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Content 

• Data Polymorphism 

• Special Constructs (Analytic patterns) 

• Analytic Pattern Accountability 

According to: 

Lubor Sesera:  presentations 

  papers (“google it, please”) 

  books (Application Architectures 

   of SW Systems – in Slovak)   
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Data Polymorphism - topics 

• What is data polymorphism? 

• What are reasons for using data 

polymorphism? 

• Solving data polymorphism by using 

“glasses” 

• Solving data polymorphism by using  

attribute as isolated entity  
 (see Special Constructs or Building Blocks in DM) 
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What is data polymorphism? 

• Type of data processed by a program is not 
known in compilation time, but only in the 
time of program running. 

• Function represented by program is 
computed in the same way for different 
types of its arguments  

• Typical example is function “Sum” 

• … along with this the data processing lies in  

– permanent storage in DB,   

– searching, actualizing, ... 



5 

Reasons for utilization of data 

polymorphism 

• Example: Component “Technical 
Equipment Register and Maintenance” in 
Power distribution plant 
– What Item is worth to be filed as self-reliant entity 

– Would we like to see “Transformer” and “Electrical 
Distributor”, (“insulator”) or only 

– “Device” 

• Complexity of application when data 
polymorphism is not used 

• Dependence of application on current state of 
users’ thinking about their business needs 

• Sliding on the Identity-axe (what has to be 
distinguished and what hasn’t) 
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Supertype--Subtype, Identity of types 

Device 

Transformer 

Electrical 

distributor  

Pillar 

Lightning  

arrester 

Bulk power  

substation 

Switchboard 

Cable 

Approx. 180 – 220  
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Connections between Subtypes 

Device 

Transformer 

Electrical 

distributor 

Pillar 

Lightning 

arrester 

Bulk power  

substation 

Switchboard 

Cable 

Cca 180 – 220  
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Connections between Supertypes 

Device 

Cca 180 – 220  
Transformer 

Electrical 

distributor  

Pillar 

Lightning 

arrester 

Bulk power  

substation 

Switchboard 

Cable 
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Solving Data Polymorphism  

using “glasses” 
• Non-interpreted storage place in Device 

records 

• Each Device instance is of exactly one 

type from Device Type 

• Within the run-time the current “type” of 

the “non-interpreted storage” of a given 

Device instance is interpreted according to 

assigned “device type” 
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Using glases 

Device 

Device Type Glasses 

1,1 

0,M 

1,1 0,M 

DEVICE 

xxxxx *xxx * xxxxxxxxxxxx *xx * xxxxxxxxx * x * 
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Solving Data Polymorphism  

using “glasses” -- discussion 

• Used in several real-life examples (case study 

“Building Data Model”, IS “White Butterfly”, …) 

• Discussion: 

– What are the advantages? 

– What kind of problems this solution brings? 

– Is it easy to maintain? 

– Computational complexity? 

– What about the fact that SW company has its product 

at 100 (at 1000, ...) customers? 
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Solving Data Polymorphism by 

using attribute as isolated entity 

• Who will find out how to do it? 

• It is one of the basic analytic patterns 
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Using attribute as isolated entity 

Device 

Device Type Attribute 

1,1 

0,M 

1,1 0,M 

Value 
p 

p 

(1,M) 

(Value) of given (#Attribute) for given (#Device) / 0,1:0,M 
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Attribute as isolated entity 

• Discussion: 

– What are advantages? 

– What kind of problems this solution brings? 

– Is it easy to maintain? 

– Computational complexity? 

– Comparison with Glases 
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Special Constructions 

(Analytical patterns) 

• Are there any other general solutions except the 
Data Polymorphism? 

• Lubor Šešera: paper at DATASEM 

• ... and the book Data Modeling in Examples 

• … and now: Application Architectures of SW 
Systems 

• M. Fowler: Analysis Patterns: Reusable Object 
Models. 
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Reasons for usage 

• Example: Component “Technical 

Equipment Register and Maintenance”  

• Complexity of application when special 
constructs are not used 

• Dependence of application on current 
state of users’ thinking about their 
business needs 

• Higher solidity of the construction when 
proven prefabricated elements are used 
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Conceptual modeling using 

patterns - principles 

• Principles of normalization 

• Principles of abstraction 

• Principles of flexibility 

 

• See Šešera: Data Modeling in Examples 
 Following examples and figures are used from authors speach  (with 

author's kind permition)  L. Šešera: General Data Modeling 

Principles: Building Blocks of Analysis Patterns. DATASEM 1999, 

which preceded cited book 
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Principles of normalization 

• Uniqueness of occurrence of data item 

– from not normalized entity towards to 

construction of normalized entities 

• Multiplicity 

– reduce a multiplicity of objects in relation only 

to: 

• zero 

• one 

• infinity 
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Every fact only in one place 

 

Person 

name 
surname 
village 
street 
number 

* 

{ or} 

{ or} 

1 * 

1 

* 

0 ..1 

* 

0 ..1 

Person 

Number 

Street 

Village 

name 
surname 
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Actual cardinalities transform to 

general ones 

 

 

1 0 ..50 
Person 

Address-house 

number 

1 * 
Person 

Address-house 

number 
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Principles of abstraction 

• Abstraction in itself 

– Generalization 

– Constructing types 

– Substitution 

• Aggregation 

• Categorization 
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Generalization 
relation of inheritance, some inherited 

characteristics could be overridden in subtype 

Man Woman 

Person 

Locality 

Number Village Street 
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Constructing types 
type as a standalone entity 

                      Gender 

Person 

* 

1 

Man Woman 

Person 
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Constructing types (2) 
type as a standalone entity 

Type of 

Locality 

Locality 

* 

1 

                      

Gender 

Person 

* 

1 

According to this pattern: … we create the following 

construction: 
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Substitution 
special entity is set instead of general entity - 

opposite of generalization 

 

Person 

name 

surname 

Woman 

name 

surname 
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Aggregation 
grouping parts into wholes; it supports constructing 

more levels of abstraction 

                       

Family 

Person 

1 ..* 

1 

Village 

Street 

1 

* 
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Categorization 
grouping instances into sets; it does not subscribe 

attributes to grouped instances (contrary to 

constructing types) 

Nationality 

Person 

* 

1 

Size of 

Village 

Village 

* 

1 
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Abstraction (Generalization) vs. Aggregation 

Person 

Man Woman Head Body 

1 

1 

1 

1 
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Abstraction (Generalization) vs Categorization 

Locality 

Village 

Size of 
Village 

* 

1 
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Principles of Flexibility 

• Recursion 

– direct 

– indirect 

• Abstraction of relationship 

• Abstraction of attributes 
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Direct recursion 
semantic relationship and special relationship    

(aggregation) 

parent 
child 

Person 

1 

* 

Locality 

1 

* 
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Indirect recursion (1) 

Person 

Parent Childless 

child 

* 

1 
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Indirect recursion (2) 

Locality 

Composed 
Locality 

Number Person 
adress 

1 

* 

* 1 
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Abstraction of relationships 

 
 

marriage 
Woman Man 

date 
maiden name name 

surname 

1 * * 1 

Person Family 
relationship 

Type of 

family 
relationship 

* 1 

* 1 

* 

1 
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Abstraction of attributes (1) 

Device 

Device Type Attribute 

1,1 

0,M 

1,1 0,M 

Value 
p 

p 

(1,M) 

(Value) of given (#Attribute) for given (#Device) / 0,1:0,M 
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Abstraction of attributes (2) 
not only by using types, but using aggregations 

Gender 

Patient 

Attribute 

of patient 

Value 

1 

* 

1 * 

1 * 

1 

* 
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Pattern Accountability 
as an example of complex patterns  

• taken from L. Šesera's lecture at DATASEM 1999 

• by M. Fowler 

• Organizational structure of big organization 

• Problem of changing the model when the organization 
structure changes 

• Problem of more existing hierarchies at the same time 

• Abstractions: OrgUnit → Participant; 
OrgRelationship→ (any) Accountability 

• Separation of general knowledge from operational level; 
implementation of general scope of accountability and 
allowing multiple inheritance 
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Organizational structure of big organization 

Regional Centre 

Subsidiary 

Headquarters 

Store 

1 

* 

1 

* 

1 

* 
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Solving Problem of changing the model 

when changing the org. structure 

Subsidiary Headquarters Store Regional 
Centre 

Org Unit 

Rule:  

no superordinate 

Rule: 
superordinate is 

Headquarters 

Rule: 
superordinate is 

Regional 
Centre 

Rule: 
superordinate is 

Subsidiary 

superordinate 

subordinate 

0..1 

* 
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Solving  Problem of more existing 

hierarchies at the same time 

Type 

Organization 

relationship 

Time interval Subsidiary Headquarters Store Regional 
Centre 

Org 

Unit 

superordinate     

subordinate     

* 

1 

* 1 

* 1 

1 

* 

Organization 

relationship 
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Abstraction: OrgUnit → Participant 

OrgRelationship→ (any) Accountability 

Type of 

Accountability 

Time interval 

Participant Accountability 

 to whom   

Person Post Organization 

 who   

1 

* 

* 

1 

* 1 

* 1 
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Generalization up to analytic 

pattern Accountability 

• Separate general knowledge of the world from 
operational level on which we keep track of 
particular states-of-the-world 

• Implement general scope of accountability 

• Allow multiple inheritance (we inherit from  
mother and also from father; subtype can have 
more supertypes) 

• Subtypes of relational entity Scope and 
explanation what is the scope for (subtype 
entities of the Scope) 
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Analytic pattern Accountability 
by Lubor Šešera, DATASEM'99 

Region of 
sales 

Product type Resource type Quantity Type of 
health 

care 

1..* 

Person Post Organization 

Operational level 

Knowledge level 

supertype 

subtype 

to whom 1+ 
       

Participant Accountability 

type types 
who 1+ 

Scope 
{abstract} 

Place 

Scope of 
health 
care 

Scope of 
resources 

 to whom    

Type of 
Accountability 

Period 

 who    

Type of 
Participant 

type 

* 1 0..1 

* 

1 

* 

1 

* 

1 
* 
1 

* 

* 

1 

* 

* 
1 

* * 

* * 

* 1 

* 1 

1 

* 

* 

* 
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Discussion 

• Fear of special constructs 

• Quo vadis  SW development? 

• Will we implement solutions after domain 

and situation analysis in the future? Or will 

we teach a Service System what to do? 

• What customers want today? 

• What will they want tomorrow? 

• … and what they really need? 


