
General Modeling Principles:

Building Blocks of Analysis

Patterns
PA116 – L2

(c) Zdenko Staníček, Sept 2010

2

Content

• Data Polymorphism

• Special Constructs (Analytic patterns)

• Analytic Pattern Accountability

According to:

Lubor Sesera: presentations

 papers (“google it, please”)

 books (Application Architectures

 of SW Systems – in Slovak)

3

Data Polymorphism - topics

• What is data polymorphism?

• What are reasons for using data

polymorphism?

• Solving data polymorphism by using

“glasses”

• Solving data polymorphism by using

attribute as isolated entity
 (see Special Constructs or Building Blocks in DM)

4

What is data polymorphism?

• Type of data processed by a program is not
known in compilation time, but only in the
time of program running.

• Function represented by program is
computed in the same way for different
types of its arguments

• Typical example is function “Sum”

• … along with this the data processing lies in

– permanent storage in DB,

– searching, actualizing, ...

5

Reasons for utilization of data

polymorphism

• Example: Component “Technical
Equipment Register and Maintenance” in
Power distribution plant
– What Item is worth to be filed as self-reliant entity

– Would we like to see “Transformer” and “Electrical
Distributor”, (“insulator”) or only

– “Device”

• Complexity of application when data
polymorphism is not used

• Dependence of application on current state of
users’ thinking about their business needs

• Sliding on the Identity-axe (what has to be
distinguished and what hasn’t)

6

Supertype--Subtype, Identity of types

Device

Transformer

Electrical

distributor

Pillar

Lightning

arrester

Bulk power

substation

Switchboard

Cable

Approx. 180 – 220

7

Connections between Subtypes

Device

Transformer

Electrical

distributor

Pillar

Lightning

arrester

Bulk power

substation

Switchboard

Cable

Cca 180 – 220

8

Connections between Supertypes

Device

Cca 180 – 220
Transformer

Electrical

distributor

Pillar

Lightning

arrester

Bulk power

substation

Switchboard

Cable

9

Solving Data Polymorphism

using “glasses”
• Non-interpreted storage place in Device

records

• Each Device instance is of exactly one

type from Device Type

• Within the run-time the current “type” of

the “non-interpreted storage” of a given

Device instance is interpreted according to

assigned “device type”

10

Using glases

Device

Device Type Glasses

1,1

0,M

1,1 0,M

DEVICE

xxxxx *xxx * xxxxxxxxxxxx *xx * xxxxxxxxx * x *

11

Solving Data Polymorphism

using “glasses” -- discussion

• Used in several real-life examples (case study

“Building Data Model”, IS “White Butterfly”, …)

• Discussion:

– What are the advantages?

– What kind of problems this solution brings?

– Is it easy to maintain?

– Computational complexity?

– What about the fact that SW company has its product

at 100 (at 1000, ...) customers?

12

Solving Data Polymorphism by

using attribute as isolated entity

• Who will find out how to do it?

• It is one of the basic analytic patterns

13

Using attribute as isolated entity

Device

Device Type Attribute

1,1

0,M

1,1 0,M

Value
p

p

(1,M)

(Value) of given (#Attribute) for given (#Device) / 0,1:0,M

14

Attribute as isolated entity

• Discussion:

– What are advantages?

– What kind of problems this solution brings?

– Is it easy to maintain?

– Computational complexity?

– Comparison with Glases

15

Special Constructions

(Analytical patterns)

• Are there any other general solutions except the
Data Polymorphism?

• Lubor Šešera: paper at DATASEM

• ... and the book Data Modeling in Examples

• … and now: Application Architectures of SW
Systems

• M. Fowler: Analysis Patterns: Reusable Object
Models.

16

Reasons for usage

• Example: Component “Technical

Equipment Register and Maintenance”

• Complexity of application when special
constructs are not used

• Dependence of application on current
state of users’ thinking about their
business needs

• Higher solidity of the construction when
proven prefabricated elements are used

17

Conceptual modeling using

patterns - principles

• Principles of normalization

• Principles of abstraction

• Principles of flexibility

• See Šešera: Data Modeling in Examples
 Following examples and figures are used from authors speach (with

author's kind permition) L. Šešera: General Data Modeling

Principles: Building Blocks of Analysis Patterns. DATASEM 1999,

which preceded cited book

18

Principles of normalization

• Uniqueness of occurrence of data item

– from not normalized entity towards to

construction of normalized entities

• Multiplicity

– reduce a multiplicity of objects in relation only

to:

• zero

• one

• infinity

19

Every fact only in one place



Person

name
surname
village
street
number

*

{ or}

{ or}

1 *

1

*

0 ..1

*

0 ..1

Person

Number

Street

Village

name
surname

20

Actual cardinalities transform to

general ones



1 0 ..50
Person

Address-house

number

1 *
Person

Address-house

number

21

Principles of abstraction

• Abstraction in itself

– Generalization

– Constructing types

– Substitution

• Aggregation

• Categorization

22

Generalization
relation of inheritance, some inherited

characteristics could be overridden in subtype

Man Woman

Person

Locality

Number Village Street

23

Constructing types
type as a standalone entity

 Gender

Person

*

1

Man Woman

Person

24

Constructing types (2)
type as a standalone entity

Type of

Locality

Locality

*

1

Gender

Person

*

1

According to this pattern: … we create the following

construction:

25

Substitution
special entity is set instead of general entity -

opposite of generalization



Person

name

surname

Woman

name

surname

26

Aggregation
grouping parts into wholes; it supports constructing

more levels of abstraction

Family

Person

1 ..*

1

Village

Street

1

*

27

Categorization
grouping instances into sets; it does not subscribe

attributes to grouped instances (contrary to

constructing types)

Nationality

Person

*

1

Size of

Village

Village

*

1

28

Abstraction (Generalization) vs. Aggregation

Person

Man Woman Head Body

1

1

1

1

29

Abstraction (Generalization) vs Categorization

Locality

Village

Size of
Village

*

1

30

Principles of Flexibility

• Recursion

– direct

– indirect

• Abstraction of relationship

• Abstraction of attributes

31

Direct recursion
semantic relationship and special relationship

(aggregation)

parent
child

Person

1

*

Locality

1

*

32

Indirect recursion (1)

Person

Parent Childless

child

*

1

33

Indirect recursion (2)

Locality

Composed
Locality

Number Person
adress

1

*

* 1

34

Abstraction of relationships



marriage
Woman Man

date
maiden name name

surname

1 * * 1

Person Family
relationship

Type of

family
relationship

* 1

* 1

*

1

35

Abstraction of attributes (1)

Device

Device Type Attribute

1,1

0,M

1,1 0,M

Value
p

p

(1,M)

(Value) of given (#Attribute) for given (#Device) / 0,1:0,M

36

Abstraction of attributes (2)
not only by using types, but using aggregations

Gender

Patient

Attribute

of patient

Value

1

*

1 *

1 *

1

*

37

Pattern Accountability
as an example of complex patterns

• taken from L. Šesera's lecture at DATASEM 1999

• by M. Fowler

• Organizational structure of big organization

• Problem of changing the model when the organization
structure changes

• Problem of more existing hierarchies at the same time

• Abstractions: OrgUnit → Participant;
OrgRelationship→ (any) Accountability

• Separation of general knowledge from operational level;
implementation of general scope of accountability and
allowing multiple inheritance

38

Organizational structure of big organization

Regional Centre

Subsidiary

Headquarters

Store

1

*

1

*

1

*

39

Solving Problem of changing the model

when changing the org. structure

Subsidiary Headquarters Store Regional
Centre

Org Unit

Rule:

no superordinate

Rule:
superordinate is

Headquarters

Rule:
superordinate is

Regional
Centre

Rule:
superordinate is

Subsidiary

superordinate

subordinate

0..1

*

40

Solving Problem of more existing

hierarchies at the same time

Type

Organization

relationship

Time interval Subsidiary Headquarters Store Regional
Centre

Org

Unit

superordinate

subordinate

*

1

* 1

* 1

1

*

Organization

relationship

41

Abstraction: OrgUnit → Participant

OrgRelationship→ (any) Accountability

Type of

Accountability

Time interval

Participant Accountability

 to whom

Person Post Organization

 who

1

*

*

1

* 1

* 1

42

Generalization up to analytic

pattern Accountability

• Separate general knowledge of the world from
operational level on which we keep track of
particular states-of-the-world

• Implement general scope of accountability

• Allow multiple inheritance (we inherit from
mother and also from father; subtype can have
more supertypes)

• Subtypes of relational entity Scope and
explanation what is the scope for (subtype
entities of the Scope)

43

Analytic pattern Accountability
by Lubor Šešera, DATASEM'99

Region of
sales

Product type Resource type Quantity Type of
health

care

1..*

Person Post Organization

Operational level

Knowledge level

supertype

subtype

to whom 1+

Participant Accountability

type types
who 1+

Scope
{abstract}

Place

Scope of
health
care

Scope of
resources

 to whom

Type of
Accountability

Period

 who

Type of
Participant

type

* 1 0..1

*

1

*

1

*

1
*
1

*

*

1

*

*
1

* *

* *

* 1

* 1

1

*

*

*

44

Discussion

• Fear of special constructs

• Quo vadis SW development?

• Will we implement solutions after domain

and situation analysis in the future? Or will

we teach a Service System what to do?

• What customers want today?

• What will they want tomorrow?

• … and what they really need?

