntactic Formalisms for Parsing Natural Languages 42 / 476

Lecture 2

Main points

Context-free grammar
Parsing methods

Top-down or bottom-up
Directional or non-directional

Basic parsing algorithms
Unger
CKY (or CYK)
Left-corner parsing
Earley

IA161 Syntactic Formalisms for Parsing Natural Languages 43 / 476

Lecture 2

Ambiguity in Natural Language

Notion of ambiguity
Essential ambiguity: same syntactic structure but the semantics
differ
Spurious ambiguity: different syntactic structure but no change in
semantics

There is no unambiguous languages!

An input may have exponentially many parses
Should identify the “correct” parse

IA161 Syntactic Formalisms for Parsing Natural Languages 44 / 476

Lecture 2

Ambiguity in Natural Language

Main idea of parsing

Parsing (syntactic structure)

Input: sequence of tokens
John ate an apple

Output: parse tree

S

NP VP

NAME VERB NP

ART NOUN

John ate an apple

IA161 Syntactic Formalisms for Parsing Natural Languages 45 / 476

Lecture 2

Ambiguity in Natural Language

Basic connection between a sentence and the grammar it
derives from is the “parse tree”, which describes how the
grammar was used to produce the sentences.

For the reconstruction of this connection we need
a “parsing techniques”

IA161 Syntactic Formalisms for Parsing Natural Languages 46 / 476

Lecture 2

Ambiguity in Natural Language

Word categories: Traditional parts of speech

Noun Names of things boy, cat, truth
Verb Action or state become, hit
Pronoun Used for noun I, you, we
Adverb Modifies V, Adj, Adv sadly, very
Adjective Modifies noun happy, clever
Conjunction Joins things and, but, while
Preposition Relation of N to, from, into
Interjection An outcry ouch, oh, alas, psst

IA161 Syntactic Formalisms for Parsing Natural Languages 47 / 476

Lecture 2

Formal language

Symbolic string set which describe infinitely unlimited language
as mathematical tool for recognizing and generating languages.

Topic of formal language: finding finitely infinite languages
using rewriting system.

Three basic components of formal language: finite symbol set,
finite string set, finite formal rule set

IA161 Syntactic Formalisms for Parsing Natural Languages 48 / 476

Lecture 2

Constituency

Sentences have parts, some of which appear to have subparts.
These groupings of words that go together we will call
constituents.

(How do we know they go together?)

I hit the man with a cleaver
I hit [the man with a cleaver]
I hit [the man] with a cleaver

You could not go to her party
You [could not] go to her party
You could [not go] to her party

IA161 Syntactic Formalisms for Parsing Natural Languages 49 / 476

Lecture 2

The Chomsky hierarchy

Type 0 Languages / Grammars (LRE: Recursively enumerable
grammar)
Rewrite rules α → β
where α and β are any string of terminals and non-terminals

Type 1 Context-sensitive Languages / Grammars (LCS)
Rewrite rules αXβ → αϒβ
where X is a non-terminal, and α, ϒ, β are any string of terminals and
non-terminals, (ϒ must be non-empty but strings α and β can be
empty).

Type 2 Context-free Languages / Grammars (LCF)
Rewrite rules X → ϒ
where X is a non-terminal and ϒ is any string of terminals and
non-terminals

Type 3 Regular Languages / Grammars (LREG)
Rewrite rules X → αY
where X, Y are single non-terminals, and α is a string of terminals; Y
might be missing.

IA161 Syntactic Formalisms for Parsing Natural Languages 50 / 476

Lecture 2

The Chomsky hierarchy

Type 0 > 1 > 2 > 3

according to generative power

Superior language can generate inferior language but superior
language is more inefficient and slow than inferior language.

IA161 Syntactic Formalisms for Parsing Natural Languages 51 / 476

Lecture 2

The Chomsky hierarchy

Figure : Chomsky hierarchy

IA161 Syntactic Formalisms for Parsing Natural Languages 52 / 476

Lecture 2

Context-free grammar (Type 2)

The most common way of modeling constituency.

The idea of basing a grammar on constituent structure dates
back to Wilhem Wundt (1890), but not formalized until
Chomsky (1956), and, independently, by Backus (1959).

CFG = Context-Free Grammar = Phrase Structure Grammar=
BNF = Backus-Naur Form

IA161 Syntactic Formalisms for Parsing Natural Languages 53 / 476

Lecture 2

Context-free grammar (Type 2)

CFG rewriting rule

X →ϒ

where X is a non-terminal symbol and ϒ is string consisting of
terminals/non-terminals.

The term “Context-free” expresses the fact that the
non-terminal v can always be replaced by w, regardless of the

context in which it occurs.

IA161 Syntactic Formalisms for Parsing Natural Languages 54 / 476

Lecture 2

Context-free grammar (Type 2)

G = < T, N, S, R>

T is set of terminals (lexicon)

N is set of non-terminals (written in capital letter). S is start
symbol (one of the non-terminals)

R is rules/productions of the form X →ϒ , where X is a
non-terminal and ϒ is a sequence of terminals and
non-terminals (may be empty).

A grammar G generates a language L

IA161 Syntactic Formalisms for Parsing Natural Languages 55 / 476

Lecture 2

Example1 of Context-Free Grammar

G = < T, N, S, R>

T = { that, this, a, the, man, book, flight, meal, include, read, does }

N = { S, NP, NOM, VP, DET ,N, V, AUX }

S = S

R = {

S → NP VP Det → that | this | a | the
S → Aux NP VP N → book | flight | meal | man
S → VP V → book | include | read
NP → Det NOM AUX → does
NP → N
VP → V
VP → V NP
}

IA161 Syntactic Formalisms for Parsing Natural Languages 56 / 476

Lecture 2

Example2 of Context-Free Grammar

R1: S -> NP VP R13: DET -> his|her
R2: NP -> DET N R14: DET -> the
R3: NP -> NP PNP R15: V -> eat|serve
R4: NP -> PN R16: V -> give
R5: VP -> V R17: V -> speak|speaks
R6: VP -> V NP R18: V -> discuss
R7: VP -> V PNP R19: PN -> John|Mark
R8: VP -> V NP PNP R20: PN -> Mary|Juliette
R9: VP -> V PNP PNP R21: N -> daugther|mother
R10: PNP -> PP NP R22: N -> son|boy
R11: PP-> to|from|of R23: N -> salad|soup|meat
R12: DET -> an|a R24: N -> desert|cheese|bread

R25: ADJ -> small|kind

Simplified example of CFG = GD

IA161 Syntactic Formalisms for Parsing Natural Languages 57 / 476

Lecture 2

Example2 of Context-Free Grammar

Using the presented grammar, we make a first derivation for
the sentence “John speaks”,

S -> GD NP VP (by R1)
S -> GD PN VP (by R4)

-> GD John VP (by R19)
-> GD John V (by R5)
-> GD John speaks (by R17)

IA161 Syntactic Formalisms for Parsing Natural Languages 58 / 476

Lecture 2

Example2 of Context-Free Grammar

Another derivation of “John speaks” from GD using rule 5
before rule 4

S -> GD NP VP
S -> GD NP V

-> GD NP speaks
-> GD PN speaks
-> GD John speaks

IA161 Syntactic Formalisms for Parsing Natural Languages 59 / 476

Lecture 2

Production Rule 3

NP -> NP PNP

Because it contains the same symbol in his left and his right,
we say that the production having this property is recursive.

IA161 Syntactic Formalisms for Parsing Natural Languages 60 / 476

Lecture 2

Production Rule 3

This property of R3 involves that the language generated by
the grammar GD is infinite, because we can create the
sentences of arbitrary length by iterative application of R3.

Test
NP -> GD NP PNP -> GD NP PNP PNP -> GD NP PNP PNP
PNP….

The son of John speaks
The son of the mother of John speaks
The son of the daughter of the daughter ….of John speaks.

IA161 Syntactic Formalisms for Parsing Natural Languages 61 / 476

Lecture 2

Production Rule 3

Last remark concerning this grammar (GD)

This grammar can generate sentences which are ambiguous.
“John speaks to the daughter of Mark”

Example

1 A conversation between John and the daughter of Mark (R7)
2 A conversation about Mark between John and the daughter
(R9)

IA161 Syntactic Formalisms for Parsing Natural Languages 62 / 476

Lecture 2

Production Rule 3

VP VP

Speaks PNP V PNP PNP

Pto NP to the D of Mark

NP the daughter PNP of Mark

IA161 Syntactic Formalisms for Parsing Natural Languages 63 / 476

Lecture 2

Commonly used non-terminal abbreviations

S sentence
NP noun phrase
PP prepositional phrase
VP verb phrase
XP X phrase
N noun

PREP preposition
V verb

DET/ART determiner / article
ADJ adjective
ADV adverb
AUX auxiliary verb
PN proper noun

IA161 Syntactic Formalisms for Parsing Natural Languages 64 / 476

Lecture 2

Parsing methods

Classification of parsing methods

Top-down parsing vs. Bottom-up parsing

Directional vs. non-directional parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 65 / 476

Lecture 2

Top-down or bottom-up

Top-down parsing
The sentence from the start symbol, the production tree is
reconstructed from the top downwards
Identify the production rules in prefix order
Never explores a tree that cannot result in an S
BUT Wastes time generating trees inconsistent with the input

Bottom-up parsing
The sentence back to the start symbol
Identify the production rules in postfix order
Never generates trees that are not grounded in the input
BUT Wastes time generating trees that do not lead to an S

IA161 Syntactic Formalisms for Parsing Natural Languages 66 / 476

Lecture 2

Top-down parsing

Top-down parsing is goal-directed.
A top-down parser starts with a list of constituents to be built.
It rewrites the goals in the goal list by matching one against the
LHS of the grammar rules,
and expanding it with the RHS,
...attempting to match the sentence to be derived.

If a goal can be rewritten in several ways, then there is a choice
of which rule to apply (search problem)

Can use depth-first or breadth-first search, and goal ordering.

IA161 Syntactic Formalisms for Parsing Natural Languages 67 / 476

Lecture 2

Top-down parsing
Simulation of the operation of parser in top-down
methods

The son speaks

1 S
2 NP VP
3 DET N VP
4 4. a N VP. Fail: input begin by the. We return to DET N VP
5 the N VP
6 the daughter VP. New fail α=le N VP
……

7 the son VP
8 the son V
9 the son speaks.
……
IA161 Syntactic Formalisms for Parsing Natural Languages 68 / 476

Lecture 2

Top-down parsing

Top-down parsing example

S → NP VP
→ NAME VP
→ “John” VP
→ “John” VERV NP
→ “John” “ate” NP
→ “John” “ate” DET NOUN
→ “John” “ate” “an” NOUN
→ “John” “ate” “an” “apple”

IA161 Syntactic Formalisms for Parsing Natural Languages 69 / 476

Lecture 2

Top-down parsing
S

NP VP

(1) (2) (3)

(4) (5)

(7) (8)

(6)

NAME

S

NP VP

NAME

S

NP VP

John

VERB NPNAME

S

NP VP

John

VERB NPNAME

S

NP VP

John ate

VERB NP

ART NOUN

NAME

S

NP VP

John ate

VERB NP

ART NOUN

NAME

S

NP VP

John ate an

VERB NP

ART NOUN

NAME

S

NP VP

John ate an apple

IA161 Syntactic Formalisms for Parsing Natural Languages 70 / 476

Lecture 2

Top-down parsing

Algorithm of top-down left-right (LR) parsing

α is a primal current word, u input to be recognized.

tdlrp = main function
tdlrp (α,u)

begin
if (α = u) then return (true) fi

Α = u1……ukAΥ
while (∃A− > β) do

(β = uk+1……….uk+1
δ) with δ = ϵ ou δ = A…

if (tdlrp(u1……uk+1
δΥ) = true) then return(true) fi

od
return (false)

end

IA161 Syntactic Formalisms for Parsing Natural Languages 71 / 476

Lecture 2

Top-down parsing

Problems in top-down parsing

Left recursive rules... e.g. NP → NP PP... lead to infinite recursion
Will do badly if there are many different rules for the same LHS.
Consider if there are 600 rules for S, 599 of which start with NP,
but one of which starts with a V, and the sentence starts with a
V.
Top-down parsers do well if there is useful grammar-driven
control: search is directed by the grammar.
Top-down is hopeless for rewriting parts of speech
(preterminals) with words (terminals).

IA161 Syntactic Formalisms for Parsing Natural Languages 72 / 476

Lecture 2

Bottom-up parsing

Bottom-up parsing is data-directed.
The initial goal list of a bottom-up parser is the string to be parsed.
If a sequence in the goal list matches the RHS of a rule, then this
sequence may be replaced by the LHS of the rule.
Parsing is finished when the goal list contains just the start
symbol.

If the RHS of several rules match the goal list, then there is a
choice of which rule to apply (search problem)
Can use depth-first or breadth-first search, and goal ordering.

IA161 Syntactic Formalisms for Parsing Natural Languages 73 / 476

Lecture 2

Bottom-up parsing

Let’s suppose that we have a sentence “the son eats his soup”
in the grammar GD.

Question

How we can do to verify that the word belong to the language
generated by the grammar GD and if the answer is positive to
assign a tree?

→ The first idea can be given in the following algorithms:

IA161 Syntactic Formalisms for Parsing Natural Languages 74 / 476

Lecture 2

Bottom-up parsing

Bottom-up parsing example

“John” “ate” “an” “apple”
→ NAME “ate” “an” “apple”
→ NAME VERV “an” “apple”
→ NAME VERV DET “apple”
→ NAME VERV DET NOUN
→ NP VERV DET NOUN
→ NP VERV NP
→ NP VP
→ S

IA161 Syntactic Formalisms for Parsing Natural Languages 75 / 476

Lecture 2

Bottom-up parsing
(1) (2) (3)

(4) (5)

(7) (8)

(6)

NP

John ate an apple

NAME

John ate an apple

NAME VERB

John ate an apple

NAME VERB

ART

John ate an apple

NAME VERB

ART NOUN

John ate an apple

NAME VERB

ART NOUN

NP

VP

John ate an apple

NAME

NP

VERB

ART NOUN

NP

VP

John ate an apple

NAME

NP

VERB

ART NOUN

NP

VP

S

John ate an apple

NAME

NP

VERB

ART NOUN

IA161 Syntactic Formalisms for Parsing Natural Languages 76 / 476

Lecture 2

Bottom-up parsing

Problems with bottom-up parsing

Unable to deal with empty categories: termination problem,
unless rewriting empties as constituents is somehow restricted
(but then it’s generally incomplete)

Inefficient when there is great lexical ambiguity
(grammar-driven control might help here). Conversely, it is
data-directed: it attempts to parse the words that are there.

Both Top-down (LL) and Bottom-up (LR) parsers can (and
frequently do) do work exponential in the sentence length on
NLP problems.

IA161 Syntactic Formalisms for Parsing Natural Languages 77 / 476

Lecture 2

Left-corner parsing

Left-corner parsing
Bottom-up with top-down filtering:

combine top-down processing with bottom-up processing in order
to avoid going wrong in the ways that we are prone to go wrong
with pure top-down and pure bottom-up techniques

IA161 Syntactic Formalisms for Parsing Natural Languages 78 / 476

Lecture 2

Left-corner parsing

.Going wrong with top-down parsing..

......

S -> NP VP
NP -> DET N
NP -> PN
VP -> IV
DET -> the
N -> robber
PN -> Vincent
IV -> died

Vincent died.

IA161 Syntactic Formalisms for Parsing Natural Languages 79 / 476

Lecture 2

Left-corner parsing

.Going wrong with bottom-up parsing..

......

S -> NP VP
NP -> DET N
VP -> IV

VP -> TV NP
TV -> plant
IV -> died
DET-> the
N -> plant

The plant died.

1 DET plant died

2 DET TV IV Fail

3 DET N IV OK

4 NP VP OK

5 S

IA161 Syntactic Formalisms for Parsing Natural Languages 80 / 476

Lecture 2

Left-corner parsing

.Combining Top-down and Bottom-up Information..

......

S -> NP VP
NP -> DET N
NP -> PN
VP -> IV
DET -> the
N -> robber
PN -> Vincent
IV -> died

Vincent died.

IA161 Syntactic Formalisms for Parsing Natural Languages 81 / 476

Lecture 2

Left-corner parsing

Now, let’s look at how a left-corner recognizer would proceed
to recognize Vincent died.

1 Input: Vincent died. Recognize an S. (Top-down prediction.)
S

vincent died

2 The category of the first word of the input is PN. (Bottom-up
step using a lexical rule.)

S
PN

vincent died

IA161 Syntactic Formalisms for Parsing Natural Languages 82 / 476

Lecture 2

Left-corner parsing

3 Select a rule that has at its left corner : NP-> PN. (Bottom-up
step using a phrase structure rule.)

S
NP

PN

vincent died

4 Select a rule that has at its left corner: S->NP VP. (Bottom-up
step.)

5 Match! The left hand side of the rule matches with S, the
category we are trying to recognize.

S

NP

PN

vincent died

VP

IA161 Syntactic Formalisms for Parsing Natural Languages 83 / 476

Lecture 2

Left-corner parsing

6 Input: died. Recognize a VP. (Top-down prediction.)
7 The category of the first word of the input is IV. (Bottom-up
step.) S

NP

PN IV

vincent died

VP

8 Select a rule that has at its left corner: VP->IV. (Bottom-up step.)
9 Match! The left hand side of the rule matches with VP, the
category we are trying to recognize.

S

NP

PN IV

vincent died

VP

IA161 Syntactic Formalisms for Parsing Natural Languages 84 / 476

Lecture 2

Left-corner parsing

What is a left-corner of a rule:
the first symbol on the right hand side. For example, NP is the left
corner of the rule S → NPVP, and IV is the left corner of the rule VP
→ IV. Similarly, we can say that Vincent is the left corner of the
lexical rule PN → Vincent.

IA161 Syntactic Formalisms for Parsing Natural Languages 85 / 476

Lecture 2

Left-corner parsing

What is a left-corner of a rule:
“Predictive” parser : it uses grammatical knowledge to predict
what should come next, given what it has found already.
4 operations creating new items from old:
“Shift”, “Predict”, “Match” and “Reduce”

IA161 Syntactic Formalisms for Parsing Natural Languages 86 / 476

Lecture 2

Left-corner parsing

Definition (Corner relation)
The relation ∠ between non-terminals A and B such that B∠ A if
and only if there is a rule A → Bα, where α denotes some
sequence of grammar symbols

Definition (Left corner relation)
The transitive and reflexive closure of ∠ is denoted by ∠∗ ,
which is called left-corner relation

IA161 Syntactic Formalisms for Parsing Natural Languages 87 / 476

Lecture 2

Left-corner parsing

.Left-corner table..

......

Non Terminal Left-corners

S S NP time an VorN files

NP NP time an VorN files

VP VP VorN files VorP like

PP PP VorP like

VorN VorN files

VorP VorP like

Grammar

S → NP VP
S → S PP
NP → time
NP → an arrow
NP → VorN
VP → VorN
VP → VorP NP
PP → VorP NP
VorN → files
VorP → like

IA161 Syntactic Formalisms for Parsing Natural Languages 88 / 476

Lecture 2

How to deal with ambiguity?

Backtracking
Try all variants subsequently.

Determinism
Just choose one variant and keep it (i.,e. greedy).

Parallelism
Try all variants in parallel.

Underspecification
Do not desambiguate, keep ambiguity.

IA161 Syntactic Formalisms for Parsing Natural Languages 89 / 476

Lecture 2

Summary

One view on parsing: parsing as a phrase-structure formal
grammar recognition task
Parsing approaches: top-down, bottom-up, left-corner

IA161 Syntactic Formalisms for Parsing Natural Languages 90 / 476

Lecture 3

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 91 / 476

Lecture 3

.

...... Chart parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 92 / 476

Lecture 3

Main points

CKY algorithm
Earley parsing
General chart parsing methods

IA161 Syntactic Formalisms for Parsing Natural Languages 93 / 476

Lecture 3

Directional or non-directional

{
Directional top-down
Directional bottom-up

Non-directional top-down method

– firstly by Unger

Non-directional bottom-up
– by Cocke, Younger and Kasami (CYK, also CKY)

→ They access the input in an seemingly arbitrary order, so
they require the entire input to be in memory before pars-
ing can start

IA161 Syntactic Formalisms for Parsing Natural Languages 94 / 476

Lecture 3

Non-directional top-down methods
by Unger

Capable of working with the entire class of CFG

Expects as input a sentence and a CFG

It works by searching for partitionings of the input which
match the right hand side(RHS) of production rules.

IA161 Syntactic Formalisms for Parsing Natural Languages 95 / 476

Lecture 3

Non-directional top-down methods
by Unger

Let G denote a CF grammar and w be an input sentence.

Principle: if the input sentence w belongs to the language L(G)
it must be derivable from the start symbol S of the grammar G.

Let S be defined as: S→S1 S2…Sk
The input sentence w must be obtainable from the sequence of
symbols S1 S2…Sk in a way that S1 must derive a first part of the
input, S2 a second part, and so on.

S1 S2 Sk

W1…wp1 wp1+1…wp2….. wpk−1…wpk

IA161 Syntactic Formalisms for Parsing Natural Languages 96 / 476

Lecture 3

Non-directional bottom-up methods
as CYK

CYK is an example of chart parsing

discovered independently by Cocke, Younger and kasami

Consider which non-terminals can be used to derive substrings
of the input, beginning with shorter strings and moving up to
longer strings

1 Start with strings of length one, matching the single character in
the input strings against unit productions in the grammar

2 Then considers all substrings of length two, looking for production
with right-hand side elements that match the two characters of
the substring.

3 Continues up to longer strings

IA161 Syntactic Formalisms for Parsing Natural Languages 97 / 476

Lecture 3

Non-directional bottom-up methods
as CYK
CYK example 2

Two example sentences and their potential analysis
He [gave[the young cat][to Bill]].
He [gave [the young cat][some milk]].

The corresponding grammar rules:
VP -> Vditrans NP PPto
VP -> Vditrans NP VP

Regardless of the final sentence analysis, the ditransitive verb
(gave) and its first object NP (the young cat) will have
the same analysis
-> No need to analyze it twice.

IA161 Syntactic Formalisms for Parsing Natural Languages 98 / 476

Lecture 3

Non-directional bottom-up methods
as CYK

Solutions: chart parsing

1 Store analyzed constituents: well formed substring table or
(passive) chart

2 Partial and complete analyses: (active) chart

In other words, instead of recalculating that the young cat is
an NP, we will store that information

Dynamic programming: never go backwards

IA161 Syntactic Formalisms for Parsing Natural Languages 99 / 476

Lecture 3

CKY algorithm

program CKY Parser;
begin
for p := 1 to n do V[p, 1] := {A|A → ap ∈ P };
for q := 2 to n do

for p := 1 to n− q+ 1 do
V[p,q] = ∅;
for k :=1 to q− 1 do

V[p,q] =
V[p,q] ∪
∪ {A|A → BC ∈ P,B ∈ V[p,k],C ∈ V[p+ k,q− k]};

od
od

od
end
Complexity of CKY is O(n3)

IA161 Syntactic Formalisms for Parsing Natural Languages 100 / 476

počítá se (trojúhelníková) matice V:
• sloupce = pozice ve vstupní větě
• řádky = délky (pod)řetězců vstupní věty
• prvky = množiny neterminálů, které pokrývají odpovídající část
vstupní věty

první cyklus naplní první řádek matice
ve vnitřním cyklu se B a C vybírají vždy z už hotových políček
matice (menší řetězce) – tj. od 2. řádku už vůbec
nepracujeme se vstupní větou, jen s předchozími řádky
neznámé terminály na vstupu se ignorují

Lecture 3

CKY example

input grammar:
.
Definition..

......

S → AA|BB|AX|BY|a|b
X → SA
Y → SB
A → a
B → b

input string w = abaaba.

IA161 Syntactic Formalisms for Parsing Natural Languages 101 / 476

Lecture 3

CKY example – solution
a b a a b a

a
.Definition..

......

S → AA|BB|AX|BY|a|b
X → SA
Y → SB
A → a
B → b

p – position, q – length

q
p 1 2 3 4 5 6

1 S,A S,B S,A S,A S,B S,A
2 Y X S,X Y X
3 S ∅ Y S
4 X S ∅
5 ∅ X
6 S
IA161 Syntactic Formalisms for Parsing Natural Languages 102 / 476

nechat počítat na tabuli studenty – políčka v prvních řádcích
jdou rychleji
napsat na tabuli prázdnou matici V a do ní doplňovat.
postup: např. 2. řádek, políčko [1,2] vzniká z [1,1] a [2,1] – 4
kombinace SS,SB,AS,AB → v gramatice je jen SB, tj. Y.
kombinace se vždycky počítají ze dvou políček, které se
pohybují ve “véčku” nad počítaným polem.
∅ v políčku znamená, že příslušný podřetězec nejde
vygenerovat z žádného pravidla gramatiky.
složitost CKY je vždycky O(n3) na rozdíl od ostatních, kde je
jen Ω(n3)
výsledek = true/false podle toho, jestli je v políčku dole
kořen. pro generování stromů z CKY tabulky bychom si
museli pamatovat v každém políčku, z jakých políček vznikl
který neterminál.

Lecture 3

CKY online demo

http://www.diotavelli.net/people/void/demos/cky.html

IA161 Syntactic Formalisms for Parsing Natural Languages 103 / 476

http://www.diotavelli.net/people/void/demos/cky.html

Lecture 3

DCG

DCG=
Definite Clause Grammars

Syntactic shorthand for producing parsers with Prolog clauses:
Prolog-based parsing

Represent the input with difference lists: two lists with the first
containing the input to parse (a suffix of the entire input string)
and the second containing the string remaining after a
successful parse.

These two lists correspond to the input and output variables of the
clauses.
Each clause corresponds to a non-terminal in the grammar.

IA161 Syntactic Formalisms for Parsing Natural Languages 104 / 476

Lecture 3

Earley parser

Jay Earley, 1968

Strong resemblance to LR parsing but more dynamic

Work with what are called Earley items
Earley item is a production augmented with a marker inserted at
some point in the production’s right hand side and a number to
indicate where in the input matching of the production began.
Earley item sets are constructed by applying three operations to
the current list of Earley item sets: scanner, predictor, completor

IA161 Syntactic Formalisms for Parsing Natural Languages 105 / 476

Lecture 3

Earley algorithm

Repeat until no new item can be added:
1 Prediction
For every state in agenda of the form (X → α • Y β, j), add
(Y → • γ, k) to agenda for every production in the grammar with
Y on the left-hand side (Y → γ).

2 Scanning
If a is the next symbol in the input stream, for every state in
agenda of the form (X → α • a β, j), add (X → α a • β, j) to
agenda.

3 Completion
For every state in agenda of the form (X → γ •, j), find states in
agenda of the form (Y → α • X β, i) and add (Y → α X • β, i) to
agenda.

IA161 Syntactic Formalisms for Parsing Natural Languages 106 / 476

Lecture 3

Earley algorithm

Earley’s example
A pointed rule (Marker) is a production increased by a point.
The point indicates the current state of application of the rule

The girl speaks
S->•GN GV
S->GN•GV
GN-> • GN GNP
GN->GN•GNP

1 2 3 4
DET->the. N->girl. V->speaks.

IA161 Syntactic Formalisms for Parsing Natural Languages 107 / 476

Lecture 3

Earley algorithm

4 S->NP•VP V -> speaks•
3 S->NP•VP, NP->NP•NPP N -> girl•
2 DET->the•, NP->DET•N

1 2 3
The girl speaks

IA161 Syntactic Formalisms for Parsing Natural Languages 108 / 476

Lecture 3

Chart parsing

The Earley parser can be modified to work bottom-up or
head-corner
⇒ a variety of chart parsing algorithms (Kay, 1980)

IA161 Syntactic Formalisms for Parsing Natural Languages 109 / 476

Lecture 3

Chart parsing

Three basic approaches:
top-down
bottom-up
head-driven

No constraints on the CF grammar
Chart parsers usually contain two data structures chart and
agenda, both of contain which contain edges.
Edge is a triple [A→ α•β, i, j], where:

i, j ∈ N, 0 ≤ i ≤ j ≤ n for n input words
A → αβ is a grammar rule

0 a 1 b 2 a 3 a 4 b 5 a 6

[A → BC •DE, 0, 3]

IA161 Syntactic Formalisms for Parsing Natural Languages 110 / 476

Lecture 3

General chart parser

program Chart Parser;
begin

initialize (CHART);
initialize (AGENDA);
while (AGENDA not empty) do

E := take edge from AGENDA;
for each (edge F, which can be created by
the edge E and another edge from CHART) do
if ((F is not in AGENDA) and (F is not in CHART) and
(F is different from E)
then add F to AGENDA;

fi;
od;
add E to CHART;

od;
end;

IA161 Syntactic Formalisms for Parsing Natural Languages 111 / 476

tato struktura programu je společná všem typům chart
parserů. ty se navzájem liší v:
1. jak se inicializuje

2. jak se vybírá F
dá se to udělat i jinak (bez agendy), ale tato metoda je
nejčastější
proč se nezacyklí:
1. hran je konečný počet
2. každou hranu projde maximálně jednou

Lecture 3

Top-down approach

Initialization:
∀ p ∈ P | p = S → α add edge [S→ •α, 0, 0] to agenda.
startup chart is empty.

Iteration – take edge E from agenda and then:
a) (fundamental rule) if E is in the form of [A→ α•, j, k], then for
each edge [B→ γ• A β, i, j] in the chart, create an edge [B→ γ A
•β, i, k].

b) (closed edges) if E is in the form of [B→ γ• A β, i, j], then for each
edge [A→ α•, j, k] in the chart, create an edge [B → γ A •β, i, k].

c) (read terminal) if E is in the form of [A→ α•aj+1β, i, j], create an
edge [A → α aj+1•β, i, j+1].

d) (prediction) if E is in the form of [A→ α• B β, i, j] then for each
grammar rule B→ γ ∈ P, create an edge [B→ • γ, i, i].

IA161 Syntactic Formalisms for Parsing Natural Languages 112 / 476

Lecture 3

Example – chart parsing

Grammar:
S → CLAUSE

CLAUSE → V OPTPREP N
OPTPREP → ϵ
OPTPREP → PREP

V → jel
PREP → kolem

N → domu
N → kolem

Sentence:
”jel kolem domu” (a1=jel, a2=kolem, a3=domu).

IA161 Syntactic Formalisms for Parsing Natural Languages 113 / 476

Lecture 3

Example – chart after top-down analysis

jel kolem domu
00 11 22 33

NN→ dom u.PREP→ kolem .VV→ je l.

NN→ kolem .

SS→ .CLAU SE

CLAU SE→ V O PTPREP . N

O PTPREP→ PREP ..

CLAUSE→ V . OPTPREP N

CLAU SE→ . V O PTPREP N O PTPREP→ ..

O PTPREP→ .PREP
CLAUSE→ V OPTPREP . N

CLAU SE→ V O PTPREP N .

SS→ CLAU SE .

SS→ CLAU SE .

CLAU SE→ V O PTPREP N .

IA161 Syntactic Formalisms for Parsing Natural Languages 114 / 476

1. inicializace
2. predikce – aplikace d)
3. predikce – aplikace d)
4. terminal – aplikace c)
5. uzavrena hrana – aplikace a)
6. …
7. v posledním – vynechané ϵ-hrany (nevešly by se)

složitost – počet pravidel bereme jako konstantu → pak
máme podle délky vstupu n celkem n2 možných hran a v
každém kroku zpracujem až n hran → O(n3).

Lecture 3

Bottom-up approach
Initialization:

∀ p ∈ P | p = A→ ϵ add edges [A→ •, 0, 0], [A→ •, 1, 1], ..., [A→ •,
n, n] to agenda.
∀ p ∈ P | p = A→ aiα add edge [A→ •aiα, i-1, i-1] to agenda.
startup chart is empty.

Iteration – take an edge E from agenda and then:
a) (fundamental rule) if E is in the form of [A→ α•, j, k], then for
each edge [B→ γ• A β, i, j] in the chart, create an edge [B→ γ A
•β, i, k].

b) (closed edges) if E is in the form of [B→ γ• A β, i, j], then for each
edge [A→ α•, j, k] in the chart, create an edge [B → γ A •β, i, k].

c) (read terminal) if E is in the form of [A→ α•aj+1β, i, j], then create
an edge [A → α aj+1•β, i, j+1].

d) (prediction) if E is in the form of [A→ α•, i, j], then for each
grammar rule B→Aγ create an edge [B→ •Aγ, i, i].

IA161 Syntactic Formalisms for Parsing Natural Languages 115 / 476

a), b) a c) jsou stejné jako u shora dolů, liší se jen v d).
většinou vytváří víc nadbytečných hran.

Lecture 3

Head-driven chart parsing

Rule head – any particular right-hand side non-terminal E.g. in
the rule CLAUSE → V OPTPREP N heads can be V, OPTPREP, N.
An edge is a triple [A→ α•β•γ, i, j], where i, j ∈ N, 0 ≤ i ≤ j ≤ n for
n input words, A→ αβγ is a grammar rule and the head is in β.
The algorithm (bottom-up approach) is very similar to the
previous simpler one. The analysis does not go left to right, but
begins on the head of each rule instead.

IA161 Syntactic Formalisms for Parsing Natural Languages 116 / 476

Lecture 3

Head-driven chart parsing

Initialization
∀ p ∈ P | p = A→ ϵ add edges [A→ ••, 0, 0], [A→ ••, 1, 1], ...,
[A→ ••, n, n] to agenda.
∀ p ∈ P | p = A→ αaiβ (ai is rule head) add edge [A→ α•ai•β, i-1,
i] to agenda.
startup chart is empty.

IA161 Syntactic Formalisms for Parsing Natural Languages 117 / 476

Lecture 3

Head-driven chart parsing
Iteration – take and edge E from agenda and then:
a1) if E is in the form of [A→ •α•, j, k], then for each edge [B→ β•γ•Aδ,

i, j] in the chart, create edge [B→ β•γA•δ, i, k].
a2) [B→ βA•γ•δ, k, l] in the chart, create edge [B→ β•Aγ•δ, j, l].
b1) if E is in the form of [B→ β•γ•Aδ, i, j], then for each edge [A→ •α•,

j, k] in the chart, create edge [B→ β•γA•δ, i, k].
b2) if E is in the form of [B→ βA•γ•δ, k, l], then [A→ •α•, j, k] in the

chart, create edge [B→ β•Aγ•δ, j, l].
c1) if E is in the form of [A→ βai•γ•δ, i, j], then create edge

[A→ β•aiγ•δ, i-1, j].
c2) if E is in the form of [A→ β•γ•aj+1δ, i, j], then create edge

[A→ β•γaj+1•δ, i, j+1].
d) if E is in the form of [A→ •α•, i, j], then for each grammar rule

B→ β A γ create edge [B→ β•A•γ, i, j] (A is rule head).

IA161 Syntactic Formalisms for Parsing Natural Languages 118 / 476

Lecture 3

Generalized LR method by Tomita

Tomita’s Algorithm extends the standard LR parsing algorithm:
LR parsing is very efficient, but can only handle a small subset
of CFG

can handle arbitrary CFG

LR efficiency is preserved

In order to keep a record of the parse-state, we maintain a stack
consisting of symbol/state pairs.

IA161 Syntactic Formalisms for Parsing Natural Languages 119 / 476

Lecture 3

Generalized LR method by Tomita

generalized LR parser (GLR)

Masaru Tomita: Efficient parsing for natural language, 1986
uses a standard LR table which may contain conflicts
stack is represented as a DAG
reduction performed before reading action

IA161 Syntactic Formalisms for Parsing Natural Languages 120 / 476

Lecture 3

Tree ranking

all chart parsing methods: parallelization as means of fighting
the ambiguity
key concept: a polynomial data structure holding up to
exponential parse trees
efficient algorithms to retrieve n-best trees according to some
ranking
enable taking into account a probabilistic notion of a sentence

IA161 Syntactic Formalisms for Parsing Natural Languages 121 / 476

Lecture 3

PCFG

= Probabilistic CFG
each rule r ∈ R has a probability P(r) assigned
probability of a tree t ∈ T usually computed as

P(t) = Πr∈tP(r)

⇒ tbest = argmaxt(P(t))

IA161 Syntactic Formalisms for Parsing Natural Languages 122 / 476

Lecture 3

Statistical parsing

CFG → PCFG → learned grammar
→ statistical parsing
→ how to obtain probabilities (= how to train the parser?)

IA161 Syntactic Formalisms for Parsing Natural Languages 123 / 476

Lecture 3

Statistical NLP

In the 90’s: a change of paradigm in (computational) linguistics
from rationalism to empiricism (corpus-based evidence)
Simultaneously in NLP: big development of language modelling
and statistical methods based on machine learning (both
supervised and unsupervised).
→ statistical parsing
vs. Chomsky:
It must be recognised that the notion of a ‘probability of a
sentence’ is an entirely useless one, under any interpretation of
this term (Chomsky, 1969)
[taken from Chapter 1 of Young and Bloothooft, eds, Corpus-Based Methods in Language and Speech
Processing]

IA161 Syntactic Formalisms for Parsing Natural Languages 124 / 476

Lecture 3

Summary

(Probabilistic) Context-free grammar used in parsing natural
language

Chart parsing methods: CKY, Earley, head-driven chart parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 125 / 476

Lecture 3

References

H. Bunt, M. Tamita: Recent advances in parsing technology, Kluwer,
1996
H. Bunt, P. Merlo, & J. Nivre (eds.): Trends in Parsing Technology:
Dependency Parsing, Domain Adaptation, and Deep Parsing, Springer
Dordrecht, Heidelberg/London/New York 2010
G. Dick: Parsing techniques: a practical guide, Springer, 2008
J. Earley: An efficient context-free parsing algorithm. Communications
of the ACM, 13(2):94–102, 1970
M. Kay: Algorithm schemata and data structures in syntactic
processing. In Readings in natural language processing, pages 35–70.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1986
M.-J. Nederhof: Generalized left-corner parsing. In Proceedings of the
sixth conference on European chapter of the Association for
Computational Linguistics, pages 305–314, Morristown, NJ, USA, 1993.
Association for Computational Linguistics.

IA161 Syntactic Formalisms for Parsing Natural Languages 126 / 476

Lecture 4

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 127 / 476

Lecture 4

.

...... Dependency Syntax and Parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 128 / 476

Lecture 4

Outline

1 Motivation

2 Dependency Syntax

3 Dependency Parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 129 / 476

Lecture 4

Motivation

what you have seen as far: applying analysis of formal
languages to a natural language – creating a phrase-structure
derivation tree according to some grammar

PS accounts for one important syntactic property:
constituency

is that all?

but what about: discontinuous phrases, structure sharing

IA161 Syntactic Formalisms for Parsing Natural Languages 130 / 476

Lecture 4

Motivation

another crucial syntactic phenomenon is dependency
what is a dependency? ”some relation between two words“
what is the difference to phrase-structure?
what does constituency express?
what does dependency express?

IA161 Syntactic Formalisms for Parsing Natural Languages 131 / 476

Lecture 4

Dependency Syntax (Meľchuk 1988)

A more formal account – what is a dependency? A relation!
.
Dependency Relation..

......

Let W be a set of all words within a sentence, then dependency relation
→ is D ⊆ W×W such that:

D is anti-reflexive: a → b ⇒ a ̸= b

D is anti-symmetric: a → b ∧ b → a ⇒ a = b,≡
(anti-reflexivity) a → b ⇒ b ↛ a

D is anti-transitive: a → b ∧ b → c ⇒ a ↛ c

optionally: D is labeled: there is a mapping l : D → L,L being
the set of labels

IA161 Syntactic Formalisms for Parsing Natural Languages 132 / 476

Lecture 4

Dependency Representation

a → b: a depends on b, a is a dependent b, b is the head
of a
a dependency graph
a dependency tree

IA161 Syntactic Formalisms for Parsing Natural Languages 133 / 476

Lecture 4

Dependency Tree vs. PS Tree

sleep S

ideas furiously NP VP

Green A N V ADV

Green ideas sleep furiously

IA161 Syntactic Formalisms for Parsing Natural Languages 134 / 476

Lecture 4

Non-projectivity

a property of a dependency tree: a sentence is non-projective
whenever drawing (projecting) a line from a node to the surface
of the tree crosses an arc

a lot of attention has been paid to this problem

practical implications are rather limited (in most cases
non-projectivity can be easily handled or avoided)

hard cases:
koupil

Malou

chaloupku
IA161 Syntactic Formalisms for Parsing Natural Languages 135 / 476

Lecture 4

Czech Tradition of Dependency Syntax

a long tradition of dependency syntax in the Prague linguistic
school (Sgall, Hajičová, Panevová)
Institute of Formal and Applied Linguistics at Charles University
formalized as Functional Generative Description (FGD) of
language
Prague Dependency Treebank (PDT)

IA161 Syntactic Formalisms for Parsing Natural Languages 136 / 476

Lecture 4

Dependencies vs. PS

is one of the formalisms clearly better than the other one?
No.

dependencies: ⊕ account for relational phenomena, ⊕ simple
phrase-structure: ⊕ account for constituency, ⊕ easy chunking

can we perform transformation from one of the formalism to the
other one a vice versa? Technically yes, but . . .

It is not a problem to convert the structure between a dependency
tree and a PS tree ...
... but it is a problem to transform the information included

⇒ both of the formalisms are convertible but not mutually
equivalent

IA161 Syntactic Formalisms for Parsing Natural Languages 137 / 476

Lecture 4

Dependency Parsing

rule-based vs. statistical
transition-based (→ deterministic parsing)
graph-based (→ spanning trees algorithms)
various other approaches (ILP, PS conversion, . . .)
very recent advances (vs. long studied PS parsing algorithms)

IA161 Syntactic Formalisms for Parsing Natural Languages 138 / 476

Lecture 4

Introduction to Dependency parsing

Motivation
a. dependency-based syntactic representation seem to be useful in
many applications of language technology: machine translation,
information extraction
→ transparent encoding of predicate-argument structure

b. dependency grammar is better suited than phrase structure
grammar for language with free or flexible word order
→ analysis of diverse languages within a common framework

c. leading to the development of accurate syntactic parsers for a
number of languages
→ combination with machine learning from syntactically
annotated corpora (e.g. treebank)

IA161 Syntactic Formalisms for Parsing Natural Languages 139 / 476

Lecture 4

Introduction to Dependency parsing

Dependency parsing

“Task of automatically analyzing the dependency structure of a
given input sentence”

Dependency parser

“Task of producing a labeled dependency structure of the kind
depicted in the follow figure, where the words of the sentence

are connected by typed dependency relations”

ROOT Economic news had little effect on financial markets .

PRED
PU

PC

ATTATT

OBJ

ATTSBJATT

IA161 Syntactic Formalisms for Parsing Natural Languages 140 / 476

Lecture 4

Definitions of dependency graphs and dependency
parsing

Dependency graphs: syntactic structures over sentences

Def. 1.: A sentence is a sequence of tokens denoted by

S = w0w1 . . .wn

Def. 2.: Let R = {r1, . . . , rm} be a finite set of possible
dependency relation types that can hold between any two
words in a sentence. A relation type r ∈ R is additionally called
an arc label.

IA161 Syntactic Formalisms for Parsing Natural Languages 141 / 476

Lecture 4

Definitions of dependency graphs and dependency
parsing

Dependency graphs: syntactic structures over sentences

Def. 3.: A dependency graph G = (V,A) is a labeled directed
graph, consists of nodes, V, and arcs, A, such that for
sentence S = w0w1 . . .wn and label set R the following holds:
1 V ⊆ {w0w1 . . .wn}

2 A ⊆ V× R× V

3 if (wi, r,wj) ∈ A then (wi, r′,wj) /∈ A for all r′ ̸= r

IA161 Syntactic Formalisms for Parsing Natural Languages 142 / 476

Lecture 4

Approach to dependency parsing

a. data-driven
it makes essential use of machine learning from linguistic data
in order to parse new sentences

b. grammar-based
it relies on a formal grammar, defining a formal language, so
that it makes sense to ask whether a given input is in the
language defined by the grammar or not.

→ Data-driven have attracted the most attention in
recent years.

IA161 Syntactic Formalisms for Parsing Natural Languages 143 / 476

Lecture 4

Data-driven approach

.

......

according to the type of parsing model adopted,
the algorithms used to learn the model from data
the algorithms used to parse new sentences with the model

a. transition-based
start by defining a transition system, or state machine, for
mapping a sentence to its dependency graph.

b. graph-based
start by defining a space of candidate dependency graphs for a
sentence.

IA161 Syntactic Formalisms for Parsing Natural Languages 144 / 476

Lecture 4

Data-driven approach

a. transition-based
learning problem: induce a model for predicting the next state
transition, given the transition history
parsing problem: construct the optimal transition sequence for
the input sentence, given induced model

b. graph-based
learning problem: induce a model for assigning scores to the
candidate dependency graphs for a sentence
parsing problem: find the highest-scoring dependency graph for
the input sentence, given induced model

IA161 Syntactic Formalisms for Parsing Natural Languages 145 / 476

Lecture 4

Transition-based Parsing

Transition system consists of a set C of parser configurations
and of a set D of transitions between configurations.
Main idea: a sequence of valid transitions, starting in the
initial configuration for a given sentence and ending in one of
several terminal configurations, defines a valid dependency
tree for the input sentence.

D1′m = d1(c1), . . . ,dm(cm)

IA161 Syntactic Formalisms for Parsing Natural Languages 146 / 476

Lecture 4

Transition-based Parsing

Definition
Score of D1′m factors by configuration-transition pairs (ci,di):

s(D1′m) =
∑m

i=1 s(ci,di)

Learning
Scoring function s(ci,di) for di(ci) ∈ D1′m

Inference
Search for highest scoring sequence D∗

1′m given s(ci,di)

IA161 Syntactic Formalisms for Parsing Natural Languages 147 / 476

Lecture 4

Transition-based Parsing

Inference for transition-based parsing

Common inference strategies:
Deterministic [Yamada and Matsumoto 2003, Nivre et al. 2004]
Beam search [Johansson and Nugues 2006, Titov and Henderson
2007]
Complexity given by upper bound on transition sequence length

Transition system
Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
Limited non-projective O(n) [Attardi 2006, Nivre 2007]
Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

IA161 Syntactic Formalisms for Parsing Natural Languages 148 / 476

Lecture 4

Transition-based Parsing – Nivre algorithm

IA161 Syntactic Formalisms for Parsing Natural Languages 149 / 476

Lecture 4

Transition-based Parsing

Learning for transition-based parsing

Typical scoring function:
s(ci,di) = w · f(ci,di) where f(ci,di) is a feature vector over
configuration ci and transition di and w is a weight vector
[wi = weight of featurefi(ci,di)]

Transition system
Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
Limited non-projective O(n) [Attardi 2006, Nivre 2007]
Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

Problem
Learning is local but features are based on the global history

IA161 Syntactic Formalisms for Parsing Natural Languages 150 / 476

Lecture 4

Transition-based Parsing

Projectivization to pseudo-projectivity:

IA161 Syntactic Formalisms for Parsing Natural Languages 151 / 476

Lecture 4

Graph-based Parsing

For a input sentence S we define a graph Gs = (Vs,As) where
Vs = {w0,w1, . . . ,wn} and
As = {(wi,wj, l)|wi,wj ∈ V and l ∈ L}

Score of a dependency tree T factors by subgraphs Gs, . . . ,Gs:

s(T) =
∑m

i−1 s(Gi)

Learning: Scoring function s(Gi) for a subgraph Gi ∈ T

Inference: Search for maximum spanning tree scoring sequence
T∗ of Gs given s(Gi)

IA161 Syntactic Formalisms for Parsing Natural Languages 152 / 476

Lecture 4

Graph-based Parsing

Learning graph-based models

Typical scoring function:
s(Gi) = w · f(Gi) where f(Gi) is a high-dimensional feature vector
over subgraphs and w is a weight vector
[wj = weight of feature fj(Gi)]

Structured learning [McDonald et al. 2005a, Smith and
Johnson 2007]:

Learn weights that maximize the score of the correct dependency
tree for every sentence in the training set

Problem
Learning is global (trees) but features are local (subgraphs)

IA161 Syntactic Formalisms for Parsing Natural Languages 153 / 476

Lecture 4

Graph-based Parsing – Eisner algorithm

IA161 Syntactic Formalisms for Parsing Natural Languages 154 / 476

Lecture 4

Graph-based Parsing – Chu-Liu-Edmonds algorithm

IA161 Syntactic Formalisms for Parsing Natural Languages 155 / 476

Lecture 4

Grammar-based approach

a. context-free dependency parsing
exploits a mapping from dependency structures to CFG
structure representations and reuses parsing algorithms
originally developed for CFG → chart parsing algorithms

b. constraint-based dependency parsing
parsing viewed as a constraint satisfaction problem
grammar defined as a set of constraints on well-formed
dependency graphs
finding a dependency graph for a sentence that satisfies all the
constraints of the grammar (having the best score)

IA161 Syntactic Formalisms for Parsing Natural Languages 156 / 476

Lecture 4

Grammar-based approach

a. context-free dependency parsing
Advantage: Well-studied parsing algorithms such as CKY,
Earley’s algorithm can be used for dependency parsing as well.
→ need to convert dependency grammars into efficiently
parsable context-free grammars; (e.g. bilexical CFG, Eisner and
Smith, 2005)

b. constraint-based dependency parsing
defines the problem as constraint satisfaction

Weighted constraint dependency grammar (WCDG, Foth and
Menzel, 2005)
Transformation-based CDG

IA161 Syntactic Formalisms for Parsing Natural Languages 157 / 476

Lecture 4

Conclusions

1 Dependency syntax vs. constituency (phrase-structure) syntax
2 Non-projectivity
3 Graph-based and Transition-based methods

IA161 Syntactic Formalisms for Parsing Natural Languages 158 / 476

Lecture 5

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 159 / 476

Lecture 5

.

...... Parsing with (L)TAG and LFG

IA161 Syntactic Formalisms for Parsing Natural Languages 160 / 476

Lecture 5

(Lexicalized) Tree Adjoining Grammar (TAG) and
Lexical Functional Grammar (LFG)

A) Same goal
formal system to model human speech
model the syntactic properties of natural language
syntactic frame work which aims to provide a computationally
precise and psychologically realistic representation of language

B) Properties
Unfication based
Constraint-based
Lexicalized grammar

IA161 Syntactic Formalisms for Parsing Natural Languages 161 / 476

Lecture 5

How to parse the sentence in TAG?
by Joshi, A. Levy, L and Takahashi, M. in 1975

IA161 Syntactic Formalisms for Parsing Natural Languages 162 / 476

Lecture 5

TAG’s basic component

Representation structure: phrase-structure trees
Finite set of elementary trees

Two kinds of elementary trees
Initial trees (α): trees that can be substituted
Auxiliary trees (β): trees that can be adjoined

IA161 Syntactic Formalisms for Parsing Natural Languages 163 / 476

Lecture 5

TAG’s basic component

The tree in (X∪Z) are called elementary trees.

Initial tree: Auxiliary tree:

terminal nodes or
substitution nodes

Z

Z*

X

IA161 Syntactic Formalisms for Parsing Natural Languages 164 / 476

Lecture 5

TAG’s basic component

An initial tree (α)
all interior nodes are labeled with non-terminal symbols
the nodes on the frontier of initial tree are either labeled with
terminal symbols, or with non-terminal symbols marked for
substitution (↓)

An auxiliary tree (β)
one of its frontier nodes must be marked as foot node (∗)
the foot node must be labeled with a non-terminal symbol which is
identical to the label of the root node.

A derived tree (γ)
tree built by composition of two other trees
the two composition operations that TAG uses adjoining and
substitution.

IA161 Syntactic Formalisms for Parsing Natural Languages 165 / 476

Lecture 5

Main operations of combination (1): adjunction

Sentence of the language of a TAG are derived from the
composition of an α and any number of β by this operation.

It allows to insert a complete structure into an interior node of
another complete structure.

Three constraints possible
Null adjunction (NA)
Obligatory adjunction (OA)
Selectional adjunction (SA)

IA161 Syntactic Formalisms for Parsing Natural Languages 166 / 476

Lecture 5

Main operations of combination (1): adjunction

Y

S

NP0↓

NP1↓ NP1↓

NP0↓

VP VP VP

VP

V

VV VP*V has

has lovedloved

S

X

X

X*

X

Y

(α)

(α2)

Adjoining

(β1)

+ →

(β) (γ)

IA161 Syntactic Formalisms for Parsing Natural Languages 167 / 476

Lecture 5

Main operations of combination (2): substitution
It inserts an initial tree or a lexical tree into an elementary tree.
One constraint possible

Selectional substitution

S

NP0↓

NP1↓ N

NP0↓

VP NP VP

VP

V

D↓D↓ NV loved

womanwomanloved

S

X

A↓ A

(α2)

Substitution

(α3)

+ →

IA161 Syntactic Formalisms for Parsing Natural Languages 168 / 476

Lecture 5

Adjoining constraints

Selective Adjunction (SA(T)): only members of a set T ⊆ A can
be adjoined on the given node, but the adjunction
is not mandatory

Null Adjunction (NA): any adjunction is disallowed for the
given node (NA = SA(ϕ))

Obligatory Adjunction (OA(T)): an auxiliary tree member of
the set T ⊆ A must be adjoined on the given node

for short OA = OA(A)

IA161 Syntactic Formalisms for Parsing Natural Languages 169 / 476

Lecture 5

Example 1: selective adjunction (SA)

One possible analysis of “send” could involve selective
adjunction:

α1 β1 β2

S VP VP

NP↓ VPSA(β1,β2,...) VP* away VP* PP

send NP↓ P NP↓

to

send
send away
send to
send something

IA161 Syntactic Formalisms for Parsing Natural Languages 170 / 476

Lecture 5

Example 2: obligatory adjunction

For when you absolutely must have adjunction at a node:

α1 β1 β2

S VP VP

NP↓ VPOA(β1,β2) Aux VP* Aux VP*

V has is

seen

has

is

has seen

is seen

IA161 Syntactic Formalisms for Parsing Natural Languages 171 / 476

Lecture 5

Elementary trees (initial trees and auxiliary trees)

Yesterday a man saw Mary

S NP

Adv S* D D↓ N
(βyest) (αa) (αman)

yesterday a man

S

NP0 ↓ VP NP

V NP1 ↓ N

saw Mary

*: foot node/root node
↓: substitution node

IA161 Syntactic Formalisms for Parsing Natural Languages 172 / 476

Lecture 5

Elementary trees (initial trees and auxiliary trees)

S

Ad S

yesterday NP VP

D N V NP

a man saw N
(α5)

Mary

IA161 Syntactic Formalisms for Parsing Natural Languages 173 / 476

Lecture 5

Derivation tree

Specifies how a derived tree was constructed
The root node is labeled by an S-type initial tree.
Other nodes are labeled by auxiliary trees in the case of adjoining
or initial trees in the case of substitution.
A tree address of the parent tree is associated with each node.

saw

man(1) Mary (2.2) yest (0)

a (1)

IA161 Syntactic Formalisms for Parsing Natural Languages 174 / 476

Lecture 5

Derivation tree and derived tree α5

saw

man(1) Mary (2.2) yest (0)

a (1)

S

Ad S

yesterday NP VP

D N V NP

a man saw N
(α5)

Mary

_ _ _ _ : substitution operation
______ : adjunction operation

IA161 Syntactic Formalisms for Parsing Natural Languages 175 / 476

Lecture 5

Example 1: Harry likes peanuts passionately

Step 1
NP

Harry

NP

peanuts

S

NP VP

V NP

likes

VP

VP* ADV

passionatelyStep 2: substitution

NP

Harry

S

NP VP

V NP

likes

NP

peanuts

+ +

S

NP VP

V NP

likes

Harry

peanuts

Step 3: adjunction

S

NP VP

V NP

likes

Harry

peanuts

VP

VP* ADV

passionately

+

S

NP

VP

V NP

likes

Harry

peanuts

VP

ADV

passionately

IA161 Syntactic Formalisms for Parsing Natural Languages 176 / 476

Lecture 5

Derivation tree and derived tree of Harry likes
peanuts passionately

likes

Harry(1) peanuts(2.2) passionately(2)

S

NP

VP

V NP

likes

Harry

peanuts

VP

ADV

passionately

IA161 Syntactic Formalisms for Parsing Natural Languages 177 / 476

Lecture 5

Two important properties of TAG

Elementary trees can be of arbitrary size, so the domain of
locality is increased

Extended domain of locality (EDL)

Small initial trees can have multiple adjunctions inserted within
them, so what are normally considered non-local phenomena
are treated locally

Factoring recursion from the domain of dependency (FRD)

IA161 Syntactic Formalisms for Parsing Natural Languages 178 / 476

Lecture 5

Extended domain of locality (EDL): Agreement

The lexical entry for a verb like “loves” will contain a tree like
the following:

S
NP3.sg↓ VP

V NP↓

loves

With EDL, we can easily state agreement between the subject
and the verb in a lexical entry

IA161 Syntactic Formalisms for Parsing Natural Languages 179 / 476

Lecture 5

Factoring recursion from the domain of
dependency (FRD): Extraction

S’

NPi[+wh] S’

who COMP S

that NP VP

Bill V NP

likes ei

S’

COMP S

Φ INFL NP VP

did John V NP S’*

tell Sam

.

......

The above trees for the sentence “who did John tell Sam that Bill likes ?” allow the
insertion of the auxiliary tree in between the WH-phrase and its extraction site,
resulting a long distance dependency; yet this is factored out from the domain of
locality in TAG.

IA161 Syntactic Formalisms for Parsing Natural Languages 180 / 476

Lecture 5

Factoring recursion from the domain of
dependency (FRD): Extraction

S’

NPi[+wh] S’

who COMP S

Φ INFL NP VP

did John V NP

tell Sam S’

COMP S

that NP VP

Bill V NP

likes ei

IA161 Syntactic Formalisms for Parsing Natural Languages 181 / 476

Lecture 5

Variations of TAG

Feature Structure Based TAG (FTAG: Joshi and Shanker, 1988)

each of the nodes of an elementary tree is associated with two
feature structures:

top & bottom Substitution

Substitution with features

Adjoining with features

Y X Xtr
br

t U tr
br

X

Y
t
b

Y
tr
br

tf
bf

X

Y
t U tr
br

tf
b U bf

t
Y

Y*

Y

Y

IA161 Syntactic Formalisms for Parsing Natural Languages 182 / 476

Lecture 5

Variations of TAG

Synchronous TAG (STAG: Shieber and Schabes, 1990)
A pair of TAGs characterize correspondences between languages
Semantic interpretation, language generation and translation

Muti-component TAG (MCTAG: Chen-Main and Joshi, 2007)
A set of auxiliary tree can be adjoined to a given elementary tree

Probabilistic TAG (PTAG: Resnik, 1992, Shieber, 2007)
Associating a probability with each elementary tree
Compute the probability of a derivation

IA161 Syntactic Formalisms for Parsing Natural Languages 183 / 476

Lecture 5

XTAG Project (UPenn, since 1987 ongoing)

A long-term project to develop a wide-coverage grammar for
English using the Lexicalized Tree-Adjoining Grammar (LTAG)
formalism
Provides a grammar engineering platform consisting of a
parser, a grammar development interface, and a morphological
analyzer
The project extends to variants of the formalism, and languages
other than English

IA161 Syntactic Formalisms for Parsing Natural Languages 184 / 476

Lecture 5

XTAG system
Input Sentence

P.O.S Blender

Tree Selection

Derivation Structure

Parser

Morph Analyzer Tagger

Tree Grafting

Morph DB

Stat DB

Trees DB

Syn DB

Lex Prob DB

IA161 Syntactic Formalisms for Parsing Natural Languages 185 / 476

Lecture 5

Components in XTAG system

Morphological Analyzer & Morph DB: 317K inflected items
derived from over 90K stems
POS Tagger & Lex Prob DB: Wall Street Journal-trained 3-gram
tagger with N-best POS sequences
Syntactic DB: over 30K entries, each consisting of:

Uninflected form of the word
POS
List of trees or tree-families associated with the word
List of feature equations

Tree DB: 1004 trees, divided into 53 tree families and 221
individual trees

IA161 Syntactic Formalisms for Parsing Natural Languages 186 / 476

Lecture 5

(a) Morphology database (b) syntactic database

Interfaces to the databasemaintenance tools

IA161 Syntactic Formalisms for Parsing Natural Languages 187 / 476

Lecture 5

Interface to the XTAG system

Parser evaluation in XTAG Project by [Bangalore,S. et.al, 1998]
http://www.cis.upenn.edu/~xtag/

IA161 Syntactic Formalisms for Parsing Natural Languages 188 / 476

http://www.cis.upenn.edu/~xtag/

Lecture 5

How to parse the sentence in LFG?
by Bresnan, J. and Kaplan, R.M. In 1982

IA161 Syntactic Formalisms for Parsing Natural Languages 189 / 476

Lecture 5

Main representation structures

c-structure: constituent structure

level where the surface syntactic form, including categorical
information, word order and phrasal grouping of constituents,
is encoded.

f-structure: functional structure
internal structure of language where grammatical relations
are represented. It is largely invariable across languages.
(e.g. SUBJ, OBJ, OBL, (X)COMP, (X)ADJ)

a-structure: argument structure

They encode the number, type and semantic roles of the
arguments of a predicate.

IA161 Syntactic Formalisms for Parsing Natural Languages 190 / 476

Lecture 5

Level of structures and their interaction in LFG

Functional
Projection architecture

semantic
structure

information
structure

phonological
structure

argument
structure

functional
structure

constituent
structure

LFG's
focus

IA161 Syntactic Formalisms for Parsing Natural Languages 191 / 476

Lecture 5

Level of structures and their interaction in LFG

In LFG, the parsing result is grammatically correct only if it
satisfies 2 criteria:
1 the grammar must be able to assign a correct c-structure

2 the grammar must be able to assign a correct well-formed
f-structure

IA161 Syntactic Formalisms for Parsing Natural Languages 192 / 476

Lecture 5

c-structure

C-structure
PP

P NP
with N

friends

S
NP VP
N V NP
I saw Det N

the girl

The constituent structure represents the organization of overt phrasal syntax
It provides the basis for phonological interpretation
Languages are very different on the c-structure level :external factors that usually vary by language

.Properties of c-structure..

......

c-structures are conventional phrase structure trees:

they are defined in terms of syntactic categories, terminal nodes, dominance and precedence.
They are determined by a context free grammar that describes all possible surface strings of the language.
LFG does not reserve constituent structure positions for affixes: all leaves are individual words.

IA161 Syntactic Formalisms for Parsing Natural Languages 193 / 476

Lecture 5

f-structure

PRED OBJ

PRED NUM

PLURAL'friend'

'with' PRED 'friend'
NUM PLURAL

PRED 'with'

OBJ

Attribute-Value notation for f-structure

.

......

1 representation of the functional structure of a sentence
2 f-structure match with c-structure

3 it has to satisfy three formal constraints: consistency,
coherence, completeness

4 language are similar on this level: allow to explain
cross-linguistic properties of phenomena

IA161 Syntactic Formalisms for Parsing Natural Languages 194 / 476

Lecture 5

Examples of f-structure

OBJ

TENSE

PRED

SUBJ

OBJ2

PRED

PAST

SUBJ, OBJ, OBJ2

PRED

PRED
DEF
NUM SG

SUBJ

TENSE

PRED

PRED

DEF

NUM SG

PAST

PCASE

OBJ PRED

DEF

NUM SG

'homework'

+

OBLon

+

'teacher'

-
'e-mail'

'Sabine'

'Veit'

OBLon

SUBJ, OBJ ''insist OBLon

'send '

1 2

IA161 Syntactic Formalisms for Parsing Natural Languages 195 / 476

Lecture 5

Constraint 1: f-structure must be consistent

1 Two paths in the graph structure may designate the same
element-called unification, structure-sharing

Ex: John must leave

PRED XCOMP

PRED SUBJ

PRED
'leave'

'must'

'John'

SUBJ

PRED 'leave'
SUBJ

PRED 'must'

SUBJ

XCOMP

PRED 'John'

IA161 Syntactic Formalisms for Parsing Natural Languages 196 / 476

Lecture 5

Constraint 1: f-structure must be consistent

2 attributes are functionally unique - there may not be two arcs
with the same attribute from the same f-structure

OBJOBJ

PRED 'Veit'

PRED 'Tom'

SUBJ

SUBJ

PRED

TENSE

TENSE

SUBJ ''sleep

PAST

FUT

Incosnistent f-structure

*

IA161 Syntactic Formalisms for Parsing Natural Languages 197 / 476

Lecture 5

Constraint 1: f-structure must be consistent

3 The symbols used for atomic f-structure are distinct - it is
impossible to have two names for a single atomic f-structure
(“clash”)

PRED SUBJ

PRED NUM

'pro'

'sleep'

*They sleeps

excludedSINGULAR
/PLURAL

IA161 Syntactic Formalisms for Parsing Natural Languages 198 / 476

Lecture 5

Constraint 2: f-structure must be coherent

All argument functions in an f-structure must be selected by
the local PRED feature.

SUBJ

PRED

TENSE

PRED
NUM SG
PERS 3

PRES

OBJ
PRED

NUM

PERS 3

SG

'Mary'

'John'

'fall 'SUBJ

SUBJ

PRED

TENSE

PRED
NUM SG
PERS 3

PRES

'John'

'fall 'SUBJ ?

Complete f-structure Incoherent f-structure

IA161 Syntactic Formalisms for Parsing Natural Languages 199 / 476

Lecture 5

Constraint 3: f-structure must be complete

All functions specified in the value of a PRED feature must be
present in the f-structure of that PRED.

OBJ
PRED

NUM

PERS 3

SG

'Mary'

SUBJ

PRED

TENSE

PRED
NUM SG
PERS 3

PRES

'John'

'like 'SUBJ OBJ

Complete f-structure Incoherent f-structure

?

SUBJ

PRED

TENSE

PRED
NUM SG
PERS 3

PRES

'John'

'like 'SUBJ OBJ

IA161 Syntactic Formalisms for Parsing Natural Languages 200 / 476

Lecture 5

Correspondence between different levels in LFG

C-structure

PP

P NP

Nwith

friends

PRED

OBJ
PRED

NUM PLURAL

'friend'
'with'

+

PP

P NP

Nwith

friends

PRED

OBJ
PRED

NUM PLURAL

'friend'
'with'

1

2

3

4

IA161 Syntactic Formalisms for Parsing Natural Languages 201 / 476

Lecture 5

Structural correspondence

c-structures and f-structures represent different properties of an
utterance
How can these structures be associated properly to a particular
sentence?
Words and their ordering carry information about the linguistic
dependencies in thesentence
This is represented by the c-structure (licensed by a CFG)
LFG proposes simple mechanisms that maps between elements
from one structure and those of another: correspondence
functions
A function allows to map c-structures to f-structures Φ : N → F

IA161 Syntactic Formalisms for Parsing Natural Languages 202 / 476

Lecture 5

Mapping the c-structure into the f-structure

Since there is no isomorphic relationship between structure and
function LFG assumes c-structure and f-structure
The mapping between c-structure and f-structure is the core of
LFG‘s descriptive power
The mapping between c-structure and f-structure is located in
the grammar (PS) rules

c-structure f-structure

S

NP VP

D N V NP

D Nthe mouse admired

the elephant

SUBJ

TENSE

PRED

OBJ

PRED
DEF
NUM
PERS

PAST

SUBJ OBJ

PRED
DEF
NUM
PERS 3

SG

SG
+

3

'mouse'

+
'elephant'

'admire '

?

IA161 Syntactic Formalisms for Parsing Natural Languages 203 / 476

Lecture 5

Mapping mechanism: 6 steps

.
STEP 1: PS rules..

......

Context-free phrase structure rules
Annotated with functional schemata

- EX.:

mother node
(without functional
schemata)

S NP VP

(SUBJ)= = daughter nodes
(with (a list of)
functional schemata)

- EX.: NP NP NP
= =

VP V (NP)
= (SUBJ)=

Note:
 is sometimes
omitted!

(this means nodes
without functional
schemata percolate
their entire
functional schema
unchanged to the
mother node

=

IA161 Syntactic Formalisms for Parsing Natural Languages 204 / 476

Lecture 5

Mapping mechanism: 6 steps

.STEP 2: Lexicon entries..

......

Lexicon entries consists of three parts: representation of the
word, syntactic category, list of functional schemata

Ex.: mouse N (↑PRED)=’mouse’
(↑PERS)=3
(↑NUM)=SG

the D (↑DEF)=+
admire V (↑PRED)=’admire ⟨(↑ SUBJ)(↑ OBJ)⟩’
-ed Aff (↑TENSE)=PAST

IA161 Syntactic Formalisms for Parsing Natural Languages 205 / 476

Lecture 5

Mapping mechanism: 6 steps
.STEP 3: c-structure..

......
Like the PS rules, each node in the tree is associated with a functional schemata
With the functional schemata of the lexical entries at the leaves we obtain a complete c-structure

↔VP
↑=↓

NP
(↑ SUBJ) =↓

S→
S

(↑ SUBJ) =↓ ↑=↓
NP VP

S

(↑ SUBJ) =↓
NP

↑=↓
VP

↑=↓
D

↑=↓
N

↑=↓
V

(↑ OBJ) =↓
NP

(↑ DEF) = +

the
(↑ PRED) = ’mouse’
(↑ PRED) = 3

(↑ PRED) = SG
mouse

(↑ PRED) =

’admire ⟨(↑ SUBJ)(↑ OBJ)⟩ ’
(↑ TENSE) = PAST
admired

↑=↓
D

(↑ DEF) = +

the

↑=↓
N

(↑ PRED) = ’elephant’
(↑ PRED) = 3

(↑ PRED) = SG
elephant

IA161 Syntactic Formalisms for Parsing Natural Languages 206 / 476

Lecture 5

Mapping mechanism: 6 steps

.STEP 4: Co-indexation..

......

An f-structure is assigned to each node of the c-structure
Each of these f-structures obtains a name (f1 − fn)
Nodes in the c-structure and associated f-structure are co-indexed, i.e. obtain the same name
F-structure names f1 − fn can be chosen freely but they may not occur twice

S

(↑ SUBJ) =↓
NP

↑=↓
VP

↑=↓
D

↑=↓
N

↑=↓
V

(↑ OBJ) =↓
NP

(↑ DEF) = +

the
(↑ PRED) = ’mouse’
(↑ PRED) = 3

(↑ PRED) = SG
mouse

(↑ PRED) =

’admire ⟨(↑ SUBJ)(↑ OBJ)⟩ ’
(↑ TENSE) = PAST
admired

↑=↓
D

(↑ DEF) = +

the

↑=↓
N

(↑ PRED) = ’elephant’
(↑ PRED) = 3

(↑ PRED) = SG
elephant

f1

f2 f5

f3 f4 f6 f7

f8 f9

f1[]

f2[] f3[] f4[]
f5[]

f6[]
f7[] f8[] f9[]

IA161 Syntactic Formalisms for Parsing Natural Languages 207 / 476

Lecture 5

Mapping mechanism: 6 steps
.
STEP 5: Metavariable biding..
......

All meta-variables are replaced by the names of the f-structure representation

S

(↑ SUBJ) =↓ ↑=↓
NP VP

f1

f2 f5
−→

S

(f1SUBJ) = f2 f1 = f5
NP VP

f1

f2 f5

S

(f1SUBJ) = f2
NP

f1 = f5
VP

f2 = f3
D

f1 = f4
N

f5 = f6
V

(f5OBJ) = f7
NP

(f3DEF) = +

the
(f4PRED) = ’mouse’
(f4PRED) = 3

(f4PRED) = SG
mouse

(f6PRED) =

’admire ⟨(f6SUBJ)(f6OBJ)⟩ ’
(f6TENSE) = PAST
admired

f7 = f8
D

(f8DEF) = +

the

f7 = f9
N

(f9PRED) = ’elephant’
(f9PRED) = 3

(f9PRED) = SG
elephant

f1

f2 f5

f3 f4 f6 f7

f8 f9

IA161 Syntactic Formalisms for Parsing Natural Languages 208 / 476

Lecture 5

Mapping mechanism: 6 steps
.

......

We introduce at this point the notion of functional equation
By listing all functional equations from a c-structure we obtain
the functional description, called f-description

(f1SUBJ) = f2 (f6PRED) = ’admire ⟨(f6SUBJ)(f6OBJ)⟩ ’
f2 = f3 (f6TENSE) = PAST
(f3DEF) = + (f5OBJ) = f7
f2 = f4 f7 = f8
(f4PRED) = ’mouse’ (f8DEF) = +
(f4PERS) = 3 f7 = f9
(f4NUM) = SG (f9PRED) = ’elephant’
f1 = f5 (f9PERS) = 3
f5 = f6 (f9NUM) = SG

Table : f-description
IA161 Syntactic Formalisms for Parsing Natural Languages 209 / 476

Lecture 5

Mapping mechanism: 6 steps
.STEP 6: From f-description to f-structure..

......

Computation of an f-structure is based on the f-description
For the derivation of f-structures from the f-description it is
important that no information is lost and that no information will
be added
The derivation is done by the application of the functional
equations

List of functional equations

a) simple equations of the form: fnA) = B
b) f-equations of the form: fn = fm
c) f-equations of the form: fnA) = fm

→ Functional equations with the same name are grouped into
an f-structure of the same name

IA161 Syntactic Formalisms for Parsing Natural Languages 210 / 476

Lecture 5

Application of the functional equation (a): (fnA) = B
DEF =+

PRED ='mouse'

PERS =3

NUM =SG

PRED ='admire SUBJ OBJ '

TENSE =PAST

DEF =+

PRED ='ELEPHANT'

PERS =3

NUM =SG
PRED 'mouse'
PERS 3
NUM SG

PRED 'admire
TENSE PAST

SUBJ OBJ '

DEF +

DEF +

PRED 'elephant'
PERS 3
NUM SG

Application of the functional equation (b): fn = fm

PRED 'admire
TENSE PAST

SUBJ OBJ '

PRED 'mouse'
PERS 3
NUM SG

DEF + DEF +

PRED 'elephant'
PERS 3
NUM SG

DEF + DEF +
unification unification

IA161 Syntactic Formalisms for Parsing Natural Languages 211 / 476

Lecture 5

Application of the functional equation (c): (fnA) = fm

SUBJ
OBJ

PRED 'mouse'
PERS 3
NUM SG
DEF +

PRED 'admire
TENSE PAST

SUBJ OBJ '

PRED 'elephant'
PERS 3
NUM SG
DEF +

PRED 'mouse'
PERS 3
NUM SG
DEF +

PRED 'elephant'
PERS 3
NUM SG
DEF +

SUBJ

OBJ

unification

unification

IA161 Syntactic Formalisms for Parsing Natural Languages 212 / 476

Lecture 5
.STEP 1: lexical entries..

......

made: V (↑PRED)=’MAKE⟨SUBJ,OBJ,XCOMP⟩’
(↑XCOMP SUBJ)=(↑OBJ)
(↑TENSE)=SIMPLEPAST

gave: V (↑PRED)=’GIVE⟨SUBJ,OBJ,OBJ2⟩’
(↑TENSE)=SIMPLEPAST

had said: V (↑PRED)=’SAY⟨SUBJ,OBJ⟩’
(↑TENSE)=PASTPERFECT

the: D (↑PRED)=’THE’
(↑SPECTYPE)=DEF

about: P (↑PRED)=’ABOUT⟨OBJ⟩’
which: N (↑PRED)=’PRO’

(↑PRONTYPE)=REL
John’s: D (↑PRED)=’JOHN’

(↑SPECTYPE)=POSS
many: D (↑PRED)=’MANY’

(↑SPECTYPE)=QUANT
things: N (↑PRED)=’THINGS’

(↑NUM)=PLURAL

.STEP 2: c-structure..

......

a. S → NP
(↑ SUBJ) =↓

VP
↑=↓

b. NP →
{

A N
↑=↓ ↑=↓

}

c. VP → V
↑=↓

NP
(↑ SUBJ) =↓

V
(↑ XCOMP) =↓

(↑ XCOMP PRED) = ’be ⟨SUBJ, PREDIC⟩ ’

d. V → NP
(↑ PREDIC) =↓

IA161 Syntactic Formalisms for Parsing Natural Languages 213 / 476

Lecture 5

.STEP 3: f-structure..

......

'John made Peter angry'
S

SUBJ = =
NP

=
N

John

VP

= OBJ = XCOMP =

made

V NP

=
N

Peter

V

PREDIC =
NP

=

A

angry

= =

SUBJ =

=

OBJ =

=

XCOMP =

XCOMP PREDIC ='be SUBJ, PRED '

PREDIC =

=

.
STEP 4: unification..

......

PRED 'make 'SUBJ, XCOMP

TENSE simplepast

SUBJ , PRED 'John'

, PRED 'Peter'OBJ

PRED 'be SUBJ, PRED '

SUBJ

PREDIC , PRED 'angry'

XCOMP

, ,

IA161 Syntactic Formalisms for Parsing Natural Languages 214 / 476

Lecture 6

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 215 / 476

Lecture 6

.

...... Parsing with CCG

IA161 Syntactic Formalisms for Parsing Natural Languages 216 / 476

Lecture 6

Outline

1 A-B categorial system
2 Lambek calculus
3 Extended Categorial Grammar

Variation based on Lambek calculus
Abstract Categorial Grammar, Categorial Type Logic

Variation based on Combinatory Logic
Combinatory Categorial Grammar (CCG)
Multi-modal Combinatory Categorial Grammar

IA161 Syntactic Formalisms for Parsing Natural Languages 217 / 476

Lecture 6

Categorial Grammar is
: a lexicalized theory of grammar along with other theories of
grammar such as HPSG, TAG, LFG, …
: linguistically and computationally attractive
−→ language invariant combination rules, high efficient parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 218 / 476

Lecture 6

Main idea in CG and application operation

All natural language consists of operators and of operands.
Operator (functor) and operand (argument)
Application: (operator(operand))
Categorial type: typed operator and operand

IA161 Syntactic Formalisms for Parsing Natural Languages 219 / 476

Lecture 6

1. A-B categorial system

.

......
The product of the directional adaptation by Bar-Hillel (1953) of Ajdukiewicz’s
calculus of syntactic connection (Ajdukiewicz, 1935)

Definition 1 (AB categories).
Given A, a finite set of atomic categories, the set of
categories C is the smallest set such that:

A ⊆ C

(X\Y), (X/Y) ∈ C if X,Y ∈ C

IA161 Syntactic Formalisms for Parsing Natural Languages 220 / 476

Lecture 6

1. A-B categorial system

Categories (type): primitive categories and derivative
categories

Primitive: S for sentence, N for nominal phrase
Derivative: S/N,N/N, (S\N)/N,NN/N,S/S . . .

Forward(>) and backward (<) functional application

a. X/Y Y ⇒ X (>)
b. Y X\Y ⇒ X (<)

IA161 Syntactic Formalisms for Parsing Natural Languages 221 / 476

Lecture 6

1. A-B categorial system

Calculus on types in CG are analogue to algebraic
operations

.

...... x/y y → x ≈ 3/5 ∗ 5 = 3

Brazil defeated Germany

n (s\n)/n n
>

s\n
<

s

IA161 Syntactic Formalisms for Parsing Natural Languages 222 / 476

Lecture 6

1. A-B categorial system

Applicative tree of Brazil defeated Germany

defeated
operator

Germany
operand

Brazil
operand

@ defeated (Germany)

@ ((defeated(Germany))Brazil)

IA161 Syntactic Formalisms for Parsing Natural Languages 223 / 476

Lecture 6

Limitation of AB system

1 Relative construction
a. teami that ti defeated Germany
b. teami that Brazil defeated ti

a’. that (n\n)/(s\n) team [that](n\n)/(s\n) [defeated Germany]s\n
b’. that (n\n)/(s/n) team [that](n\n)/(s/n) [Brazil defeated]s/n

(?)

team that
(n\n)/(s/n)

Brazil
n

defeated
(s\n)/n

3 Many others complex phenomena
Coordination, object extraction, phrasal verbs, ...

4 AB’s generative power is too weak – context-free

IA161 Syntactic Formalisms for Parsing Natural Languages 224 / 476

Lecture 6

2. Lambek calculus (Lambek, 1958, 1961)

the calculus of syntactic types
still context-free

The axioms of Lambek calculus are the following:

1 x → x

2 (xy)z → x(yz) → (xy)z (the axioms 1, 2 with inference rules, 3, 4, 5)
3 If xy → z then x → z/y, if xy → z then y → x\z;

4 If x → z/y then xy → z, if y → x\z then xy → z;

5 If x → y and y → z then x → z.

IA161 Syntactic Formalisms for Parsing Natural Languages 225 / 476

Lecture 6

2. Lambek calculus (Lambek, 1958, 1961)

The rules obtained from the previous axioms are the
following:
1 Hypothesis: if x and y are types, then x/y and y\x are types.
2 Application rules : (x/y)y → x,y(y\x) → x

ex: Poor John works.

3 Associativity rule : (x\y)/z ↔ x\(y/z)
ex: John likes Jane.

4 Composition rules : (x/y)(y/z) → x/z, (x\y)(y\z) → x\z
ex: He likes him.

s/(n\s)n\s/n

5 Type-raising rules : x → y/(x/y),x → (y/x)\y

IA161 Syntactic Formalisms for Parsing Natural Languages 226 / 476

Lecture 6

3. Combinatory Categorial Grammar

Developed originally by M. Steedman (1988, 1990, 2000, ...)
Combinatory Categorial Grammar (CCG) is a grammar
formalism equivalent to Tree Adjoining Grammar, i.e.

it is lexicalized
it is parsable in polynomial time (See Vijay-Shanker and Weir,
1990)
it can capture cross-serial dependencies

Just like TAG, CCG is used for grammar writing
CCG is especially suitable for statistical parsing

IA161 Syntactic Formalisms for Parsing Natural Languages 227 / 476

Lecture 6

3. Combinatory Categorial Grammar

several of the combinators which Curry and Feys (1958)
use to define the λ-calculus and applicative systems in
general are of considerable syntactic interest (Steedman, 1988)
The relationships of these combinators to terms of the
λ-calculus are defined by the following equivalences
(Steedman, 2000b):

a.Bfg ≡ λx.f(gx) ... composition
b.Tx ≡ λf.fx ... type-raising
c.Sfg ≡ λx.fx(gx) ... substitution

IA161 Syntactic Formalisms for Parsing Natural Languages 228 / 476

Lecture 6

CCG categories

Atomic categories: S, N, NP, PP, TV…
Complex categories are built recursively from atomic categories
and slashes
Example complex categories for verbs:

intransitive verb: S\NP walked
transitive verb: (S\NP)/NP respected
ditransitive verb: ((S\NP)/NP)/NP gave

IA161 Syntactic Formalisms for Parsing Natural Languages 229 / 476

Lecture 6

Lexical categories in CCG

An elementary syntactic structure – a lexical category – is
assigned to each word in a sentence, eg:
walked: S\NP ‘give me an NP to my left and I return a sentence’
Think of the lexical category for a verb as a function: NP is the
argument, S the result, and the slash indicates the direction of
the argument

IA161 Syntactic Formalisms for Parsing Natural Languages 230 / 476

Lecture 6

The typed lexicon item

The CCG lexicon assigns categories to words, i.e. it specifies
which categories a word can have.
Furthermore, the lexicon specifies the semantic counterpart of
the syntactic rules, e.g.:
love (S\NP)/NPλxλy.loves′xy
Combinatory rules determine what happens with the category
and the semantics on combination

IA161 Syntactic Formalisms for Parsing Natural Languages 231 / 476

Lecture 6

The typed lexicon item

Attribution of types to lexical items: examples

Predicate
ex: is as an identificator of nominal

as an operator of predication from a nominal (S\NP)/NP

from an adjective (S\NP)/(N/N)

from an adverb (S\NP)/(S\NP)\(S\NP)

from a preposition (S\NP)/((S\NP)\(S\NP)/NP)

ex: verbs unary (S\NP)
binary (S\NP)/NP
ternary (S\NP)/NP/NP

IA161 Syntactic Formalisms for Parsing Natural Languages 232 / 476

Lecture 6

The typed lexicon item

Adverbs

Adverb of verb

(S\NP)/(S\NP)
(S\NP)/NP/(S\NP)/NP

Adverb of adverb

(S\NP)/(S\NP)/(S\NP)/(S\NP)
(S\NP)/NP/(S\NP)/NP/(S\NP)/NP/(S\NP)/NP

Adverb of adjective

(N/N)/(N/N)
(N\N)/(N\N)

Adverb of proposition

S/S

.

...... Adverb: operator of determination of type (X/X)
IA161 Syntactic Formalisms for Parsing Natural Languages 233 / 476

Lecture 6

The typed lexicon item

Preposition

Prep. 1:
constructor of adverbial phrase

(S\NP)\(S\NP)/NP
(S/S)/NP
(S/S)/N

Prep. 2:
constructor of adjectival phrase

(N\N)/NP
(N\N)/N

.

...... Preposition: constructor of determination of type (X/X)
IA161 Syntactic Formalisms for Parsing Natural Languages 234 / 476

Lecture 6

Dictionary of typed words

Syntactic categories Syntactic types Lexical entries
Nom. N Olivia, apple…

Completed nom. NP an apple, the school
Pron. NP She, he…
Adj. (N/N), (N\N) pretty woman,…
Adv. (N/N)/(N/N), very delicious,…

(S\NP)\(S\NP)…
Vb (S\NP), (S\NP)/NP… run, give…
Prep. (S\NP)\(S\NP)/NP run in the park,

(NP\NP)/NP… book of John, …
Relative (S\NP)/S… I believe that…

IA161 Syntactic Formalisms for Parsing Natural Languages 235 / 476

Lecture 6

Combinatorial categorial rules

Functional application (>,<)

Functional composition (> B, < B)
Type-raising (< T, > T)
Distribution (< S, > S)
Coordination (< Φ, > Φ)

IA161 Syntactic Formalisms for Parsing Natural Languages 236 / 476

Lecture 6

Functional application (FA)

X/Y : f Y : a⇒ X : fa(forward functional application, >)
Y : a X\Y : f⇒ X : fa(backward functional application, <)

Combine a function with its argument:

John likes Mary ((likes (Mary))John)
S

S\NP (likes (Mary))
NP (S\NP)/NP NP

Mary sleeps (sleeps (Mary))
S

NP S\NP

Direction of the slash indicates position of the argument with
respect to the function

IA161 Syntactic Formalisms for Parsing Natural Languages 237 / 476

Lecture 6

Derivation in CCG

The combinatorial rule used in each derivation step is usually
indicated on the right of the derivation line
Note especially what happens with the semantic information

John loves Mary

NP : John′ (S\NP)/NP : λxλy.loves′xy NP : Mary′
>

S\NP : λy.loves′Mary′y
<

S : loves′Mary′John′

IA161 Syntactic Formalisms for Parsing Natural Languages 238 / 476

Lecture 6

Function composition (FC)

Generalized forward composition (> Bn)
X/Y : f Y/Z : g ⇒B X/Z : λx.f(gx) (> B)

Functional composition composes two complex categories (two
functions):

(S\NP)/PP (PP/NP) ⇒B (S\NP)/NP
S/(S\NP) (S\NP)/NP ⇒B S/NP

S
>

S/NP
> B

S/(S\NP)
> T

NP

birds
(S\NP)/NP

like

NP

bugs

IA161 Syntactic Formalisms for Parsing Natural Languages 239 / 476

Lecture 6

Function composition (FC)

Generalized backward composition (< Bn)
Y\Z : f X\Y : g ⇒B X\Z : x.f(gx) (< B)

The referee gave

(s/np)/np

Unsal

np

a card

np

and

(X\X)/X

Rivaldo

np

the ball

np
<T

(s/np)\((s/np)/np)
<T

s\(s/np)
<T

(s/np)\((s/np)/np)
<T

s\(s/np)
<B

s\((s/np)/np
<B

s\((s/np)/np
< Φ >

s\((s/np)/np
<

s

IA161 Syntactic Formalisms for Parsing Natural Languages 240 / 476

Lecture 6

Type-raising (T)

Forward type-raising (> T)
X : a ⇒ T/(T\X) : λf.fa (> T)

Type-raising turns an argument into a function (e.g. for case
assignment)

NP ⇒ S/(S\NP) (nominative)
birds

NP

fly

S\NP
<

S

birds

NP
> T

S/(S\NP)
>

S

fly

S\NP

This must be used e.g. in the case of WH-questions
IA161 Syntactic Formalisms for Parsing Natural Languages 241 / 476

Lecture 6

Example of functional composition (> B) and
type-raising (T)

team

n

that

(n\n)/(s/np)

I

np
>T

s/(s\np)
>B

s/s

thought

(s\np)/s

that

s/s

Brazil

np
>T

s/(s\np)
>B

s/np

defeated

(s\np)/np

>B
s/np

>B
s/np

>
n\n

<
n

IA161 Syntactic Formalisms for Parsing Natural Languages 242 / 476

Lecture 6

Example of functional composition (> B) and
type-raising (T)

Backward type-raising (< T)
X : a ⇒ T\(T/X) : λf.fa (< T)

Type-raising turns an argument into a function (e.g. for case
assignment)

NP ⇒ (S\NP)\((S\NP)/NP) (accusative)
The referee gave

(s/np)/np

Unsal

np
<T

(s/np)\((s/np)/np)

a card

np
<T

s\(s/np)

and

(X\X)/X

Rivaldo

np
<T

(s/np)\((s/np)/np)

the ball

np
<T

s\(s/np)
<B

s\((s/np)/np)
<B

s\((s/np)/np)
< Φ >

s\((s/np)/np)
<

s

IA161 Syntactic Formalisms for Parsing Natural Languages 243 / 476

Lecture 6

Coordination (&)

X CONJ X ⇒Φ X (Coordination(Φ))

give

(VP/NP)/NP

a dog
<T

(VP/NP)\((VP/NP)/NP)

a bone
<T

VP\(VP/NP)

and

conj

a policeman
<T

(VP/NP)\((VP/NP)/NP)

a flower
<T

VP\(VP/NP)
<B

VP\((VP/NP)/NP)
<B

VP\((VP/NP)/NP)
< & >

VP\((VP/NP)/NP)
<

VP

IA161 Syntactic Formalisms for Parsing Natural Languages 244 / 476

Lecture 6

Substitution (S)

Forward substitution (> S)
(X/Y)/Z Y/Z ⇒S X/Z

Application to parasitic gap such as the following:

a. team that I persuaded every detractor of to
support

team that

(n\n)/(s/np)

I

np
>T

s/(s\np)

persuaded

((s\np)/(s\np))/np

every detractor of

np/np

to support

(s\np)/np
>B

((s\np)/(s\np))/np
>S

(s\np)/np
>B

s/np
>

n\n

IA161 Syntactic Formalisms for Parsing Natural Languages 245 / 476

Lecture 6

Substitution (S)

Backward crossed substitution (< S×)
Y/Z (X\Y)/Z ⇒S X/Z

Application to parasitic gap such as the following:

a. John watched without enjoying the game between
Germany and Paraguay.

b. game that John watched without enjoying
.
...... game that John [watched](s\np)/np [without enjoying]((s\np)\(s\np))/np

game that

(n\n)/(s/np)

John
np

>T
s/(s\np)

watched
(s\np)/np

without enjoying

((s\np)\(s\np))/np
<S×

(s\np)/np
>B

s/(s\np)
>

n\n

IA161 Syntactic Formalisms for Parsing Natural Languages 246 / 476

Lecture 6

Limit on possible rules

The Principle of Adjacency:

Combinatory rules may only apply to entities which are
linguistically realised and adjacent.

The Principle of Directional Consistency:
All syntactic combinatory rules must be consistent with the
directionality of the principal function. ex: X\Y Y ̸=> X

The Principle of Directional Inheritance:

If the category that results from the application of a
combinatory rule is a function category, then the slash
defining directionality for a given argument in that category
will be the same as the one defining directionality for the
corresponding arguments in the input functions. ex:
X/Y Y/Z ̸=> X\Z.

IA161 Syntactic Formalisms for Parsing Natural Languages 247 / 476

Lecture 6

Semantic in CCG

CCG offers a syntax-semantics interface.
The lexical categories are augmented with an explicit
identification of their semantic interpretation and the rules of
functional application are accordingly expanded with an explicit
semantics.
Every syntactic category and rule has a semantic counterpart.
The lexicon is used to pair words with syntactic categories and
semantic interpretations:

love (S\NP)/NP ⇒ λxλy.loves′xy

IA161 Syntactic Formalisms for Parsing Natural Languages 248 / 476

Lecture 6

Semantic in CCG

The semantic interpretation of all combinatory rules is fully
determined by the Principle of Type Transparency:

Categories: All syntactic categories reflect the semantic type of
the associated logical form.

Rules: All syntactic combinatory rules are type-transparent
versions of one of a small number of semantic operations over
functions including application, composition, and type-raising.

IA161 Syntactic Formalisms for Parsing Natural Languages 249 / 476

Lecture 6

Semantic in CCG

proved := (S\NP3s)/NP : λxλy.prove′xy
the semantic type of the reduction is the same as its syntactic
type, here functional application.

Marcel

NP3sm : marcel′
proved

(S\NP3s)/NP : λxλy.prove′xy

completeness

NP : completeness′
>

S\NP3s : λy.prove′completeness′y
<

S : prove′completeness′marcel′

IA161 Syntactic Formalisms for Parsing Natural Languages 250 / 476

Lecture 6

Semantic in CCG

CCG with semantics : Mary will copy and file without
reading these articles

Mary will

S/VP

copy

VP/NP

and

CONJ
file

VP/NP

without

(VP\VP)/VPing

reading

VPing/NP

these articles

NP
:p.Mary’ λp.will’ :copy’ :and’ :file’ λp.λq.without’pq :read’ :articles’

>B
(VP\VP)/VPing

:λx.λq.without’(read’ x)q
<S

VP/NP
:λx.without’(read’x)(file’x)

< Φ >
VP/NP

:λx.and’(without’(read’x)(file’x))(copy’x)
<

VP
:and’(without’)(read’articles’)(file’articles’))(copy’articles’)

>
S

:will’(and’(without’)(read’articles’)(file’articles’))(copy’articles’))mary’

IA161 Syntactic Formalisms for Parsing Natural Languages 251 / 476

Lecture 6

Parsing a sentence in CCG

Step 1: tokenization
Step 2: tagging the concatenated lexicon
Step 3:

calculate on types attributed to the concatenated lexicons by
applying the adequate combinatorial rules
eliminate the applied combinators (we will see how to do on next
week)

Step 4: finding the parsing results presented in the form of an
operator/operand structure (predicate -argument structure)

IA161 Syntactic Formalisms for Parsing Natural Languages 252 / 476

Lecture 6

Parsing a sentence in CCG

Example: I requested and would prefer musicals
STEP 1 : tokenization/lemmatization → ex) POS Tagger,
tokenizer, lemmatizer

a. I-requested-and-would-prefer-musicals
b. I-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions → ex)
Supertagger, Inventory of typed words

I NP
Requested (S\NP)/NP
And CONJ
Would (S\NP)/VP
Prefer VP/NP
musicals NP

IA161 Syntactic Formalisms for Parsing Natural Languages 253 / 476

Lecture 6

Parsing a sentence in CCG
STEP 3 : categorial calculus

c. apply the coordination rules Coordination: (< & >)

X conj X ⇒ X

b. apply the functional composition rules Forward Composition: (> B)
X/Y : f Y/Z : g ⇒ X/Z : Bfg

a. apply the type-raising rules Subject Type-raising (> T)
NP : a ⇒ T/(T\NP) : Ta

7/ S
6/ S/NP NP (>)
5/ S/(S\NP) (S\NP)/NP NP (>B)
4/ S/(S\NP) (S\NP)/NP NP (> Φ)
3/ S/(S\NP) (S\NP)/NP CONJ (S\NP)/NP NP (>B)
2/ S/(S\NP) (S\NP)/NP CONJ (S\NP)/VP VP/NP NP (>T)
1/ NP (S\NP)/NP CONJ (S\NP)/VP VP/NP NP

I- requested- and- would- prefer- musicals

IA161 Syntactic Formalisms for Parsing Natural Languages 254 / 476

Lecture 6

Parsing a sentence in CCG

STEP 4 : semantic representation (predicate-argument
structure)

7/S: and’(will’(prefer’ musicals’) i’)(request’ musicals’ i’)

6/ :λy.and’(would’(prefer’ musicals’)y)(request’ musicals’ y)

5/ : λxλy.and’(will’(prefer’x)y)(request’xy)

4/ : λxλy.and’(will’(prefer’x)y)(request’xy)

3/ : λx.λy.will’(prefer’x)y

2/ :λf.f I’

1/ :i’ :request’ :and’ : will’ :prefer’ : musicals’

I requested and would prefer musicals

IA161 Syntactic Formalisms for Parsing Natural Languages 255 / 476

Lecture 6

Variation of CCG : Multi-modal CCG (Baldridge,
2002)

Modalized CCG system
Combination of Categorial Type Logic (CTL, Morrill, 1994;
Moortgat, 1997) into the CCG (Steedman, 2000)
Rules restrictions by introducing the modalities: *, x, •, ♢
Modalized functional composition rules

(> B) X/♢Y Y/♢Z ⇒ X/♢Z
(< B) X\♢Y Y\♢Z ⇒ X\♢Z

Invite you to read the paper “Multi-Modal CCG” of (Baldridge
and M.Kruijff, 2003)

IA161 Syntactic Formalisms for Parsing Natural Languages 256 / 476

Lecture 6

The positions of several formalisms on the
Chomsky hierarchy

Turing complete

Context-sensitive

Middly
context-sensitive

Context-free

Unrestricted CTL

CTL with
Non-expanding Rules

Multiset-CCG

CCG
TAG

AB
CTL Base Logic

Lambek Calculus

IA161 Syntactic Formalisms for Parsing Natural Languages 257 / 476

Lecture 7

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 258 / 476

Lecture 7

.

...... Parsing with HPSG

IA161 Syntactic Formalisms for Parsing Natural Languages 259 / 476

Lecture 7

Overview on syntactic formalisms

Unification based grammars
: HPSG, LFG, TAG, UCG...

Dependency based grammars
: Tesnière model; Meaning-Text of Mel’čuk...

IA161 Syntactic Formalisms for Parsing Natural Languages 260 / 476

Lecture 7

Heritage of HPSG

GPSG – Generalized Phrase-Structure Grammar (Gerald Gazdar)
linear order/hierarchy order feature structure for representation of
information

LFG
Lexicon contains
Lexical rules

CG
Subcategorization

IA161 Syntactic Formalisms for Parsing Natural Languages 261 / 476

Lecture 7

Key points of HPSG

Monostratal theory without derivation
Sharing a given information without movement and
transformation
One representation for different levels of analysis : phonology,
syntax, semantic
Constraint-based analysis

Unification of given information

Computational formalism

IA161 Syntactic Formalisms for Parsing Natural Languages 262 / 476

Lecture 7

Syntactic representation in HPSG

Typed feature structure

consists of a couple “attribute/value”

the types are organized into a hierarchy
ex: sign>phrase, case>nominative

feature structure is a directed acyclic graph (DAG), with arcs
representing features going between values

IA161 Syntactic Formalisms for Parsing Natural Languages 263 / 476

Lecture 7

Features

Basic element of structure in HPSG

Should be appropriate to a type

Most frequently used features
PHON
SYNSEM
LOC/NON-LOC
CAT
CONTEXT
CONTENT
HEAD
SUJ
COMPS
S-ARG

IA161 Syntactic Formalisms for Parsing Natural Languages 264 / 476

Lecture 7

Types

Types are attributed to features -> typed features
sign
synsem
head
phrase
content
Index
....

Each of these feature values is itself a complex object:
The type sign has the features PHON and SYNSEM appropriate for
it
The feature SYNSEM has a value of type synsem
This type itself has relevant features (LOCAL and NONLOCAL)

IA161 Syntactic Formalisms for Parsing Natural Languages 265 / 476

Lecture 7

Types

sign is the basic type in HPSG used to describe lexical items (of
type word) and phrases (of type phrase).

All signs carry the following two features:
PHON encodes the phonological representation of the sign
SYNSEM syntax and semantics

sign

 PHON list(phon-string)
SYNSEM synsem

IA161 Syntactic Formalisms for Parsing Natural Languages 266 / 476

Lecture 7

Types

In attribute-value matrix (AVM) form, here is the skeleton of an
object:

sign

PHON list(PHON)

SYNSEM

synsem

LOCAL local

NON-LOCAL non-local

DTRS list(SIGN)

IA161 Syntactic Formalisms for Parsing Natural Languages 267 / 476

Lecture 7

Structure of signs in HPSG

synsem introduces the features LOCAL and NONLOCAL

local introduces CATEGORY (CAT), CONTENT (CONT) and
CONTEXT(CONX)

non-local will be discussed in connection with unbounded
dependencies

category includes the syntactic category and the grammatical
argument of the word/phrase

IA161 Syntactic Formalisms for Parsing Natural Languages 268 / 476

Lecture 7

Description of an object in HPSG:

lexical sign and phrasal sign

sing

[PHON list(phon-string)
SYNSEM synsem

]

word phrase
[
DTRS constituent-struc

]

synsem

 LOCAL local
NON-LOCAL non-local

local

CATEGORY category
CONTENT content
CONTEXT context

category

HEAD head
VAL ...
... ...

IA161 Syntactic Formalisms for Parsing Natural Languages 269 / 476

Lecture 7

CATEGORY

CATEGORY encode the sign’s syntactic category
Given via the feature [HEAD head], where head is the supertype
for noun, verb, adjective, preposition, determiner, marker; each of
these types selects a particular set of head features
Given via the feature [VALENCE ...], possible to combine the
signs with the other signs to a larger phrases

 SYNSEM|LOC|CAT|VALENCE
valence

SUBJECT list(synsem)
SPECIFIER list(synsem)
COMPLEMENTS list(synsem)

IA161 Syntactic Formalisms for Parsing Natural Languages 270 / 476

Lecture 7

Sub-categorization of head type

vform

finite infinitive base gerund present-part. past-part. passive-part.

case

nominative accusative

pform

of to ...

IA161 Syntactic Formalisms for Parsing Natural Languages 271 / 476

Lecture 7

Description of an object in HPSG

sing

[PHON list(phon-string)
SYNSEM synsem

]

word phrase
[
DTRS constituent-struc

]

synsem

 LOCAL local
NON-LOCAL non-local

local

CATEGORY category
CONTENT content
CONTEXT context

category

HEAD head
VAL ...
... ...

IA161 Syntactic Formalisms for Parsing Natural Languages 272 / 476

Lecture 7

Semantic representation: CONTENT
(& CONTEXT) feature

Semantic interpretation of the sign is given as the value to
CONTENT

nominal-object: an individual/entity (or a set of them),
associated with a referring index, bearing agreement features →
INDEX, RESTR
Parameterized-state-of-affairs (psoa): a partial situate; an
event relation along with role names for identifying the
participants of the event→ BACKGR
quantifier: some, all, every, a, the, . . .

Note: many of these have been reformulated by “Minimal
Recursion Semantics (MRS)” which allows underspecification of
quantifier scopes.

IA161 Syntactic Formalisms for Parsing Natural Languages 273 / 476

Lecture 7

Sub-categorization of content type
content

... psoa

nom-obj

INDEX index
RESTR set(psoa)

laugh‘

[
LAUGHER ref

]
give‘

GIVER ref
GIVEN ref
GIFT ref

drink‘

 DRINKER ref
DRUNKEN ref

think‘

 THINKER ref
THOUGHT psoa

.Note:..

......
Semantic restriction on the index are represented as a value of RESTR. RESTR is an attribute of a nominal object.
The value of RESTR is a set of psoa. In turn, RESTR has the attribute of REL whose value can either be referential
indices or psoas.

IA161 Syntactic Formalisms for Parsing Natural Languages 274 / 476

Lecture 7

Sub-categorization of index type

index

PERSON person
NUMBER number
GENDER gender

referential there it

person

first second third

number

singular plural

pgender

masculine feminine neuter

IA161 Syntactic Formalisms for Parsing Natural Languages 275 / 476

Lecture 7

Lexical input of She

HEAD

VALENCE

INDEX

RESTR

BACKGR

noun

val

ref

psoa

CASE

SUBJ

COMPS
SPR

PER
NUM
GEND

RELN

INST

nom

3rd
sing
fem

female

1

1

cat

ppro

context

CATEGORY

CONTENT

CONTEXT

LOCALSYNSEM

PHON she

localsynsemword

IA161 Syntactic Formalisms for Parsing Natural Languages 276 / 476

Lecture 7

Lexical input of She

sign

word
phrase

PHON

SYNSEM

list(phon-string)

synsem

DTRS constituent-struc

Each phrase has a DTRS attribute which has a
constituent-structure value
This DTRS value corresponds to what we view in a tree as
daughters (with additional grammatical role information, e.g.
adjunct, complement, etc.)
By distinguishing different kinds of constituent-structures, we
can define different kinds of constructions in a language

IA161 Syntactic Formalisms for Parsing Natural Languages 277 / 476

Lecture 7

Structure of phrase

head-adj-struc
ADJ-DTR

ADJ-DTR
sign
<>

head-filler-struc
FILL-DTR

FILL-DTR
sign
<>

head-mark-struc
MARK-DTR

MARK-DTR
sign
<>

head-spr-struc
SPR-DTR

SPR-DTR
<sign>
<>

head-subj-struc
SUBJ-DTR

SUBJ-DTR
<sign>
<>

head-comps-struc
COMPS-DTR

COMP-DTR
<sign>
<>

constituent-struc

head-struc coord-struc

HEAD-DTR CONJ-DTRS

CONJUNCTION-DTR word

set(sign)sign
...

IA161 Syntactic Formalisms for Parsing Natural Languages 278 / 476

Lecture 7

head-subject/complement structure

SYNSEM | LOC | CAT

DTRS

HEAD

VAL
SUBJ

COMPS

head-subj-struc

PHON

SYNSEM

<she> SYNSEM | LOC | CAT

DTRS

HEAD

VAL
SUBJ

COMPS

head-comps-struc

SYNSEM | LOC | CAT

HEAD

VAL
SUBJ

COMPS

PHON

PHON

SYNSEM

<wine>

3

3

1

1

<drinks>

1

2

VFORM fin3
verb 2

S H

H
C

IA161 Syntactic Formalisms for Parsing Natural Languages 279 / 476

Lecture 7

Questions! (1)

How exactly did the last example work?
drink has head information specifying that it is a finite verb and
subcategories for a subject and an object

The head information gets percolated up (the HEAD feature principle)
The valence information gets “checked off” as one moves up in the
tree (the VALENCE principle)

Such principles are treated as linguistic universals in HPSG

IA161 Syntactic Formalisms for Parsing Natural Languages 280 / 476

Lecture 7

HEAD-feature principle

The value of the HEAD feature of any headed phrase is
token-identical with the HEAD value of the head daughter

1
DTRS head-struc

SYNSEM | LOC | CAT | HEAD

DTRS | HEAD-DTR | SYNSEM | LOC | CAT | HEADphrase 1

IA161 Syntactic Formalisms for Parsing Natural Languages 281 / 476

Lecture 7

VALENCE principle

In a headed phrase, for each valence feature F, the F value of
the head daughter is the concatenation of the phrase’s F value
with the list of F-DTR’s SYNSEM (Pollard and Sag, 1994:348)

phrase

SS | LOC | CAT | VAL SUBJ
COMPS

[a]

[b]

DTRS

HEAD-DTR

SUBJ-DTR

COMP-DTR

SS | LOC | CAT | VAL
SUBJ [1] [a]

COMPS [2],...,[n] [b]

SS [1]

SS [2] ,..., ss[n]

Note: Valence Principle constrains the way in which
information is shared between phrases and their head
daughters.

F can be any one of SUBJ, COMPS, SPR
When the F-DTR is empty, the F valence feature of the head
daughter will be copied to the mother phrase

IA161 Syntactic Formalisms for Parsing Natural Languages 282 / 476

Lecture 7

Questions! (2)

Note that agreement is handled neatly, simply by the fact that
the SYNSEM values of a word’s daughters are token-identical to
the items on the VALENCE lists
How exactly do we decide on a syntactic structure?
Why the subject is checked off at a higher point in the tree?

IA161 Syntactic Formalisms for Parsing Natural Languages 283 / 476

Lecture 7

Immediate Dominance (ID) Principle

Every headed phrase must satisfy exactly one of the ID
schemata

The exact inventory of valid ID schemata is language specific
We will introduce a set of ID schemata for English

IA161 Syntactic Formalisms for Parsing Natural Languages 284 / 476

Lecture 7

Immediate Dominance (ID) Schemata

DTRS head-struc
phrase

DTRS

DTRS

DTRS

DTRS

SS | LOC | CAT | VAL | COMPS

head-spr-struc

head-marker-struc

marker

head-adj-struc

MARK-DTR | SS | LOC | CAT | HEAD

ADJ-DTR | SS | LOC | CAT | HEAD | MOD

HEAD-DTR | SS

(head-subject)

head-comps-struc (head-complement)

(head-specifier)

(head-marker)

(head-adjunct)

...

SS | LOC | CAT | VAL | COMPS

DTRS head-subj-struc

1

1

IA161 Syntactic Formalisms for Parsing Natural Languages 285 / 476

Lecture 7

head-adjunct structure

PHON

SS | LOC | CAT

DTRS

<red,boook>

HEAD

VAL | SPR

head-adj-struc

PHON

SS | LOC | CAT | HEAD

<red>

PRD -

MOD
adj

PHON <book>

SS LOC | CAT
HEAD

VAL | SPR

noun

LOC | CAT | HEAD det

1

2

2

13 3

A H

IA161 Syntactic Formalisms for Parsing Natural Languages 286 / 476

Lecture 7

Semantic principle

The CONTENT value of a headed phrase is token identical to the
CONTENT value of the semantic head daughter
The semantic head daughter is identified as

The ADJ-DTR in a head-adjunct phrase
The HEAD-DTR in other headed phrases

DTRS
phrase

head-struc

SYNSEM | LOC | CONT

DTRS

SYNSEM | LOC | CONT

DTRS

head-adj-struc
ADJ-DTR| SYNSEM | LOC | CONT

HEAD-DTR | SYNSEM | LOC | CONT

(head-adjunct)

(non-head-adjunct)

1

1

1

1

head-adj-struc

IA161 Syntactic Formalisms for Parsing Natural Languages 287 / 476

Lecture 7

Example 2

Kim likes bagels

word
PHON

SYNSEM

Kim

LOCAL

CAT

CONT

HEAD

SUBJ

SPR

COMPS

ARG-ST

INDEX

KEY

RELS

noun

ARG 3sg

named_rel

INST

ARG Kim

1

1

2

2

IA161 Syntactic Formalisms for Parsing Natural Languages 288 / 476

Lecture 7

Example 2
Kim likes(1) bagels

nowARG2
ARG1
t_overlap_rel

ARG2

ARG1

EVENT

like_rel

RELS

KEY

INDEX

content

CONT

ARG-ST

INDEX

content
CONT

COMPS

SPR

SUBJ

HEAD noun

category

CAT

local

LOCAL

synsem

INDEX
content

CONT

COMPS

SPR

SUBJ

HEAD
noun

3sgARG

category

CAT

local

LOCAL

synsem
fin

verb

FORM
HEAD

SUBJ

SPR

COMPS

CAT

LOCALSYNSEM

category
local

synsem

word
PHON likes

3
3

4

5

.6

6

3

5

2

1 2,

4

1

IA161 Syntactic Formalisms for Parsing Natural Languages 289 / 476

Lecture 7

Example 2

Kim likes(2) bagels

word
PHON

SYNSEM

likes

LOCAL

CAT

CONT

HEAD

SUBJ

SPR

COMPS

ARG-ST

INDEX

RELS

3sgNP NP

like_rel

EVENT

ARG1

ARG2
ARG2

ARG1

t-overlap_rel

3

now

3

4

5

,

3

1 4 52

1

2

FORM
verb

fin

,

IA161 Syntactic Formalisms for Parsing Natural Languages 290 / 476

Lecture 7

Example 2
Kim likes bagels

word
PHON

SYNSEM

bagels

LOCAL

CAT

CONT

HEAD

SUBJ

SPR

COMPS

ARG-ST

INDEX

KEY

RELS
INST

bagel_rel

DetP

AGR pl
noun

1
2

1

2

3

3

IA161 Syntactic Formalisms for Parsing Natural Languages 291 / 476

Lecture 7

Example 2

head-complement schema

head-comps-ph
PHON

SYNSEM

HEAD-DTR

NON-HEAD-DTRS

LOCAL

PHON

SYNSEM

PHON

SYNSEM RELS

PHON

SYNSEM RELS

CAT

CONT

LOCAL

CAT

CONT

HEAD

SUBJ

SPR

COMPS

INDEX
KEY
RELS

HEAD
SUBJ

SPR
COMPS

INDEX
KEY
RELS

sts

Z...

N

M...

D

, ...
E

2
3
F

1
A
B

E

C

2
3
F M Z...

1

A

B

C D N...

IA161 Syntactic Formalisms for Parsing Natural Languages 292 / 476

Lecture 7

Example 2

head-complement schema headed by likes

head-comps-ph

PHON

SYNSEM

HEAD-DTR

NON-HEAD-DTRS

LOCAL

CAT

CONT

PHON

SYNSEM

PHON

SYNSEM LOCAL | CONT | RELS

LOCAL

CAT

CONT
RELS

like_rel

EVENT
ARG1
ARG2

t-overlap_rel
ARG1
ARG2 now

KEY

INDEX

COMPS NP

SPR

SUBJ

HEAD

NP 3sg

likes

RELS

KEY

INDEX

COMPS

SPR

SUBJ
HEAD

F6

D

22
4
5

,3E

2

3

6 5

B

A 4

verb
FORM fin1

A

2

3

E F

1

A

B

C D

IA161 Syntactic Formalisms for Parsing Natural Languages 293 / 476

Lecture 7

Example 2

Kim likes bagels

head-comps-ph

PHON

SYNSEM LOCAL

CAT

CONT

HEAD

SUBJ

SPR

COMPS

INDEX
KEY

RELS

FORM

NP

EVENT
ARG1
ARG2

ARG1
ARG2

INST

likes, bagels

verb

fin
3sg

like_rel
t-overlap_rel

now

bagel_rel
52

2
4
5

, ,
3

2
3

4

IA161 Syntactic Formalisms for Parsing Natural Languages 294 / 476

Lecture 7

Example 2

head-subject schema

head-subj-ph
PHON

SYNSEM

HEAD-DTR

NON-HEAD-DTRS

LOCAL

CAT

CONT

HEAD

SUBJ

SPR

COMPS

INDEX
KEY
RELS

PHON

SYNSEM LOCAL

CAT

CONT

HEAD

SUBJ

SPR

COMPS

INDEX

KEY

RELS

FORM

verb

fin

PHON

SYNSEM LOCAL | CONT | RELS F4

B

2

3

E

D

C

4

1

A

2
3
E F

1

C

D

B A

IA161 Syntactic Formalisms for Parsing Natural Languages 295 / 476

Lecture 7

Example 2

head-subject schema headed by likes bagels

NON-HEAD-DTRS
PHON

SYNSEM LOCAL | CONT | RELS F4

B

LOCAL

CAT

CONT

HEAD

SUBJ

SPR

COMPS

INDEX
KEY

RELS

FORM

NP

EVENT
ARG1
ARG2

ARG1
ARG2

INST

likes, bagels

verb

fin
3sg

like_rel
t-overlap_rel

now

bagel_rel
2

2
5 , ,

3

2
3

4

head-subj-ph

PHON

SYNSEM

HEAD-DTR

LOCAL

CAT

CONT

HEAD

SUBJ

SPR

COMPS

INDEX
KEY
RELS

2
3
E F

1

C

D

B A

6
6

E

D

C

5

1

PHON

SYNSEM

A

IA161 Syntactic Formalisms for Parsing Natural Languages 296 / 476

Lecture 7

Example 2

Kim likes bagels

head-subj-ph
PHON Kim, likes, bagels

SYNSEM LOCAL

CAT

CONT

HEAD

SUBJ

SPR

COMPS

INDEX
KEY

RELS

verb

finFORM

named_rel

INST

ARG Kim

like_rel

EVENT
ARG1
ARG2

t-overlap_rel

ARG1

ARG2 now

bagel_rel

INST 6
2

2
5
6

5

2
3

, , ,

IA161 Syntactic Formalisms for Parsing Natural Languages 297 / 476

Lecture 7

Example 2
Tree of Kim likes bagels

head-subj-ph

verbHEAD

SUBJ

SPR

COMPS

word head-comps-ph

verbnoun HEAD

SUBJ

SPR

COMPS

HEAD

SUBJ

SPR

COMPS

HEAD

SUBJ

SPR

COMPS

word word

verb noun
Kim

likes bagels

2

2

1

1 1

HEAD

SUBJ

SPR

COMPS

IA161 Syntactic Formalisms for Parsing Natural Languages 298 / 476

Lecture 7

Compare HPSG to CFG

Each sign or HPSG rule consists of SYNSEM, DTRS, and PHON
parts.
The SYNSEM part specifies how the syntax and semantics of the
phrase (or word) are constrained. It corresponds roughly to the
left-hand side of CFG rules but contains much more information.
The DTRS part specifies the constituents that make up the
phrase (if it is a phrase). (Each of these constituents is a
complete sign.) This corresponds to part of the information on
the right-hand side of CFG rules, but not to ordering
information.
The PHON part specifies the ordering of the constituents in
DTRS (where this is constrained) and the pronunciation of these
(if this is specifiable). This corresponds to the the ordering
information on the right-hand side of CFG rules.

IA161 Syntactic Formalisms for Parsing Natural Languages 299 / 476

Lecture 7

Simulation of Bottom-up parsing algorithm in HPSG

Unify input lexical-signs with lexical-signs in the lexicon.
Until no more such unifications are possible

Unify instantiated signs with the daughters of instantiated phrasal
signs or with phrasal signs in the grammar.

.

......

if
all instantiated signs but one saturated one (S) are associated with daughters of
other instantiated signs and the PHON value of all instantiated signs is
completely specified
return the complete S structure

else fail.

IA161 Syntactic Formalisms for Parsing Natural Languages 300 / 476

Lecture 7

Example 2: processing of unification

Kim walks

The words in the sentence specify only their pronunciations
and their positions.
1 [PHON ((0 1 kim))]
2 [PHON ((1 2 walks))]
.
STEP 1: Unifying 1 with the lexical entry for Kim gives..

......

3 [PHON ((0 1 kim))
SYNSEM [CAT [HEAD noun SUBCAT ()]

CONTENT [INDEX 1 [PER 3rd NUM sing]]
CONTEXT [BACKGR {[RELN naming BEARER 1 NAME Kim]}]]]

We now know something about the meaning of Kim (it refers to somebody named
Kim) and something about its syntactic properties (it is third person singular).

IA161 Syntactic Formalisms for Parsing Natural Languages 301 / 476

Lecture 7

Example 2: processing of unification

1 [PHON ((0 1 kim))]
2 [PHON ((1 2 walks))]
.
STEP 2: Unifying 2 with the lexical entry for walks gives..

......

4 [PHON ((1 2 walks))
SYNSEM [CAT [HEAD [VFORM fin]

SUBCAT ([CAT [HEAD noun SUBCAT ()]
CONTENT [INDEX 1 [PER 3rd NUM sing]]])]

CONTENT [RELN walk WALKER 1]]]

We know that walks refers to walking and that it requires a subject noun phrase which
refers to the walker but doesn’t require any object.

IA161 Syntactic Formalisms for Parsing Natural Languages 302 / 476

Lecture 7

Example 2: processing of unification
.HEAD-DTR rule..

......

[SYNSEM [CAT [HEAD 1 SUBCAT (2)]
CONTENT 4]

DTRS [HEAD-DTR [SYNSEM [CAT [HEAD 1 SUBCAT (2)]
CONTENT 4]

PHON 3]
SUBJ-DTRS ()]

PHON 3]
.STEP 3: Unifying 4 with the HEAD-DTR of this rule gives..

......

5 [SYNSEM [CAT [HEAD [VFORM fin]
SUBCAT 2([CAT [HEAD noun SUBCAT ()]

CONTENT [INDEX 1 [PER 3rd NUM sing]]])]
CONTENT 4[RELN walk WALKER 1]]

DTRS [HEAD-DTR [SYNSEM [CAT [HEAD [VFORM fin] SUBCAT (2)]]
CONTENT [4]
PHON 3((1 2 walks))]

SUBJ-DTRS ()]
PHON 3((1 2 walks))]

Now we have a VP with the transitive verb walks as its head (and only constituent).
IA161 Syntactic Formalisms for Parsing Natural Languages 303 / 476

Lecture 7

Example 2: processing of unification
.HEAD-DTR rule..

......

6 [SYNSEM [CAT [HEAD 1 SUBCAT ()]
CONTENT 4]

DTRS [HEAD-DTR [SYNSEM [CAT [HEAD 1 SUBCAT (2)]
CONTENT 4]

PHON 3]
SUBJ-DTRS ([PHON 5

SYNSEM 2])]
PHON (5 < 3)]

.STEP 4: Unifying 5 with the HEAD-DTR of this rule gives..

......

7 [SYNSEM [CAT [HEAD 1[VFORM fin SUBCAT ()]]
CONTENT 4[RELN walk WALKER]]

DTRS [HEAD-DTR [SYNSEM [CAT [HEAD 1[VFORM fin]
SUBCAT 2([CAT [HEAD noun SUBCAT ()]

CONTENT [INDEX
[PER 3rd NUM sing]]])]

CONTENT [RELN walk WALKER 4]]
PHON 3((1 2 walks))]

SUBJ-DTRS ([PHON 5
SYNSEM 2[CAT [HEAD noun SUBCAT ()]

CONTENT [INDEX]]])]
PHON (5 < 3((1 2 walks)))]

IA161 Syntactic Formalisms for Parsing Natural Languages 304 / 476

Lecture 7

Example 2: processing of unification

.STEP 5: Unifying 3 with the SUBJ-DTR of 7 gives..

......

8 [SYNSEM [CAT [HEAD [VFORM fin SUBCAT ()]]
CONTENT [RELN walk WALKER [PER 3rd NUM sing]]]

DTRS [HEAD-DTR [SYNSEM [CAT [HEAD [VFORM fin]
SUBCAT ([CAT [HEAD noun SUBCAT ()]

CONTENT [INDEX [PER 3rd NUM sing]]])
CONTENT [RELN walk WALKER [PER 3rd NUM sing]]]

PHON ((1 2 walks))]
SUBJ-DTRS ([PHON ((0 1 kim))

SYNSEM [CAT [HEAD noun SUBCAT ()]
CONTENT [INDEX [PER 3rd NUM sing]]])]

PHON ((0 1 kim) (1 2 walks))]

Now the subject of the sentence is pronounceable, and we’re done.

IA161 Syntactic Formalisms for Parsing Natural Languages 305 / 476

Lecture 7

Phenomena covered by HPSG parsers

Case assignment
Word order : scrambling
Long distance dependency
Coordination
Scope of adverbs and negation
Topic drop
Agreement
Relative clause
…

IA161 Syntactic Formalisms for Parsing Natural Languages 306 / 476

Lecture 7

Example 3: unbounded dependency construction

An unbounded dependency construction
involves constituents with different functions
involves constituents of different categories
is in principle unbounded

Two kind of unbounded dependency constructions (UDCs)
Strong UDCs
Weak UDCs

IA161 Syntactic Formalisms for Parsing Natural Languages 307 / 476

Lecture 7

Strong UDCs

An overt constituent occurs in a non-argument position:
Topicalization:

Kimi, Sandy loves_ i.
Wh-questions:

I wonder [whoi Sandy loves_ i].
Wh-relative clauses:

This is the politician [whoi Sandy loves_ i].
It -clefts:

It is Kim i [whoi Sandy loves_ i].
Pseudoclefts:

[Whati Sandy loves_ i] is Kimi.

IA161 Syntactic Formalisms for Parsing Natural Languages 308 / 476

Lecture 7

Weak UDCs

No overt constituent in a non-argument position:
Purpose infinitive (for -to clauses):

I bought iti for Sandy to eat_ i .
Tough movement:

Sandyi is hard to love_ i .
Relative clause without overt relative pronoun:

This is [the politician]i [Sandy loves_ i].
It-clefts without overt relative pronoun:

It is Kimi [Sandy loves_ i].

IA161 Syntactic Formalisms for Parsing Natural Languages 309 / 476

Lecture 7

Using the feature SLASH

To account for UDCs, we will use the feature SLASH (so-named
because it comes from notation like S/NP to mean an S missing
an NP)
This is a non-local feature which originates with a trace, gets
passed up the tree, and is finally bound by a filler

IA161 Syntactic Formalisms for Parsing Natural Languages 310 / 476

Lecture 7

The bottom of a UDC: Traces

word
PHON

SYNSEM

LOCAL

NONLOC
INHERITED | SLASH

TO-BIND | SLASH

1

1

phonologically null, but structure-shares local and slash values

IA161 Syntactic Formalisms for Parsing Natural Languages 311 / 476

Lecture 7

Traces

Because the local value of a trace is structure-shared with the
slash value, constraints on the trace will be constraints on the
filler.

For example, hates specifies that its object be accusative, and this
case information is local
So, the trace has [synsem|local|cat|head|case acc] as part of its
entry, and thus the filler will also have to be accusative

*Hei/Himi, John likes_ i

IA161 Syntactic Formalisms for Parsing Natural Languages 312 / 476

Lecture 7

The middle of a UDC: The Nonlocal Feature
Principle (NFP)

For each NON-LOCAL feature, the inherited value on the mother
is the union of the inherited values on the daughter minus the
to-bind value on the head daughter.
In other words, the slash information (which is part of inherited)
percolates “up” the tree
This allows the all the local information of a trace to “move up”
to the filler

IA161 Syntactic Formalisms for Parsing Natural Languages 313 / 476

Lecture 7

The middle of a UDC: The Nonlocal Feature
Principle (NFP)

The top of a UDC: filler-head structures

Example for a structure licensed by the filler-head schema

NLOC | INHERITED | SLASH

LOCAL
NLOC

INHERITED | SLASH
TO-BIND | SLASH 1

1..., ,...1

F H

IA161 Syntactic Formalisms for Parsing Natural Languages 314 / 476

Lecture 7

The middle of a UDC: The Nonlocal Feature
Principle (NFP)

The analysis of the UDC example

Johni we know She likes_i
S

NLOC | INHERITED | SLASH

NLOC
INHERITED | SLASH

TO-BIND | SLASH

S

VP

NLOC
INHERITED | SLASH

TO-BIND | SLASH

S
LOC | CAT | SUBCAT

NLOC
INHERITED | SLASH

TO-BIND | SLASH

VP
LOC | CAT | SUBCAT

NLOC
INHERITED | SLASH

TO-BIND | SLASH

V
LOC | CAT | SUBCAT

NONLOC | TO-BIND | SLASH

LOC

NLOC | INHER | SLASH

NP

NP

V

NP

John

we

know

she

likes -i

3

1

1 2
2

3

3

3

3

3

3
NP

,

HF

LOCAL 3

i

HS

CH

HS

H C

1

IA161 Syntactic Formalisms for Parsing Natural Languages 315 / 476

Lecture 7

Example 4

John reads a new book

PHON

SYNSEM | LOC

CAT

CONT
READER
READEE

HEAD

VAL

VFORM

AUX

INV

SUBJ

COMPS

SPR

NP

NP

reads

fin

bool

bool

nom,-PRD

acc,-PRD

word read

verb

3rd,sg

1
2

1

2

IA161 Syntactic Formalisms for Parsing Natural Languages 316 / 476

Lecture 7

Example 4

John reads a new book

PHON

SYNSEM | LOCAL

CAT | HEAD

CONT

MOD LOCAL

PRD

CAT

CONT

HEAD

VAL | SPR

INDEX

RESTR

INDEX

RESTR
RELN

ARG

new

noun

new

cat

nom-obj
localsynsem

adj

nom-obj
localword

-

1

1

1

2

2

IA161 Syntactic Formalisms for Parsing Natural Languages 317 / 476

Lecture 7

Example 4

John reads a new book
Note: apply head-adjunct schema

PHON

SS | LOC
CAT

CONT

HEAD

VAL | SPR

PHON

SS | LOC

CAT | HEAD | MOD

CONT

INDEX

RESTR
RELN
ARG

PHON

SS LOC

CAT

CONT

HEAD

VAL | SPR

INDEX

RESTR

PER
NUM
GEN

RELN

INST

book

neut
sg
3rd

book

new

new book

nom-obj

nom-obj

new

1

1

2

2

3

4

4

4

4

3

5

5

A

H

IA161 Syntactic Formalisms for Parsing Natural Languages 318 / 476

Lecture 7

Example 4

John reads a new book

PHON

SS | LOC
CAT

CONT

HEAD
VAL | SPR

PHON

SS LOC | CAT | HEAD
SPEC

PHON

SS LOC
CAT

CONT

HEAD

VAL | SPR

a new book

a
new book

det

1

1

2

2

6 67
7

SPR H

IA161 Syntactic Formalisms for Parsing Natural Languages 319 / 476

Lecture 7

Example 4

John reads a new book

PHON

SS | LOC
CAT

CONT

HEAD

VAL
SUBJ

COMPS

NP nom,-PRD

PHON

SS | LOC

CAT

CONT

HEAD

VAL

VFORM

SUBJ

COMPS NP acc,-PRD

READER

READEE

PHON

SS LOC
CAT

CONT | INDEX

HEAD

VAL

CASE
PRD

SUBJ
COMPS
SPR

reads a new book

reads a new book

3rd,sg

fin
acc

noun

read

verb

7

7

4

4 4

8

8

9

9

10 10

11

11

-

H C

IA161 Syntactic Formalisms for Parsing Natural Languages 320 / 476

Lecture 7

Example 4

John reads a new book - completed analysis
PHON

SS | LOC CAT

CONT

HEAD

VAL

SUBJ

COMPS
SPR

PHON

SS LOC

CAT

CONT

HEAD

VAL

INDEX

RESTR

CASE
PRD -

SUBJ
COMPS
SPR

PER
NUM
GEND

NAME

INST

PHON

SS | LOC

CAT

CONT

HEAD

VAL
SUBJ

COMPS

READER

READEE

John reads a new book

John

reads a new book

4

7

7

8

8

9

9
11

11

11

nom

3rd
sg
masc

John

naming
nom-obj

read

noun

SUBJ
H

IA161 Syntactic Formalisms for Parsing Natural Languages 321 / 476

Lecture 7

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 322 / 476

Lecture 7

Outline

Applicative system
Combinators
Combinators vs. λ-expressions
Application to natural language parsing
Combinators used in CCG

IA161 Syntactic Formalisms for Parsing Natural Languages 323 / 476

Lecture 7

Applicative system

CL (Curry & Feys, 1958, 1972) as an applicative system
CL is an applicative system because the basic unique operation
in CL is the application of an operator to an operand

Operator(Operand)

Operator Operand

IA161 Syntactic Formalisms for Parsing Natural Languages 324 / 476

Lecture 7

Combinators

CL defines general operators, called Combinators.
Each combinator composes between them the
elementary combinators and defines the
complexe combinators.
Certains combinators are considered as the basic combinators
to define the other combinators.

IA161 Syntactic Formalisms for Parsing Natural Languages 325 / 476

Lecture 7

Elementary combinators

I =def λx.x (identificator)
K =def λx.λy.x (cancellator)
W =def λx.λy.xyy (duplicator)
C =def λx.λy.λz.xzy (permutator)
B =def λx.λy.λz.x(yz) (compositor)
S =def λx.λy.λz.xz(yz) (substitution)
Φ =def λx.λy.λz.λu.x(yu)(zu) (distribution)
Ψ =def λx.λy.λz.λu.x(yz)(yu) (distribution)

IA161 Syntactic Formalisms for Parsing Natural Languages 326 / 476

Lecture 7

β-reductions

The combinators are associated with the β-reductions in a
canonical form:

β-reduction relation between X and Y

X ≥β Y

Y was obtained from X by a β-reduction

IA161 Syntactic Formalisms for Parsing Natural Languages 327 / 476

Lecture 7

β-reductions

Ix ≥β x
Kxy ≥β x
Wxy ≥β xyy
Cxyz ≥β xzy
Bxyz ≥β x(yz)
Sxyz ≥β xz(yz)
Φxyzu ≥β x(yu)(zu)
Ψxyzu ≥β x(yz)(yu)

.

......
Each combinator is an operator which has a certain number of arguments (operands);
sequences of the arguments which follow the comnator are called “the scope of

combinator”.

IA161 Syntactic Formalisms for Parsing Natural Languages 328 / 476

Lecture 7

β-reductions
Intuitive interpretations of the elementary combinators are
given by the associated β-reductions.

The combinator I expresses the identity.
The combinator K expresses the constant function.
The combinator W expresses the diagonalisation or the
duplication of an argument.
The combinator C expresses the conversion, that is, the
permutation of two arguments of an binary operator.
The combinator B expresses the functional composition of two
operators.
The combinator S expresses the functional composition and the
duplication of argument.
The combinator Φ expresses the composition in parallel of
operators acting on the common data.
The combinator Ψ expresses the composition by distribution.
IA161 Syntactic Formalisms for Parsing Natural Languages 329 / 476

Lecture 7

Introduction and elimination rules of combinators

Introduction and elimination rules of combinators can be
presented in the style of Gentzen (natural deduction).

Elim. Rules Intro. Rules

If f
- - - [e-I] - - - [i-I]
f If

Kfx f
- - - - - [e-K] - - - - [i-K]
f Kfx

IA161 Syntactic Formalisms for Parsing Natural Languages 330 / 476

Lecture 7

Introduction and elimination rules of combinators

Elim. Rules Intro. Rules

Cfx xf
- - - [e-C] - - - [i-C]
xf Cfx

Bfxy f(xy)
- - - - - [e-B] - - - - [i-B]
f(xy) Bfxy

Φfxyz f(xz)(yz)
- - - - - [e-Φ] - - - - [i-Φ]
f(xz)(yz) Φfxyz

IA161 Syntactic Formalisms for Parsing Natural Languages 331 / 476

Lecture 7

Combinators vs. λ -expressions

The most important difference between the CL and λ-calculus
is the use of the bounded variables.

Every combinator is an λ -expression.

Bfg ≡ λx.f(gx)
Tx ≡ λf.fx
Sfg ≡ λx.fx(gx)

IA161 Syntactic Formalisms for Parsing Natural Languages 332 / 476

Lecture 7

Application to natural language parsing
John is brilliant

The predicate is brilliant is an operator which operate on the
operand John to construct the final proposition.
The applicative representation associated to this analysis is the
following:

(is-brillant)John

We define the operator John* as being constructed from the
lexicon John by

[John* = C* John].

1 John* (is-brillant)
2 [John* = C* John]
3 C*John (is-brillant)
4 is-brillant (John)

IA161 Syntactic Formalisms for Parsing Natural Languages 333 / 476

Lecture 7

Application to natural language parsing

John is brilliant in λ-term

Operator John* by λ-expression

[John* = λx.x (John’)]

1 John*(λx.is-brilliant’(x))
2 [John* = λx.x (John’)]
3 (λx.x(John’))(λx.is-brilliant’(x))
4 (λx.is-brilliant’(x))(John’)
5 is-brillinat’(John’)

IA161 Syntactic Formalisms for Parsing Natural Languages 334 / 476

Lecture 7

Passivisation

Consider the following sentences
a. The man has been killed.
b. One has killed him.

→ Invariant of meaning
→ Relation between two sentences
:a. unary passive predicate (has-been-killed)
:b. active transitive predicate (have-killed)

IA161 Syntactic Formalisms for Parsing Natural Languages 335 / 476

Lecture 7

Definition of the operator of passivisation ’PASS’

[PASS = B ∑ C = ∑
◦ C]

where B and C are the combinator of composition and of
conversion and where∑ is the existential quantificator which,
by applying to a binary predicate, transforms it into the unary
predicate.

IA161 Syntactic Formalisms for Parsing Natural Languages 336 / 476

Lecture 7

Definition of the operator of passivisation ’PASS’

.

...... [PASS = B∑ C =∑
◦ C]

1/ has-been-killed (the-man) hypothesis
2/ [has-been-killed=PASS(has killed)] passive lexical predicate
3/ PASS (has-killed)(the-man) repl.2.,1.
4/ [PASS = B∑C] definition of ’PASS’
5/ B∑C (has-killed)(the-man) repl.4.,3.
6/ ∑ (C(has-killed))(the-man) [e-B]
7/ (C(has-killed)) x (the-man) [e-∑]
8/ (has-killed)(the-main) x [e-C]
9/ [x in the agentive subject position = one] definition of ’one’
10/ (has-killed)(the-man)one repl.9.,8., normal form

IA161 Syntactic Formalisms for Parsing Natural Languages 337 / 476

Lecture 7

Definition of the operator of passivisation ’PASS’

We establish the paraphrastic relation between the passive
sentence with expressed agent and its active counterpart:

The man has been killed by the enemy

↓

The enemy has killed the man

IA161 Syntactic Formalisms for Parsing Natural Languages 338 / 476

Lecture 7

Definition of the operator of passivisation ’PASS’

.

......Relation between give-to and receive-from

z gives y to x

↕

x receives y from x

.

......
The lexical predicate “give-to” has a predicate converse associated to “receive-from”;

[receive-from z y x = give-to x y z]

IA161 Syntactic Formalisms for Parsing Natural Languages 339 / 476

Lecture 7

Definition of the operator of passivisation ’PASS’

1/ (receive-from) z y x
2/ C((receive-from) z) x y
3/ BC(receive-from) z x y
4/ C(BC(receive-from)) z x y
5/ C(C(BC(receive-from)) x) y z
6/ BC(C(BC(receive-from))) x y z
7/ [give-to=BC(C(BC(receive-from)))]
8/ give-to x y z

IA161 Syntactic Formalisms for Parsing Natural Languages 340 / 476

Lecture 7

Combinators used in CCG

Motivation of applying the combinators
to natural language parsing

Linguistic: complex phenomena of natural language applicable
to the various languages
Informatics: left to right parsing (LR)

ex: reduce the spurious-ambiguity

IA161 Syntactic Formalisms for Parsing Natural Languages 341 / 476

Lecture 7

Parsing a sentence in CCG

Step 1: tokenization
Step 2: tagging the concatenated lexicon
Step 3: calculate on types attributed to the concatenated
lexicons by applying the adequate combinatorial rules
Step 4: eliminate the applied combinators (we will see how to do
on next week)

Step 5: finding the parsing results presented in the form of an
operator/operand structure (predicate -argument structure)

IA161 Syntactic Formalisms for Parsing Natural Languages 342 / 476

Lecture 7

Parsing a sentence in CCG

Example: I requested and would prefer musicals
STEP 1 : tokenization/lemmatization → ex) POS Tagger,
tokenizer, lemmatizer

a. I-requested-and-would-prefer-musicals
b. I-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions → ex)
Supertagger, Inventory of typed words

I NP
Requested (S\NP)/NP
And CONJ
Would (S\NP)/VP
Prefer VP/NP
musicals NP

IA161 Syntactic Formalisms for Parsing Natural Languages 343 / 476

Lecture 7

Parsing a sentence in CCG
STEP 3 : categorial calculus

c. apply the coordination rules Coordination: (< & >)

X conj X ⇒ X

b. apply the functional composition rules Forward Composition: (> B)
X/Y : f Y/Z : g ⇒ X/Z : Bfg

a. apply the type-raising rules Subject Type-raising (> T)
NP : a ⇒ T/(T\NP) : Ta

7/ S
6/ S/NP NP (>)
5/ S/(S\NP) (S\NP)/NP NP (>B)
4/ S/(S\NP) (S\NP)/NP NP (> Φ)
3/ S/(S\NP) (S\NP)/NP CONJ (S\NP)/NP NP (>B)
2/ S/(S\NP) (S\NP)/NP CONJ (S\NP)/VP VP/NP NP (>T)
1/ NP (S\NP)/NP CONJ (S\NP)/VP VP/NP NP

I- requested- and- would- prefer- musicals

IA161 Syntactic Formalisms for Parsing Natural Languages 344 / 476

Lecture 7

Parsing a sentence in CCG

STEP 4 : semantic representation (predicate-argument
structure)

7/S: and’(will’(prefer’ musicals’) i’)(request’ musicals’ i’)

6/ :λy.and’(would’(prefer’ musicals’)y)(request’ musicals’ y)

5/ : λxλy.and’(will’(prefer’x)y)(request’xy)

4/ : λxλy.and’(will’(prefer’x)y)(request’xy)

3/ : λx.λy.will’(prefer’x)y

2/ :λf.f I’

1/ :i’ :request’ :and’ : will’ :prefer’ : musicals’

I requested and would prefer musicals

IA161 Syntactic Formalisms for Parsing Natural Languages 345 / 476

Lecture 7

Semantic representation in term of the
combinators

I- requested and- would- prefer musicals
1/ NP (S\NP)/NP CONJ (S\NP)/VP VP/NP NP
2/ S/(S\NP) (S\NP)/NP CONJ (S\NP)/VP VP/NP NP (>T)

C*I requested and would prefer musicals
3/ S/(S\NP) (S\NP)/NP CONJ (S\NP)/NP NP (>B)

C*I requested and B would prefer musicals
4/ S/(S\NP) (S\NP)/NP NP (> Φ)

C*I Φ and requested (B would prefer) musicals
5/ S/NP NP (>B)

B((C*I)(Φ and requested (B would prefer))) musicals
6/ S (>)

B((C*I)(Φ and requested (B would prefer))) musicals

IA161 Syntactic Formalisms for Parsing Natural Languages 346 / 476

Lecture 7

Semantic representation in term of the
combinators

.

...... I requested and would prefer musicals

S: B((C*I)(Φ and requested (B would prefer))) musicals

1/ B((C*I)(Φ and requested (B would prefer))) musicals
2/ (C*I)((Φ and requested (B would prefer))) musicals) [e-B]
3/ ((Φ and requested (B would prefer))) musicals) I [e-C*]
4/ (and (requested musicals) ((B would prefer) musicals)) I [e-Φ]
5/ ((and (requested musicals) (would (prefer musicals))) I) [e-B]

IA161 Syntactic Formalisms for Parsing Natural Languages 347 / 476

Lecture 7

Normal form

A normal form is a combinatory expression which is irreducible
in the sense that it contain any occurrence of a redex.
If a combinatory expression X reduce to a combinatory
expression N which is in normal form, so N is called the
normal form of X.

.Example..

......
Bxyz is reducible to x(yz).
x(yz) is a normal form of the combinatory expression Bxyz.

IA161 Syntactic Formalisms for Parsing Natural Languages 348 / 476

Lecture 7

Normal form

.
Example..

......

Prove xyz is the normal form of BBCxyz.

BBCxyz→β xyz

1/ BBCxyz
2/ C(Cx)yz [e-B]
3/ Cxzy [e-C]
4/ xyz [e-C]

IA161 Syntactic Formalisms for Parsing Natural Languages 349 / 476

Lecture 7

Classwork

Give the semantic representation in term of combinators.
Please refer to the given paper on last lecture on CCG Parsing.

IA161 Syntactic Formalisms for Parsing Natural Languages 350 / 476

Lecture 9

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 351 / 476

Lecture 9

Outline

HPSG Parser : Enju
Parsing method
Description of parser
Result

CCG Parser : C&C Tools
Parsing method
Description of parser
Result

IA161 Syntactic Formalisms for Parsing Natural Languages 352 / 476

Lecture 9

Theoretical backgrounds

Lecture 3 about HPSG Parsing

Lecture 6 & 7 about CCG Parsing and Combinatory Logic

IA161 Syntactic Formalisms for Parsing Natural Languages 353 / 476

Lecture 9

Enju (Y. Miyao, J.Tsujii, 2004, 2008)

Syntactic parser for English
Developed by Tsujii Lab. Of the University of Tokyo
Based on the wide-coverage probabilistic HPSG

HPSG theory [Pollard and Sag, 1994]

Useful links to Enju
http://www-tsujii.is.s.u-tokyo.ac.jp/enju/demo.html
http://www-tsujii.is.s.u-tokyo.ac.jp/enju/

IA161 Syntactic Formalisms for Parsing Natural Languages 354 / 476

http://www-tsujii.is.s.u-tokyo.ac.jp/enju/demo.html
http://www-tsujii.is.s.u-tokyo.ac.jp/enju/

Lecture 9

Motivations

Parsing based on a proper linguistic formalism is one of the
core research fields in CL and NLP.

But!

a monolithic, esoteric and inward looking field, largely
dissociated from real world application.

IA161 Syntactic Formalisms for Parsing Natural Languages 355 / 476

Lecture 9

Motivations

So why not!

The integration of linguistic grammar formalisms with
statistical models to propose an robust, efficient and open to
eclectic sources of information other than syntactic ones

IA161 Syntactic Formalisms for Parsing Natural Languages 356 / 476

Lecture 9

Motivations

Two main ideas

Development of wide-coverage linguistic grammars
Deep parser which produces semantic representation
(predicate-argument structures)

IA161 Syntactic Formalisms for Parsing Natural Languages 357 / 476

Lecture 9

Parsing method

Application of probabilistic model in the HPSG grammar and
development of an efficient parsing algorithm

Accurate deep analysis
Disambiguation
Wide-coverage
High speed
Useful for high level NLP application

IA161 Syntactic Formalisms for Parsing Natural Languages 358 / 476

Lecture 9

Parsing method

1 Parsing based on HPSG
Mathematically well-defined with sophisticated constraint-based
system
Linguistically justified
Deep syntactic grammar that provides semantic analysis

IA161 Syntactic Formalisms for Parsing Natural Languages 359 / 476

Lecture 9

Parsing method

Difficulties in parsing based on HPSG
Difficult to develop a broad-coverage HPSG grammar
Difficult to disambiguate
Low efficiency: very slow

IA161 Syntactic Formalisms for Parsing Natural Languages 360 / 476

Lecture 9

Parsing method

Solution:
Corpus-oriented development of an HPSG grammar

The principal aim of grammar development is treebank
construction
Penn treebank is coverted into an HPSG treebank
A lexicon and a probabilistic model are extracted from the HPSG
treebank

IA161 Syntactic Formalisms for Parsing Natural Languages 361 / 476

Lecture 9

Parsing method

Approach:
develop grammar rules and an HPSG treebank
collect lexical entries from the HPSG treebank

.

......

How to make an HPSG treebank?

Convert Penn Treebank into HPSG and develop grammar by restructuring a treebank
in conformity with HPSG grammar rules

IA161 Syntactic Formalisms for Parsing Natural Languages 362 / 476

Lecture 9

Parsing method

HPSG = lexical entries and grammar rules
Enju grammar has 12 grammar rules and
3797 lexical entries for 10,536 words

(Miyao et al. 2004)

IA161 Syntactic Formalisms for Parsing Natural Languages 363 / 476

Lecture 9

Parsing method
Overview of grammar development

1. Treebank
conversion

2. Grammar rule
application

3. Lexical entry
collection

Modify constituent structures
by adding feature structures

Apply the grammar rule
when a parse tree contains

correct analysis and
specified feature values are filled

Collect terminal nodes
of HPSG parse trees

and assign
predicate-argument structure

IA161 Syntactic Formalisms for Parsing Natural Languages 364 / 476

Lecture 9

Parsing method

2 Probabilistic model and HPSG:

Log-linear model for unification-based grammars
(Abney 1997, Johnson et al. 1999, Riezler et al. 2000, Miyao
et al. 2003, Malouf and van Noord 2004, Kaplan et al. 2004,

Miyao and Tsujii 2005)
p(T|w)

w = “A blue eyes girl with white hair and skin walked
T =

A blue eyes girl with white hair and skin walked

NP

NP

NP

NP

S

NP

NP

PP

VP

IA161 Syntactic Formalisms for Parsing Natural Languages 365 / 476

Lecture 9

Parsing method

T1 T2 T3 T4 Tn

All possible parse trees derived from w with a grammar.
For example, p(T3|w) is the probability of selecting T3 from T1,
T2, …, and Tn.

IA161 Syntactic Formalisms for Parsing Natural Languages 366 / 476

Lecture 9

Parsing method

Log-linear model for unification-based grammars
Input sentence: w

w = w1/P1,w2/P2, . . .wn/Pn
Output parse tree T

Normalization
factor

Weight for a
feature function

Feature function

IA161 Syntactic Formalisms for Parsing Natural Languages 367 / 476

Lecture 9

Description of parser

IA161 Syntactic Formalisms for Parsing Natural Languages 368 / 476

Lecture 9

Description of parser

parsing proceeds in the following steps:

1. preprocessing

Preprocessor converts an input sentence into a word lattice.

2. lexicon lookup

Parser uses the predicate to find lexical entries for the word
lattice

3. kernel parsing

Parser does phrase analysis using the defined grammar rules
in the kernel parsing process.

IA161 Syntactic Formalisms for Parsing Natural Languages 369 / 476

Lecture 9

Description of parser

Chart
data structure
two dimensional table
we call each cell in the table ‘CKY cell.’

Example
Let an input sentence s(= w1,w2,w3, ...,wn),w1 = ”I”,w2 =
”saw”,w3 = ”a”,w4 = ”girl”,w5 = ”with”,w6 = ”a”,w7 =
”telescope” for the sentence “I saw a girl with a telescope”,
the chart is arranged as follows.

I saw a girl with a telescope
0,1 1,2 2,3 3,4 4,5 5,6 6,7
0,2 1,3 2,4 3,5 4,6 5,7

0,3 1,4 2,5 3,6 4,7
0,4 1,5 2,6 3,7

0,5 1,6 2,7
0,6 1,7

0,7

IA161 Syntactic Formalisms for Parsing Natural Languages 370 / 476

Lecture 9

Description of parser

System overview

Supertagger
Enumeration of

assignments
Deterministic

disambiguation

Mary loved John

HEAD noun

Subj < >

COMPS < >

HEAD noun

Subj < >

COMPS < >

HEAD noun

Subj < >

COMPS < >

HEAD verb

Subj <NP>

COMPS <NP>

HEAD noun

Subj < >

COMPS < >

HEAD noun

Subj < >

COMPS < >

HEAD noun

Subj < >

COMPS < >

HEAD verb

Subj <NP>

COMPS <NP>

HEAD verb

Subj <NP>

COMPS <NP>

HEAD noun

Subj < >

COMPS < >

HEAD verb

Subj <NP>

COMPS <NP>

HEAD noun

Subj < >

COMPS < >

Mary loved John

Mary loved John

IA161 Syntactic Formalisms for Parsing Natural Languages 371 / 476

Lecture 9

Demonstration

http://www-tsujii.is.s.u-tokyo.ac.jp/enju/demo.html

IA161 Syntactic Formalisms for Parsing Natural Languages 372 / 476

http://www-tsujii.is.s.u-tokyo.ac.jp/enju/demo.html

Lecture 9

Results

Fast, robust and accurate analysis
Phrase structures
Predicate argument structures

Accurate deep analysis – the parser can output both phrase
structures and predicate-argument structures. The accuracy of
predicate-argument relations is around 90% for newswire
articles and biomedical papers.
High speed – parsing speed is less than 500 msec. per
sentence by default (faster than most Penn Treebank parsers),
and less than 50 msec when using the highspeed setting
(”mogura”).

IA161 Syntactic Formalisms for Parsing Natural Languages 373 / 476

Lecture 9

C&C tools

Developed by Curran and Clark [Clark and Curran, 2002,
Curran, Clark and Bos, 2007], University of Edinburgh
Wide-coverage statistical parser based on the CCG: CCG Parser
Computational semantic tools named Boxer
Useful links

http://svn.ask.it.usyd.edu.au/trac/candc
http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo

IA161 Syntactic Formalisms for Parsing Natural Languages 374 / 476

http://svn.ask.it.usyd.edu.au/trac/candc
http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo

Lecture 9

CCG Parser [Clark, 2007]

Statistical parsing and CCG

Advantages of CCG
providing a compositional semantic for the grammar

→completely transparent interface between syntax and
semantics

the recovery of long-range dependencies can be integrated into
the parsing process in a straightforward manner

IA161 Syntactic Formalisms for Parsing Natural Languages 375 / 476

Lecture 9

Parsing method

Penn Treebank conversion : TAG, LFG, HPSG and CCG
CCGBank [Hockenmaier and Steedman, 2007]

CCG version of the Penn Treebank
Grammar used in CCG parser

CCGBank

Some rules
used as the grammar

Lexical category set
Training data for

the statistical models

Supertagger Parser

IA161 Syntactic Formalisms for Parsing Natural Languages 376 / 476

Lecture 9

Parsing method-CCG Bank

Corpus translated from the Penn Treebank, CCGBank contains
Syntactic derivations
Word-word dependencies
Predicate-argument structures

IA161 Syntactic Formalisms for Parsing Natural Languages 377 / 476

Lecture 9

Parsing method-CCG Bank

Semi automatic conversion of
phrase-structure trees in the Penn Treebank into
CCG derivations
Consists mainly of newspaper texts
Grammar:

Lexical category set

Combinatory rules

Unary type-changing rules

Normal-form constraints

Punctuation rules

IA161 Syntactic Formalisms for Parsing Natural Languages 378 / 476

Lecture 9

Parsing method

Supertagging [Clark, 2002]
uses conditional maximum entropy models
implement a maximum entropy supertagger

ADV NOM PRP PRO:DEM NOM KON VER:pres VER:infi DET:ART
tout commentaire sur cette proposition et prefere avancer les

(s\1 s)/(s

np/n

(s\1 s)/n

np/np

s\1 s

n

np

(np\np)/n

(s\1 s)/np

(n\n)/np

pp_sur/np np/n n ((np\s)\(

((np\s)/n

(np\s)/np

(s/np)/(n

np\s

(np\s)/(n

((np\s_inf)

(np\s_inf) np/n

IA161 Syntactic Formalisms for Parsing Natural Languages 379 / 476

Lecture 9

Parsing method-Supertagger

Set of 425 lexical categories from the CCGbank
The per-word accuracy of the Supertagger is around 92% on
unseen WSJ text.

→ Using the multi-supertagger increases the accuracy
significantly – to over 98% – with only a small cost in
increased ambiguity.

IA161 Syntactic Formalisms for Parsing Natural Languages 380 / 476

Lecture 9

Parsing method-Supertagger

Log-linear models in NLP applications:
POS tagging
Name entity recognition
Chunking
Parsing

→ referred as maximum entropy models and random
fields

IA161 Syntactic Formalisms for Parsing Natural Languages 381 / 476

Lecture 9

Parsing method-Supertagger

Log-linear parsing models for CCG
1 the probability of a dependency structure
2 the normal-form model: the probability of a single derivation

→ modeling 2) is simpler than 1)
1 defined as P(π|S) =

∑
d∈∆(π)

P(d, π|S)

2 defined using a log-linear form as follows: P(w|S) = 1
ZS
eλ.f(w)

ZS =
∑

w∈p(S)
eλ.f(w′)

IA161 Syntactic Formalisms for Parsing Natural Languages 382 / 476

Lecture 9

Parsing method-Supertagger

Features common to the dependency and normal-form models

Feature type Example
LexCat + word (S/S)/NP + Before
LexCat + POS (S/S)/NP + IN
RootCat S[dcl]
RootCat + World S[dcl] + was
RootCat + POS S[dcl] + VBD
Rule S[dcl] → NP S[dcl]\NP
Rule + Word S[dcl] → NP S[dcl]\NP + bought
Rule + POS S[dcl] → NP S[dcl]\NP + VBD

IA161 Syntactic Formalisms for Parsing Natural Languages 383 / 476

Lecture 9

Parsing method-Supertagger

Predicate-argument dependency features for the dependency
model
Feature type Example
Word-Word ⟨bought, (S\NP1)/NP2, 2, stake, (NP\NP)/(S[dcl]/NP)⟩
Word-POS ⟨bought, (S\NP1)/NP2, 2,NN, (NP\NP)/(S[dcl]/NP)⟩
POS-Word ⟨VBD, (S\NP1)/NP2, 2, stake, (NP\NP)/(S[dcl]/NP)⟩
POS-POS ⟨VBD, (S\NP1)/NP2, 2,NN, (NP\NP)/(S[dcl]/NP)⟩
Word + Distance(words) ⟨bought, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)⟩+ 2
Word + Distance(punct) ⟨bought, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)⟩+ 0
Word + Distance(verbs) ⟨bought, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)⟩+ 0
POS + Distance(words) ⟨VBD, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)⟩+ 2
POS + Distance(punct) ⟨VBD, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)⟩+ 0
POS + Distance(verbs) ⟨VBD, (S\NP1)/NP2, 2, (NP\NP)/(S[dcl]/NP)⟩+ 0

IA161 Syntactic Formalisms for Parsing Natural Languages 384 / 476

Lecture 9

Parsing method-Supertagger

Rule dependency features for the normal-form model

Feature type Example
Word-Word ⟨company,S[dcl] → NP S[dcl]\NP,bought⟩
Word-POS ⟨company,S[dcl] → NP S[dcl]\NP,VBD⟩
POS-Word ⟨NN,S[dcl] → NP S[dcl]\NP,bought⟩
POS-POS ⟨NN,S[dcl] → NP S[dcl]\NP,VBD⟩
Word + Distance(words) ⟨bought,S[dcl] → NP S[dcl]\NP⟩+ > 2
Word + Distance(punct) ⟨bought,S[dcl] → NP S[dcl]\NP⟩+ 2
Word + Distance(verbs) ⟨bought,S[dcl] → NP S[dcl]\NP⟩+ 0
POS + Distance(words) ⟨VBD,S[dcl] → NP S[dcl]\NP⟩+ > 2
POS + Distance(punct) ⟨VBD,S[dcl] → NP S[dcl]\NP⟩+ 2
POS + Distance(verbs) ⟨VBD,S[dcl] → NP S[dcl]\NP⟩+ 0

IA161 Syntactic Formalisms for Parsing Natural Languages 385 / 476

Lecture 9

Description of parser

Input sentence

CCGBank

C&C taggers

Supertaggers
POStagger
Chunker

Parser

Boxer

IA161 Syntactic Formalisms for Parsing Natural Languages 386 / 476

Lecture 9

Demonstration

http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo

IA161 Syntactic Formalisms for Parsing Natural Languages 387 / 476

http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo

Lecture 9

Results

Supertagger ambiguity and accuracy on section00
β k CATS/WORD ACC SENT ACC ACC(POS) SENT ACC

0.075 20 1.27 97.34 67.43 96.34 60.27
0.030 20 1.43 97.92 72.87 97.05 65.50
0.010 20 1.72 98.37 77.73 97.63 70.52
0.005 20 1.98 98.52 79.25 97.86 72.24
0.001 150 3.57 99.17 87.19 98.66 80.24

IA161 Syntactic Formalisms for Parsing Natural Languages 388 / 476

Lecture 9

Results

Parsing accuracy on DepBank

Relation
dependent
aux
conj
ta
det
arg_mod
mod
ncmod
xmod
cmod
pmod

arg

CCG parser CCGbank
Prec Rec F Prec Rec F # GRs
84.07 82.19 83.12 88.83 84.19 86.44 10,696
95.03 90.75 92.84 96.47 90.33 93.30 400
79.02 75.97 77.46 83.07 80.27 81.65 595
51.52 11.64 18.99 62.07 12.59 20.93 292
95.23 94.97 95.10 97.27 94.09 95.66 1,114
81.46 81.76 81.61 86.75 84.19 85.45 8,295
71.30 77.23 74.14 77.83 79.65 78.73 3,908
73.36 78.96 76.05 78.88 80.64 79.75 3,550
42.67 53.93 47.64 56.54 60.67 58.54 178
51.34 57.14 54.08 64.77 69.09 66.86 168
0.00 0.00 0.00 0.00 0.00 0.00 12
85.76 80.01 82.78 89.79 82.91 86.21 4,387

DepBank: Parc Dependency Bank
[King et al. 2003]

IA161 Syntactic Formalisms for Parsing Natural Languages 389 / 476

Lecture 9

Results

subj_or_dobj 86.08 83.08 84.56 91.01 85.29 88.06 3,127
subj 84.08 75.57 79.60 89.07 78.43 83.41 1,363
nesubj 83.89 75.78 79.63 88.86 78.51 83.37 1,354
xsubj 0.00 0.00 0.00 50.00 28.57 36.36 7
csubj 0.00 0.00 0.00 0.00 0.00 0.00 2

comp 86.16 81.71 83.88 89.92 84.74 87.25 3,024
obj 86.30 83.08 84.66 90.42 85.52 87.90 2,328
dobj 87.01 88.44 87.71 92.11 90.32 91.21 1,764
obj2 68.42 65.00 66.67 66.67 60.00 63.16 20
iobj 83.22 65.63 73.38 83.59 69.81 76.08 544

clausal 77.67 72.47 74.98 80.35 77.54 78.92 672
xcomp 77.69 74.02 75.81 80.00 78.49 79.24 381
ccomp 77.27 70.10 73.51 80.81 76.31 78.49 291

pcomp 0.00 0.00 0.00 0.00 0.00 0.00 24

macroaverage 65.71 62.29 63.95 71.73 65.85 68.67
microaverage 81.95 80.35 81.14 86.86 82.75 84.76

IA161 Syntactic Formalisms for Parsing Natural Languages 390 / 476

Lecture 10

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 391 / 476

Lecture 10

Study materials

Course materials and homeworks are available on the
following web site

https://is.muni.cz/course/fi/autumn2011/IA161

IA161 Syntactic Formalisms for Parsing Natural Languages 392 / 476

https://is.muni.cz/course/fi/autumn2011/IA161

Lecture 10

Outline

Introduction to Statistical parsing methods
Statistical Parsers

RASP system
Stanford parser
Collins parser
Charniak parser
Berkeley parser

IA161 Syntactic Formalisms for Parsing Natural Languages 393 / 476

Lecture 10

1. Introduction to statistical parsing

The main theoretical approaches behind modern statistical
parsers
Over the last 12 years statistical parsing has succeeded
significantly!
NLP researchers have produced a range of statistical parsers

→ wide-coverage and robust parsing accuracy
They continues to improve the parsers year on year.

IA161 Syntactic Formalisms for Parsing Natural Languages 394 / 476

Lecture 10

Application domains of statistical parsing

Question answering systems of high precision
Named entity extraction
Syntactically based sentence compressions
Extraction of people’s opinion about products
Improved interaction in computer ganes
Helping linguists find data

IA161 Syntactic Formalisms for Parsing Natural Languages 395 / 476

Lecture 10

NLP parsing problem and solution

The structure of language is ambiguous!

→ local and global ambiguities
Classical parsing problem

→ simple 10 grammar rules can generate 592 parsers
→ real size wide-coverage grammar generates millions of
parses

IA161 Syntactic Formalisms for Parsing Natural Languages 396 / 476

Lecture 10

NLP parsing problem and solution

NLP parsing solution
We need mechanisms that allow us to find the most likely
parses
→ statistical parsing lets us work with very loose grammars
that admit millions of parses for sentences but to still quickly
find the best parses

IA161 Syntactic Formalisms for Parsing Natural Languages 397 / 476

Lecture 10

Improved methodology for robust parsing

The annotated data: Penn Treebank (early 90’s)
Building a treebank seems a lot slower and less useful than
building a grammar
But it has many helpful things

Reusability of the labor
Broad coverage
Frequencies and distributional information
A way to evaluate systems

IA161 Syntactic Formalisms for Parsing Natural Languages 398 / 476

Lecture 10

Characterization of Statistical parsing

What the grammar which determines the set of legal syntactic
structures for a sentence? How is that grammar obtained?
What is the algorithm for determining the set of legal parses for
a sentence?
What is the model for determining the probability of different
parses for a sentence?
What is the algorithm, given the model and a set of possible
parses which finds the best parse?

IA161 Syntactic Formalisms for Parsing Natural Languages 399 / 476

Lecture 10

Characterization of Statistical parsing

Tbest = arg max Score(T,S)
Two components:

The model: a function Score which assigns scores
(probabilities) to tree and sentence pairs
The parser: the algorithm which implements the search for
Tbest

IA161 Syntactic Formalisms for Parsing Natural Languages 400 / 476

Lecture 10

Characterization of Statistical parsing

Statistical parsing seen as more of a
pattern recognition/Machine Learning problem plus
search
The grammar is only implicitly defined by the training data
and the method used by the parser for generating hypotheses

IA161 Syntactic Formalisms for Parsing Natural Languages 401 / 476

Lecture 10

Statistical parsing models

Probabilistic approach would suggest the following for the
Score function

Score(T,S) = P(T|S)
Lots of research on different probability models for Penn
Treebank trees

Generative models, log-linear (maximum entropy) models, …

IA161 Syntactic Formalisms for Parsing Natural Languages 402 / 476

Lecture 10

2. Statistical parsers

Many kinds of parsers based on the statistical
methods:probability, machine learning
Different objectives: research, commercial, pedagogical

RASP, Stanford parser, Berkeley parser,

IA161 Syntactic Formalisms for Parsing Natural Languages 403 / 476

Lecture 10

RASP system

Robust Accurate Statistical Parsing (2nd release):
[Briscoe&Carroll, 2002; Briscoe et al. 2006]

system for syntactic annotation of free text
Semantically-motivated output representation
Enhanced grammar and part-of-speech tagger lexicon
Flexible and semi-supervised training method for structural
parse ranking model

Useful links to RASP
http://ilexir.co.uk/applications/rasp/download/
http://www.informatics.susx.ac.uk/research/groups/nlp/rasp/

IA161 Syntactic Formalisms for Parsing Natural Languages 404 / 476

http://ilexir.co.uk/applications/rasp/download/
http://www.informatics.susx.ac.uk/research/groups/nlp/rasp/

Lecture 10

Components of system

Tokeniser

PoS Tagger

Lemmatiser

Parser/Grammar

Parse Ranking Model

raw text Input:

unannotated text or transcribed (and punc-
tuated) speech

1st step:
sentence boundary detection and tokenisa-
tion modules

2nd step:
Tokenized text is tagged with one of 150
POS and punctuation labels (derived from
the CLAWS tagset)
→ first-order (’bigram’) HMM tagger
→ trained on the manually corrected
tagged version of the Susanne, LOB and
BNC corpora

IA161 Syntactic Formalisms for Parsing Natural Languages 405 / 476

Lecture 10

Components of system

Tokeniser

PoS Tagger

Lemmatiser

Parser/Grammar

Parse Ranking Model

raw text 3rd step:

Morphological analyzer

4th step:
Manually developed wide-coverage tag se-
quence grammar in the parser
→ 689 unification based phrase structure
rules
→ preterminals to this grammar are the
POS and punctuation tags
→ terminals are featural description of the
preterminals
→ non-terminals project information up the
tree using an X-bar scheme with 41 at-
tributes with a maximum of 33 atomic
values

IA161 Syntactic Formalisms for Parsing Natural Languages 406 / 476

Lecture 10

Components of system

Tokeniser

PoS Tagger

Lemmatiser

Parser/Grammar

Parse Ranking Model

raw text 5th step:
Generalized LR Parser
→ a non-deterministic LALR table is con-
structed automatically from CF ’backbone’
compiled from the featurebased grammar
→ the parser builds a packed parse forest
using this table to guide the actions it
performs
→ the n-best parses can be efficiently
extracted by unpacking sub-analyses,
following pointers to contained
subanalyses and choosing alternatives in
order of probabilistic ranking

IA161 Syntactic Formalisms for Parsing Natural Languages 407 / 476

Lecture 10

Components of system

dependent

ta arg_mod det aux conj

mod arg

subj_or_dobj

subj comp

ncmod xmod cmod pmod

ncsubj xsubj csubj
obj pcomp clausal

dobj obj2 iobj xcomp ccomp

Output:
set of named grammatical rela-
tions (GRs)
→ resulting set of ranked parses
can be displayed or passed on for
further processing
→ transformation of derivation
trees into a set of named GRs
→ GR scheme captures those as-
pects of predicate-argument struc-
ture

IA161 Syntactic Formalisms for Parsing Natural Languages 408 / 476

Lecture 10

Evaluation

The system has been evaluated using the re-annotation of the
PARC dependency bank (DepBank, King et al., 2003)
It consists of 560 sentences chosen randomly from section 23 of
the WSJ with grammatical relations compatible with RASP
system.
Form of relations

(relation subtype head dependent initial)

Type of relationship
between the head and

the dependent

Encoding additional specifications of the relation
type for some relations and the initial or underlying

logical relation of the grammatical subject in
constructions such as passive

IA161 Syntactic Formalisms for Parsing Natural Languages 409 / 476

Lecture 10

Evaluation
Relation Precision Recall F1 std GRs
dependent 79.76 77.49 78.61 10696
aux 93.33 91.00 92.15 400
conj 72.39 72.27 72.33 595
ta 42.61 51.37 46.58 292
det 87.73 90.48 89.09 1114
arg_mod 79.18 75.47 77.28 8295
mod 74.43 67.78 70.95 3908
ncmod 75.72 69.94 72.72 3550
xmod 53.21 46.63 49.70 178
cmod 45.95 30.36 36.56 168
pmod 30.77 33.33 32.00 12

arg 77.42 76.45 76.94 4387
subj_or_dobj 82.36 74.51 78.24 3127
subj 78.55 66.91 72.27 1363
ncsubj 79.16 67.06 72.61 1354
xsubj 33.33 28.57 30.77 7
csubj 12.50 50.00 20.00 2

comp 75.89 79.53 77.67 3024
obj 79.49 79.42 79.46 2328
dobj 83.63 79.08 81.29 1764
obj2 23.08 30.00 26.09 20
iobj 70.77 76.10 73.34 544

clausal 60.98 74.40 67.02 672
xcomp 76.88 77.69 77.28 381
ccomp 46.44 69.42 55.55 291

pcomp 72.73 66.67 69.57 26

macroaverage 62.12 63.77 62.94
microaverage 77.66 74.98 76.29
Parsing accuracy on DepBank [Briscoe et al., 2006]

Micro-averaged precision,
recall and F1 score are
calculated from the counts for
all relations in the hierarchy
Macro-averaged scores are
the mean of the individual
scores for each relation
Micro-averaged F1 score of
76.3% across all relations

IA161 Syntactic Formalisms for Parsing Natural Languages 410 / 476

Lecture 10

Stanford parser

Java implementation of probabilistic natural language
parsers (version 1.6.9)
: [Klein and Manning, 2003]

Parsing system for English and has been used in Chinese,
German, Arabic, Italian, Bulgarian, Portuguese
Implementation, both highly optimized PCFG and lexicalized
dependency parser, and lexicalized PCFG parser
Useful links

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu:8080/parser/

IA161 Syntactic Formalisms for Parsing Natural Languages 411 / 476

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu:8080/parser/

Lecture 10

Stanford parser

Input

various form of plain text

Output
Various analysis formats
→ Stanford Dependencies (SD): typed de-
pendencies as GRs
→ phrase structure trees
→ POS tagged text

makes

distributes

Bell

based

Angeles

Los

products

electronic

computer building

conj_and

dobj

dobj

nsubj

nsubj

partmod

prep_in

nn

amod

amodamod

conj_and

conj_and

Graphical representation of the SD for the sentence
“Bell, based in Los Angeles, makes and distributes
electronic, computer and building products.”

IA161 Syntactic Formalisms for Parsing Natural Languages 412 / 476

Lecture 10

Standford typed dependencies [De Marmette and
Manning, 2008]

provide a simple description of the grammatical relationships in
a sentence
represents all sentence relationships uniformly as typed
dependency relations
quite accessible to non-linguists thinking about tasks involving
information extraction from text and is quite effective in relation
extraction applications.

IA161 Syntactic Formalisms for Parsing Natural Languages 413 / 476

Lecture 10

Standford typed dependencies [De Marnette and
Manning, 2008]

For an example sentence:
Bell, based in Los Angeles, makes and distributes electronic,
computer and building products.

Stanford Dependencies (SD) representation is:

nsubj(makes-8, Bell-1)
nsubj(distributes-10, Bell-1)
partmod(Bell-1, based-3)
nn(Angeles-6, Los-5)
prep_in(based-3, Angeles-6)
root(ROOT-0, makes-8)

conj_and(makes-8, distributes-10)
amod(products-16, electronic-11)
conj_and(electronic-11, computer-13)
amod(products-16, computer-13)
conj_and(electronic-11, building-15)
amod(products-16, building-15)
dobj(makes-8, products-16)
dobj(distributes-10, products-16)

IA161 Syntactic Formalisms for Parsing Natural Languages 414 / 476

Lecture 10

Output
A lineup of masseurs was waiting to take the media in hand.

. POS tagged text..

......
Parsing [sent. 4 len. 13]: [A, lineup, of, masseurs,
was, waiting, to, take, the, media, in, hand, .]

.
CFPSG representation..

......

(ROOT
(S
(NP
(NP (DT A) (NN lineup))
(PP (IN of)
(NP (NNS masseurs))))

(VP (VBD was)
(VP (VBG waiting)
(S
(VP (TO to)
(VP (VB take)
(NP (DT the) (NNS media))
(PP (IN in)
(NP (NN hand))))))))

(. .)))

.
Typed dependencies

representation..

......

det(lineup2, A1)
nsubj(waiting6, lineup2)
xsubj(take8, lineup2)
prep_of(lineup2, masseurs4)
aux(waiting6, was5)
root(ROOT0, waiting6)
aux(take8, to7)
xcomp(waiting6, take8)
det(media10, the9)
dobj(take8, media10)
prep_in(take8, hand12)

IA161 Syntactic Formalisms for Parsing Natural Languages 415 / 476

Lecture 10

Berkeley parser

Learning PCFGs, statistical parser (release 1.1, version
09.2009)

: [Petrov et al., 2006; Petrov and Klein, 2007]

Parsing system for English and has been used in Chinese,
German, Arabic, Bulgarian, Portuguese, French
Implementation of unlexicalized PCFG parser
Useful links

http://nlp.cs.berkeley.edu/
http://tomato.banatao.berkeley.edu:
8080/parser/parser.html
http://code.google.com/p/berkeleyparser/

IA161 Syntactic Formalisms for Parsing Natural Languages 416 / 476

http://nlp.cs.berkeley.edu/
http://tomato.banatao.berkeley.edu:8080/parser/parser.html
http://tomato.banatao.berkeley.edu:8080/parser/parser.html
http://code.google.com/p/berkeleyparser/

Lecture 10

Comparison of parsing an example sentence
A lineup of masseurs was waiting to take the media in hand.

IA161 Syntactic Formalisms for Parsing Natural Languages 417 / 476

Lecture 10

charniak parser

Probabilistic LFG F-Structure Parsing
: [Charniak, 2000; Bikel, 2002]

Parsing system for English
PCFG based wide coverage LFG parser
Useful links

http://nclt.computing.dcu.ie/demos.html
http://lfg-demo.computing.dcu.ie/lfgparser.html

IA161 Syntactic Formalisms for Parsing Natural Languages 418 / 476

http://nclt.computing.dcu.ie/demos.html
http://lfg-demo.computing.dcu.ie/lfgparser.html

Lecture 10

Collins parser

Head-Driven Statistical Models for natural language
parsing (Release 1.0, version 12.2002)

: [Collins, 1999]

Parsing system for English
Useful links

http://www.cs.columbia.edu/~mcollins/code.html

IA161 Syntactic Formalisms for Parsing Natural Languages 419 / 476

http://www.cs.columbia.edu/~mcollins/code.html

Lecture 10

Bikel’s parser

Multilingual statistical parsing engine (release 1.0,
version 06.2008)

: [Charniak, 2000; Bikel, 2002]

Parsing system for English, Chinese, Arabic, Korean

http://www.cis.upenn.edu/~dbikel/#stat-parser
http://www.cis.upenn.edu/~dbikel/software.html

IA161 Syntactic Formalisms for Parsing Natural Languages 420 / 476

http://www.cis.upenn.edu/~dbikel/#stat-parser
http://www.cis.upenn.edu/~dbikel/software.html

Lecture 10

Comparing parser speed on section 23 of WSJ Penn
Treebank

Parser Time (min.)
Collins 45
Charniak 28
Sagae 11
CCG 1.9

IA161 Syntactic Formalisms for Parsing Natural Languages 421 / 476

Lecture 11

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 422 / 476

Lecture 11

Study materials

Course materials and homeworks are available on the following
web site:
https://is.muni.cz/course/fi/autumn2011/IA161
Refer to Dependency Parsing, Synthesis: Lectures on Human
Language Technologies, S. kübler, R. McDonald and J. Nivre,
2009

IA161 Syntactic Formalisms for Parsing Natural Languages 423 / 476

https://is.muni.cz/course/fi/autumn2011/IA161

Lecture 11

Outline

Introduction to Dependency parsing methods
Dependency Parsers

IA161 Syntactic Formalisms for Parsing Natural Languages 424 / 476

Lecture 11

Introduction to Dependency parsing

Motivation
a. dependency-based syntactic representation seem to be useful in
many applications of language technology: machine translation,
information extraction
→ transparent encoding of predicate-argument structure

b. dependency grammar is better suited than phrase structure
grammar for language with free or flexible word order
→ analysis of diverse languages within a common framework

c. leading to the development of accurate syntactic parsers for a
number of languages
→ combination with machine learning from syntactically
annotated corpora (e.g. treebank)

IA161 Syntactic Formalisms for Parsing Natural Languages 425 / 476

Lecture 11

Introduction to Dependency parsing

Dependency parsing

“Task of automatically analyzing the dependency structure of a
given input sentence”

Dependency parser

“Task of producing a labeled dependency structure of the kind
depicted in the follow figure, where the words of the sentence

are connected by typed dependency relations”

ROOT Economic news had little effect on financial markets .

PRED
PU

PC

ATTATT

OBJ

ATTSBJATT

IA161 Syntactic Formalisms for Parsing Natural Languages 426 / 476

Lecture 11

Definitions of dependency graphs and dependency
parsing

Dependency graphs: syntactic structures over sentences

Def. 1.: A sentence is a sequence of tokens denoted by

S = w0w1 . . .wn

Def. 2.: Let R = {r1, . . . , rm} be a finite set of possible
dependency relation types that can hold between any two
words in a sentence. A relation type r ∈ R is additionally called
an arc label.

IA161 Syntactic Formalisms for Parsing Natural Languages 427 / 476

Lecture 11

Definitions of dependency graphs and dependency
parsing

Dependency graphs: syntactic structures over sentences

Def. 3.: A dependency graph G = (V,A) is a labeled directed
graph, consists of nodes, V, and arcs, A, such that for
sentence S = w0w1 . . .wn and label set R the following holds:
1 V ⊆ {w0w1 . . .wn}

2 A ⊆ V× R× V

3 if (wi, r,wj) ∈ A then (wi, r′,wj) /∈ A for all r′ ̸= r

IA161 Syntactic Formalisms for Parsing Natural Languages 428 / 476

Lecture 11

Approach to dependency parsing

a. data-driven
it makes essential use of machine learning from linguistic data
in order to parse new sentences

b. grammar-based
it relies on a formal grammar, defining a formal language, so
that it makes sense to ask whether a given input is in the
language defined by the grammar or not.

→ Data-driven have attracted the most attention in
recent years.

IA161 Syntactic Formalisms for Parsing Natural Languages 429 / 476

Lecture 11

Data-driven approach

.

......

according to the type of parsing model adopted,
the algorithms used to learn the model from data
the algorithms used to parse new sentences with the model

a. transition-based
start by defining a transition system, or state machine, for
mapping a sentence to its dependency graph.

b. graph-based
start by defining a space of candidate dependency graphs for a
sentence.

IA161 Syntactic Formalisms for Parsing Natural Languages 430 / 476

Lecture 11

Data-driven approach

a. transition-based
learning problem: induce a model for predicting the next state
transition, given the transition history
parsing problem: construct the optimal transition sequence for
the input sentence, given induced model

b. graph-based
learning problem: induce a model for assigning scores to the
candidate dependency graphs for a sentence
parsing problem: find the highest-scoring dependency graph for
the input sentence, given induced model

IA161 Syntactic Formalisms for Parsing Natural Languages 431 / 476

Lecture 11

Transition-based Parsing

Transition system consists of a set C of parser configurations
and of a set D of transitions between configurations.
Main idea: a sequence of valid transitions, starting in the
initial configuration for a given sentence and ending in one of
several terminal configurations, defines a valid dependency
tree for the input sentence.

D1′m = d1(c1), . . . ,dm(cm)

IA161 Syntactic Formalisms for Parsing Natural Languages 432 / 476

Lecture 11

Transition-based Parsing

Definition
Score of D1′m factors by configuration-transition pairs (ci,di):

s(D1′m) =
∑m

i=1 s(ci,di)

Learning
Scoring function s(ci,di) for di(ci) ∈ D1′m

Inference
Search for highest scoring sequence D∗

1′m given s(ci,di)

IA161 Syntactic Formalisms for Parsing Natural Languages 433 / 476

Lecture 11

Transition-based Parsing

Inference for transition-based parsing

Common inference strategies:
Deterministic [Yamada and Matsumoto 2003, Nivre et al. 2004]
Beam search [Johansson and Nugues 2006, Titov and Henderson
2007]
Complexity given by upper bound on transition sequence length

Transition system
Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
Limited non-projective O(n) [Attardi 2006, Nivre 2007]
Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

IA161 Syntactic Formalisms for Parsing Natural Languages 434 / 476

Lecture 11

Transition-based Parsing

Learning for transition-based parsing

Typical scoring function:
s(ci,di) = w · f(ci,di) where f(ci,di) is a feature vector over
configuration ci and transition di and w is a weight vector
[wi = weight of featurefi(ci,di)]

Transition system
Projective O(n) [Yamada and Matsumoto 2003, Nivre 2003]
Limited non-projective O(n) [Attardi 2006, Nivre 2007]
Unrestricted non-projective O(n2) [Nivre 2008, Nivre 2009]

Problem
Learning is local but features are based on the global history

IA161 Syntactic Formalisms for Parsing Natural Languages 435 / 476

Lecture 11

Graph-based Parsing

For a input sentence S we define a graph Gs = (Vs,As) where
Vs = {w0,w1, . . . ,wn} and
As = {(wi,wj, l)|wi,wj ∈ V and l ∈ L}

Score of a dependency tree T factors by subgraphs Gs, . . . ,Gs:

s(T) =
∑m

i−1 s(Gi)

Learning: Scoring function s(Gi) for a subgraph Gi ∈ T

Inference: Search for maximum spanning tree scoring sequence
T∗ of Gs given s(Gi)

IA161 Syntactic Formalisms for Parsing Natural Languages 436 / 476

Lecture 11

Graph-based Parsing

Learning graph-based models

Typical scoring function:
s(Gi) = w · f(Gi) where f(Gi) is a high-dimensional feature vector
over subgraphs and w is a weight vector
[wj = weight of feature fj(Gi)]

Structured learning [McDonald et al. 2005a, Smith and
Johnson 2007]:

Learn weights that maximize the score of the correct dependency
tree for every sentence in the training set

Problem
Learning is global (trees) but features are local (subgraphs)

IA161 Syntactic Formalisms for Parsing Natural Languages 437 / 476

Lecture 11

Grammar-based approach

a. context-free dependency parsing
exploits a mapping from dependency structures to CFG
structure representations and reuses parsing algorithms
originally developed for CFG → chart parsing algorithms

b. constraint-based dependency parsing
parsing viewed as a constraint satisfaction problem
grammar defined as a set of constraints on well-formed
dependency graphs
finding a dependency graph for a sentence that satisfies all the
constraints of the grammar (having the best score)

IA161 Syntactic Formalisms for Parsing Natural Languages 438 / 476

Lecture 11

Grammar-based approach

a. context-free dependency parsing
Advantage: Well-studied parsing algorithms such as CKY,
Earley’s algorithm can be used for dependency parsing as well.
→ need to convert dependency grammars into efficiently
parsable context-free grammars; (e.g. bilexical CFG, Eisner and
Smith, 2005)

b. constraint-based dependency parsing
defines the problem as constraint satisfaction

Weighted constraint dependency grammar (WCDG, Foth and
Menzel, 2005)
Transformation-based CDG

IA161 Syntactic Formalisms for Parsing Natural Languages 439 / 476

Lecture 11

Dependency parsers

Trainable parsers
Probabilistic dependency parser (Eisner, 1996, 2000)
MSTParser (McDonald, 2006)-graph-based
MaltParser (Nivre, 2007, 2008)-transition-based
K-best Maximum Spanning Tree Dependency Parser (Hall, 2007)
Vine Parser
ISBN Dependency Parser

Parsers for specific languages defines the problem as
constraint satisfaction

Minipar (Lin, 1998)
WCDG Parser (Foth et al., 2005)
Pro3Gres (Schneider, 2004)
Link Grammar Parser (Lafferty et al., 1992)
CaboCha (Kudo and Matsumoto, 2002)

IA161 Syntactic Formalisms for Parsing Natural Languages 440 / 476

Lecture 11

MaltParser

Data-driven dependency parsing system (Last version,
1.6.1, J. Hall, J. Nilsson and J. Nivre)

Transition-based parsing system
Implementation of inductive dependency parsing
Useful for inducing a parsing model from treebank data
Useful for parsing new data using an induced model

Useful links
http://maltparser.org

IA161 Syntactic Formalisms for Parsing Natural Languages 441 / 476

http://maltparser.org

Lecture 11

Components of system

Deterministic parsing
algorithms

History-based models

Discriminative learning

Building labeled
dependency graphs

Predicting the next parser
action at nondeterministic

choice points

Mapping histories to
parser actions

IA161 Syntactic Formalisms for Parsing Natural Languages 442 / 476

Lecture 11

MSTParser

Running system

Input: part-of-speech tags or word forms
1 Den _ PO PO DP 2 SS _ _
2 blir _ V BV PS 0 ROOT _ _
3 gemensam _ AJ AJ _ 2 SP _ _
4 für _ PR PR _ 2 OA _ _
5 alla _ PO PO TP 6 DT _ _
6 inkomsttagare _ N NN HS 4 PA _ _
7 oavsett _ PR PR _ 2 AA _ _
8 civilständ _ N NN SS 7 PA _ _
9 . _ P IP _ 2 IP _ _

Output: column containing a dependency label

IA161 Syntactic Formalisms for Parsing Natural Languages 443 / 476

Lecture 11

MSTParser

Minimum Spanning Tree Parser (Last version, 0.2, R.
McDonald et al., 2005, 2006)

Graph-based parsing system

Useful links
http://www.seas.upenn.edu/ strctlrn/MSTParser/MSTParser.html

IA161 Syntactic Formalisms for Parsing Natural Languages 444 / 476

http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html

Lecture 11

MSTParser

Running system

Input data format:
w1 w2 . . . wn
p1 p2 . . . pn
l1 l2 . . . ln
d1 d2 . . . d2

Where,
w1 ... wn are the n words of the sentence (tab deliminated)
p1 ... pn are the POS tags for each word
l1 ... ln are the labels of the incoming edge to each word
d1 ... dn are integers representing the postition of each
words parent

Example:
.

......

For example, the sentence ”John hit the ball” would be:

John hit the ball
N V D N
SBJ ROOT MOD OBJ
2 0 4 2

IA161 Syntactic Formalisms for Parsing Natural Languages 445 / 476

Lecture 11

MSTParser
Running system

Output: column containing a dependency label

IA161 Syntactic Formalisms for Parsing Natural Languages 446 / 476

Lecture 11

Comparing parsing accuracy

Graph-based Vs. Transition-based MST Vs. Malt

Language MST Malt
Arabic 66.91 66.71
Bulgarian 87.57 87.41
Chinese 85.90 86.92
Czech 80.18 78.42
Danish 84.79 84.77
Dutch 79.19 78.59
German 87.34 85.82
Japanese 90.71 91.65
Portuguese 86.82 87.60
Slovene 73.44 70.30
Spanish 82.25 81.29
Swedish 82.55 84.58
Turkish 63.19 65.68
Average 80.83 80.75

Presented in Current Trends in Data-Driven Dependency Parsing by Joakim Nivre, 2009

IA161 Syntactic Formalisms for Parsing Natural Languages 447 / 476

Lecture 11

Link Parser

Syntactic parser of English, based on the Link Grammar
(version, 4.7.4, Feb. 2011, D. Temperley, D, Sleator, J.
Lafferty, 2004)

Words as blocks with connectors + or -
Words rules for defining the connection between the connectors
Deep syntactic parsing system

Useful links
http://www.link.cs.cmu.edu/link/index.html
http://www.abisource.com/

IA161 Syntactic Formalisms for Parsing Natural Languages 448 / 476

http://www.link.cs.cmu.edu/link/index.html
http://www.abisource.com/

Lecture 11

Link Parser

Example of a parsing in the Link Grammar:

let’s test our proper sentences!

http://www.link.cs.cmu.edu/link/submit-sentence-4.html

IA161 Syntactic Formalisms for Parsing Natural Languages 449 / 476

http://www.link.cs.cmu.edu/link/submit-sentence-4.html

Lecture 11

Link Parser

John gives a book to Mary.

IA161 Syntactic Formalisms for Parsing Natural Languages 450 / 476

Lecture 11

Link Parser
Some fans on Friday will be seeking to add another store-opening shirt to collections
they’ve assembled as if they were rare baseball cards.

IA161 Syntactic Formalisms for Parsing Natural Languages 451 / 476

Lecture 11

WCDG parser

Weighted Constraint Dependency Grammar Parser
(version, 0.97-1, May, 2011, W. Menzel, N. Beuck, C.
Baumgärtner)

incremental parsing
syntactic predictions for incomplete sentences
Deep syntactic parsing system

Useful links
http://nats-www.informatik.uni-
hamburg.de/view/CDG/ParserDemo

IA161 Syntactic Formalisms for Parsing Natural Languages 452 / 476

http://nats-www.informatik.uni-hamburg.de/view/CDG/ParserDemo
http://nats-www.informatik.uni-hamburg.de/view/CDG/ParserDemo

Lecture 12

.

......

Syntactic Formalisms for Parsing
Natural Languages

Aleš Horák, Miloš Jakubíček, Vojtěch Kovář
(based on slides by Juyeon Kang)

ia161@nlp.fi.muni.cz

Autumn 2013

IA161 Syntactic Formalisms for Parsing Natural Languages 453 / 476

Lecture 12

.

...... Parsing Evaluation

IA161 Syntactic Formalisms for Parsing Natural Languages 454 / 476

Lecture 12

Parsing Results

usually some complex (i.e. non-scalar) structure, mostly a tree
or a graph-like structure
crucial question: how to measure the “goodness” of the result?

IA161 Syntactic Formalisms for Parsing Natural Languages 455 / 476

Lecture 12

Extrinsic vs. Intrinsic Evaluation

Intrinsic
by comparing to a “gold”, i.e. correct, representation

Extrinsic
by exploiting the result in a 3rd party task and evaluating its
results

Which is better?

IA161 Syntactic Formalisms for Parsing Natural Languages 456 / 476

Lecture 12

Intrinsic Evaluation – Phrase-Structure Syntax

i.e. compare two phrase-structure trees and tell a number
PARSEVAL metric
LAA (Leaf-ancestor assessment) metric

IA161 Syntactic Formalisms for Parsing Natural Languages 457 / 476

Lecture 12

PARSEVAL metric

basic idea: penalize crossing brackets in the tree
i.e. compare all constituents in the test tree to the gold tree
⇒ parsing viewed as classification problem

IA161 Syntactic Formalisms for Parsing Natural Languages 458 / 476

Lecture 12

Precision, recall

for classification problems in NLP, the standard evaluation is by
means of precision and recall

precision = |test ∩ gold|
|test| recall = |test ∩ gold|

|gold|

two numbers, we just want to have one – F-score

F1 score = 2·precision·recall
precision+recall

IA161 Syntactic Formalisms for Parsing Natural Languages 459 / 476

Lecture 12

F-score

also F-measure
general form: Fβ score

Fβ score = (1 + β2) · precision·recall
(β2+precision)+recall

special case of β = 1 corresponds to the harmonic mean of
precision and recall
β can be used for favouring precision over recall (for β < 1) or
vice versa (for β > 1)

IA161 Syntactic Formalisms for Parsing Natural Languages 460 / 476

Lecture 12

PARSEVAL metric

basic idea: penalize crossing brackets in the tree
i.e. compare all constituents in the test tree to the gold tree
⇒ parsing viewed as classification problem
⇒ F-score on correct bracketings/constituents
might even disregard non-terminal names
sort of standardized tool available: the evalb script at
http://nlp.cs.nyu.edu/evalb/

IA161 Syntactic Formalisms for Parsing Natural Languages 461 / 476

http://nlp.cs.nyu.edu/evalb/

Lecture 12

PARSEVAL metric – example

test vs. gold

test:[S [NP John][VP [V likes][NP ice cream] [PP with chocolate]]]
gold:[S [NP John][VP [V likes][NP [NP ice cream] [PP with chocolate]]]]

precision = 6/6 = 1.0, recall = 6/7 = 0.86, F-score = 0.92

IA161 Syntactic Formalisms for Parsing Natural Languages 462 / 476

Lecture 12

PARSEVAL metric

test vs. gold

test:[S [NP John][VP [V likes][NP ice cream] [PP with chocolate]]]
gold:[S [NP John][VP [V likes][NP [NP ice cream] [PP with chocolate]]]]

precision = 6/6 = 1.0, recall = 6/7 = 0.86, F-score = 0.92

IA161 Syntactic Formalisms for Parsing Natural Languages 463 / 476

Lecture 12

PARSEVAL metric

often subject to criticism (see e.g. Sampson, 2000)
Sampson proposed another metric, the leaf-ancestor
assessment (LAA)

IA161 Syntactic Formalisms for Parsing Natural Languages 464 / 476

Lecture 12

LAA metric

basic idea: for each leaf (word), compare the path to the root of
the tree, compute the edit distance between both paths, finally
take the average of all words
in the previous example, the paths (lineages) are:

(John) NP S vs. (John) NP S
(likes) V VP S vs. (likes) V VP S
(ice cream) NP VP S vs. (ice cream) NP NP VP S
(with chocolate) PP VP S vs. (with chocolate) PP NP VP S

IA161 Syntactic Formalisms for Parsing Natural Languages 465 / 476

Lecture 12

Intrinsic Evaluation – Dependency Syntax

much easier
just precision, labeled or unlabeled (as the number of correct
dependencies)

IA161 Syntactic Formalisms for Parsing Natural Languages 466 / 476

Lecture 12

Intrinsic Evaluation – Building Treebanks

treebank = a syntactically annotated text corpus
manual annotation according to some guidelines
from the evaluation point of view: inter-annotator agreement
(IAA) is a crucial property

IA161 Syntactic Formalisms for Parsing Natural Languages 467 / 476

Lecture 12

Measuring IAA

naïve approach: count how many times people agreed on
problem: it does not account for agreement by chance

IA161 Syntactic Formalisms for Parsing Natural Languages 468 / 476

Lecture 12

Chance-corrected coefficients for IAA

S (Benett, Alpert and Goldstein, 1954)
π (Scott, 1955)
κ (Cohen, 1960)
(there is lot of terminology confusion, we follow Ron Artstein,
Massimo Poesio: Inter-coder Agreement for Computational
Linguistics, 2008)
Ao – observed agreement
Ae – expected (chance) agreement
for all coefficients, they compute:

S, π, κ =
Ao − Ae
1− Ae

IA161 Syntactic Formalisms for Parsing Natural Languages 469 / 476

Lecture 12

Chance-corrected coefficients for IAA

S (Benett, Alpert and Goldstein, 1954)
assumes that all categories and all annotators have uniform
probability distribution

π (Scott, 1955)
assumes that different categories have different distributions
shared across annotators

κ (Cohen, 1960)
assumes that different categories and different annotators have
different distributions

devised for 2 annotators, various modifications for more than 2
annotators available

IA161 Syntactic Formalisms for Parsing Natural Languages 470 / 476

Lecture 12

Intrinsic Evaluation – Conclusions

generally not easy
builds on the assumption of having THE correct parse
there is evidence that it does not correlate with extrinsic
evaluation, i.e. how good the tool is for some particular job

IA161 Syntactic Formalisms for Parsing Natural Languages 471 / 476

Lecture 12

Extrinsic Evaluation

= evaluation on a particular task/application
advantages: measures direct fitness for that task
disadvantages: may not generalize for other tasks

leads to crucial question: what can be parsing used for?

IA161 Syntactic Formalisms for Parsing Natural Languages 472 / 476

Lecture 12

What can parsing be used for?

in theory, (full) parsing is suitable/appropriate/necessary for
many NLP tasks
practically it turns out to be:

often not accurate enough
often too complicated to exploit
sometimes just an overkill compared to shallow parsing or yet
simpler approaches

IA161 Syntactic Formalisms for Parsing Natural Languages 473 / 476

Lecture 12

What can parsing be used for?

in theory, (full) parsing is suitable/appropriate/necessary for
many NLP tasks

information extraction
information retrieval
machine translation
corpus linguistics
computer lexicography
question answering
…

IA161 Syntactic Formalisms for Parsing Natural Languages 474 / 476

Lecture 12

Where is parsing actually used now?

prototype systems
academia work
production systems ???

IA161 Syntactic Formalisms for Parsing Natural Languages 475 / 476

Lecture 12

What to evaluate parsing on

Sample (more or less well defined) applications
(partial) morphological disambiguation
text correcting systems
word sketches
phrase extraction
simple treebank of high IAA

IA161 Syntactic Formalisms for Parsing Natural Languages 476 / 476

	Introducing
	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6
	Lecture 7
	Lecture 7
	Lecture 9
	Lecture 10
	Lecture 11
	Lecture 12

