
Course Organization

Lecture 1/Part 1

1

Outline

 About the lecturer

 About the course

 Lectures

 Seminars

 Evaluation

 Literature

2

About the lecturer:

 Ing. RNDr. Barbora Bühnová, Ph.D.

 Industrial experience

 Research

 Quality of software architecture

 Lab of Software Architecture and Information Systems (LaSArIS)

 Teaching

 Courses on UML, architecture design, programming, algorithm

design, automata and grammars, and others

 Collaboration with students

 Seminar tutoring

 Bachelor/Master theses

3

About the course:

 PB007 Software Engineering I

 Lectures

1. Software process, role of the UML language.

2. Functional requirements specification, UML Use Case diagram.

3. Nonfunctional requirements specification, UML Activity diagram.

4. System analysis and design, structured vs. object-oriented A&D.

5. Object oriented analysis, UML Class, Object and Interaction diagrams.

6. Structured analysis, data modelling, ERD.

7. System design, UML Class diagram in design.

8. Architecture design, UML Packages, Component and Deployment diagram.

9. Implementation issues, UML State diagram.

10. Testing, verification and validation.

11. Operation, maintenance and system evolution.

12. Software development management.

13. Advanced software engineering techniques.

4

About the course:

 PB007 Software Engineering I

 Seminars

1. Visual Paradigm introduction, project assignment.

2. Project start, initial Use Case diagram.

3. Detailed Use Case diagram, textual specification of UC

4. Specification of use cases (textual if not finished, Activity diagram).

5. Analytical Class diagram, Object diagram.

6. Finalization of analytical Class diagram, Use Case diagram update.

7. Data modelling, Entity Relationship diagram.

8. Refinement of use cases with Interaction diagrams.

9. Finalization of Interaction diagrams, Class diagram update.

10. State diagram.

11. Design-level Class diagram, interfaces, implementation details.

12. Packages, Component diagram, Deployment diagram.

13. Project evaluation.

5

About the course:

 PB007 Software Engineering I

 Lectures

 13 teaching weeks + 1 week free

 Seminars

 12 teaching weeks + 1 week final project discussion

 Team project on UML modeling, teams of 2-3 students

 Obligatory attendance (one absence ok) and weekly task delivery

 Penalty for extra absence (-5 points) and late task delivery (-5 p.)

 Evaluation

 Project = YES/NO and penalty recorded in IS notebook

 Exam = test (56 points) + on-site modelling (44 points)

 Grades: 90-100 A, 80-89 B, 70-79 C, 60-69 D, 50-59 E, 0-49 F

6

Literature

 Software Engineering, 9/E

 Author: Ian Sommerville

 Publisher: Addison-Wesley

 Copyright: 2011

 UML 2 and the Unified Process, 2/E

 Author: Jim Arlow and Ila Neustadt

 Publisher: Addison-Wesley

 Copyright: 2005

7

Software process

Lecture 1/Part 2

Chapter 2 Software Processes 8

Outline

 Software engineering

 Software process activities

 Software process models

Chapter 2 Software Processes 9

Software engineering

 The economies and human lifes of ALL developed

nations are dependent on software.

More and more systems are software controlled

 Software engineering is concerned with theories,

methods and tools for professional software

development.

 Software engineering is concerned with cost-effective

development of high-quality software systems .

Chapter 1 Introduction

Frequently asked questions about software

engineering

Chapter 1 Introduction 11

Question Answer

What is software? Computer programs and associated documentation.

Software products may be developed for a particular
customer or may be developed for a general market.

What are the attributes of good software? Good software should deliver the required functionality

and performance to the user and should be
maintainable, dependable and usable (among others).

What is software engineering? Software engineering is an engineering discipline that is

concerned with all aspects of software production.

What are the fundamental software

engineering activities?

Software specification, software analysis and design,

SW implementation, SW validation and SW evolution.

What is the difference between software

engineering and computer science?

Computer science focuses on theory and fundamentals;

software engineering is concerned with the practicalities
of developing and delivering useful software.

What is the difference between software

engineering and system engineering?

System engineering is concerned with all aspects of

computer-based systems development including
hardware, software and process engineering. Software
engineering is part of this more general process.

Software versus System engineering

Chapter 10 Sociotechnical Systems 12

Software products

Generic products

 Stand-alone systems that are marketed and sold to any

customer who wishes to buy them.

 Examples – PC software such as graphics programs, project

management tools; CAD software.

 Customized products

 Software that is commissioned by a specific customer to meet

their own needs.

 Examples – embedded control systems, air traffic control

software, traffic monitoring systems.

Chapter 1 Introduction 13

Application types

 Stand-alone desktop applications

 Interactive web-based applications

 Embedded control systems

 Batch processing systems

 Entertainment systems

 Systems for modeling and simulation

 Data collection and monitoring systems

Chapter 1 Introduction 14

Software engineering fundamentals

 Some fundamental principles apply to all types of

software system, irrespective of the development

techniques used:

 Systems should be developed using a managed and

understood development process. Of course, different

processes are used for different types of software.

 Dependability and performance are important for all types of

system.

 Understanding and managing the software specification and

requirements (what the software should do) are important.

 Where appropriate, you should reuse software that has already

been developed rather than write new software.

Chapter 1 Introduction 15

The software process

 A structured set of activities required to develop a

software system.

Many different software processes but all involve:

 Specification

 Analysis and design

 Implementation

 Validation and verification

 Evolution

 Is the analysis and design always involved?

 A software process model is an abstract representation

of a process – from some particular perspective.

Chapter 2 Software Processes 16

Development

Software process activities

 Software specification, where customers and engineers

define the software and the constraints on its operation.

 Software analysis and design, where the requirements

are refined into system design.

 Software implementation, where the software is

implemented.

 Software validation and verification, where the software

is checked to ensure that it is what the customer requires.

 Software evolution, where the software is modified to

reflect changing customer and market requirements.

17 Chapter 2 Software Processes

Software process models

 The waterfall model

 Plan-driven model. Separate and distinct phases of specification

and development.

 Incremental development

 Specification, development and validation are interleaved. May

be plan-driven or agile.

 Reuse-oriented software engineering

 The system is assembled from existing components. May be

plan-driven or agile.

 In practice, most large systems are developed using a

process that incorporates elements from many different

models.
Chapter 2 Software Processes 18

Plan-driven and agile development

 Plan-driven development

 A plan-driven approach to software engineering is based around

separate development stages with the outputs to be produced at

each of these stages planned in advance.

 Not necessarily waterfall model – plan-driven, incremental

development is possible

 Iteration occurs within activities.

 Agile development

 Specification, design, implementation and testing are inter-

leaved and the outputs from the development process are

decided through a process of negotiation during the software

development process.

19 Chapter 3 Agile software development

The waterfall model

Chapter 2 Software Processes 20

Waterfall model benefits and problems

 The waterfall model is mostly used for large system

engineering projects where a system is developed at

several sites, and for generic products.

 In those circumstances, the plan-driven nature of the waterfall

model helps coordinate the work.

 Inflexible partitioning of the project into distinct stages

makes it difficult to respond to changing customer

requirements.

 Therefore, this model is only appropriate when the requirements

are well-understood and changes will be fairly limited during the

design process.

 Few business systems have stable requirements.

Chapter 2 Software Processes 21

Software prototyping

 A prototype is an initial version of a system used to

demonstrate concepts and try out design options.

 A prototype can be used in:

 The requirements engineering process to help with

requirements elicitation and validation;

 In design processes to explore options and develop a UI

design;

 In the testing process to run back-to-back tests comparing

different implementation alternatives.

22 Chapter 2 Software Processes

Benefits of prototyping

 A closer match to users’ real needs.

 Improved design quality.

 Improved system usability.

 Improved maintainability.

 Increased or reduced development effort?

23 Chapter 2 Software Processes

Boehm’s spiral model

 Process is represented as a spiral rather than as a

sequence of activities with backtracking.

 Each loop in the spiral represents a phase in the

process.

 No fixed phases such as specification or design - loops

in the spiral are chosen depending on what is required.

 Risks are explicitly assessed and resolved throughout

the process.

24 Chapter 2 Software Processes

Boehm’s spiral model of the software

process

25 Chapter 2 Software Processes

Spiral model sectors

Objective setting

 Specific objectives for the phase are identified.

 Risk assessment and reduction

 Risks are assessed and activities put in place to reduce the key

risks.

 Development and validation

 A development model for the system is chosen which can be

any of the generic models.

 Planning

 The project is reviewed and the next phase of the spiral is

planned.

26 Chapter 2 Software Processes

Spiral model usage

 Spiral model has been very influential in helping people

think about iteration in software processes and

introducing the risk-driven approach to development.

 In practice, however, the model is rarely used as

published for practical software development.

Chapter 2 Software Processes 27

The Rational Unified Process

 A modern generic process commonly associated with the

Unified Modeling Language (UML).

 Brings together aspects of a number of generic process

models discussed in this lecture. Which ones?

 Normally described from 3 perspectives

 A dynamic perspective that shows phases over time;

 A static perspective that shows process activities;

 A practice perspective that suggests good practices to be used

during the process.

28 Chapter 2 Software Processes

Phases in the Rational Unified Process

29 Chapter 2 Software Processes

 Inception

 Establish the business case for the system.

 Elaboration

 Develop understanding of the problem domain and system architecture.

 Construction

 System design, programming and testing.

 Transition

 Deploy the system in its operating environment.

RUP process architecture

30 Chapter 2 Software Processes

Iterative and incremental development

Chapter 2 Software Processes 31

What is the difference between the two?

Incremental delivery

 Rather than deliver the system as a single delivery, the

development and delivery is broken down into

increments with each increment delivering part of the

required functionality.

 User requirements are prioritised and the highest

priority requirements are included in early increments.

 Once the development of an increment is started, the

requirements are frozen though requirements for later

increments can continue to evolve.

32 Chapter 2 Software Processes

Incremental development benefits

 Customer value can be delivered with each increment

so system functionality is available earlier.

 Early increments act as a prototype to help elicit

requirements for later increments.

 Lower risk of overall project failure.

 The highest priority system services tend to receive the

most testing.

Chapter 2 Software Processes 33

Incremental development problems

 The complete specification is hard to foresee.

 This becomes problematic when complete specification is

required in contract negotiation.

 System structure tends to degrade as new increments

are added.

 Unless time and money is spent on extensive refactoring,

regular changes tend to corrupt system structure and increase

the cost of incorporating further changes.

 It is hard to identify and effectively design basic facilities

shared by different parts of the system.

 The process is not visible, progress is hard to trace.

Chapter 2 Software Processes 34

Agile methods

 Agile methods:

 Focus on the code rather than the design

 Are based on an iterative approach to software development

 Are intended to deliver working software quickly and evolve this

quickly to meet changing requirements.

 The aim of agile methods is to reduce overheads in the

software process (e.g. by limiting documentation) and

to be able to respond quickly to changing

requirements without excessive rework.

35 Chapter 3 Agile software development

The principles of agile methods

Principle Description

Customer involvement Customers should be closely involved throughout the

development process. Their role is provide and prioritize new

system requirements and to evaluate the iterations of the

system.

Incremental delivery The software is developed in increments with the customer

specifying the requirements to be included in each increment.

People not process The skills of the development team should be recognized and

exploited. Team members should be left to develop their own

ways of working without prescriptive processes.

Embrace change Expect the system requirements to change and so design the

system to accommodate these changes.

Maintain simplicity Focus on simplicity in both the software being developed and

in the development process. Wherever possible, actively work

to eliminate complexity from the system.

36 Chapter 3 Agile software development

Problems with agile methods

 It can be difficult to keep the interest of customers who

are involved in the process.

 Because of their focus on small, tightly-integrated teams,

one needs to be careful when scaling agile methods to

large systems.

 Prioritising changes can be difficult where there are

multiple stakeholders.

Maintaining simplicity requires extra work.

 Contracts may be a problem as with other approaches to

iterative development.

37 Chapter 3 Agile software development

Extreme programming

 Perhaps the best-known and most widely used agile
method.

 Extreme Programming (XP) takes an ‘extreme’ approach
to iterative development.

 New versions may be built several times per day;

 Increments are delivered to customers every 2 weeks;

 All tests must be run for every build and the build is only
accepted if tests run successfully.

38 Chapter 3 Agile software development

XP and agile principles

 Incremental development is supported through small,

frequent system releases.

 Customer involvement means full-time customer

engagement with the team.

 People not process through pair programming, collective

ownership and a process that avoids long working hours.

 Change supported through regular system releases.

Maintaining simplicity through constant refactoring of

code.

39 Chapter 3 Agile software development

Reuse-oriented software engineering

 Based on systematic reuse where systems are

integrated from existing components or COTS

(Commercial-off-the-shelf) systems.

 Process stages

 Component analysis;

 Requirements modification;

 System design with reuse;

 Development and integration.

 Reuse is now the standard approach for building many

types of business system

Chapter 2 Software Processes 40

Reuse-oriented software engineering

Chapter 2 Software Processes 41

Key points

 There are many different types of system and each

requires appropriate software engineering tools and

techniques for their development.

 Software engineering is an engineering discipline that is

concerned with all aspects of software production.

 The high-level activities of specification, analysis and design,

implementation, validation and evolution are part of all software

processes.

General process models describe the organization of

software processes.

 Examples of general models include the ‘waterfall’ model,

incremental development, and reuse-oriented development.

 Chapter 1 Introduction 42

Key points

 Processes should include activities to cope with change. This may

involve a prototyping phase that helps avoid poor decisions on

requirements and design.

 Processes may be structured for iterative development and delivery

so that changes may be made without disrupting the system as a

whole.

 The Rational Unified Process is a modern generic process model

that is organized into phases (inception, elaboration, construction

and transition) but separates activities (requirements, analysis and

design, etc.) from these phases.

 Agile methods are incremental development methods that focus on

rapid development, frequent releases of the software, reducing

process overheads and producing high-quality code. They involve

the customer directly in the development process.

43 Chapter 2 Software Processes

UML in Software Development

Lecture 1/Part 3

44 Chapter 5 System modeling

Outline

 System modeling

 Structural models

 Interaction models

 Behavioral models

45 Chapter 5 System modeling

System modeling

 System modeling is the process of developing abstract

models of a system, with each model presenting a

different view or perspective of that system.

 System modeling has now come to mean representing a

system using some kind of graphical notation, which is

now almost always based on notations in the Unified

Modeling Language (UML).

 System modelling helps the analyst to understand the

functionality of the system and models are used to

communicate with colleagues and customers.

Chapter 5 System modeling 46

System perspectives

 An external perspective, where you model system

boundary, the context and/or environment of the system.

 A structural perspective, where you model the

organization of a system or the structure of the data that

is processed by the system.

 An interaction perspective, where you model the

interactions between a system and its environment, or

between the components of a system.

 A behavioral perspective, where you model the

dynamic behavior of the system and how it responds to

events.

 Chapter 5 System modeling 47

UML diagram types

 External perspective

 Use case diagram

 Structural perspective

 Class diagram, Object diagram, Component diagram, Package

diagram, Deployment diagram, Composite structure diagram

 Interaction perspective

 Sequence diagram, Communication diagram, Interaction

overview diagram, Timing diagram

 Behavioral perspective

 Activity diagram, State diagram

Chapter 5 System modeling 48

Popular UML diagrams

 Use case diagrams, which show the interactions

between a system and its environment.

 Class diagrams, which show the object classes in the

system and the associations between these classes.

 Sequence diagrams, which show interactions between

actors and the system and between system components.

 Activity diagrams, which show the activities involved in

a process or in data processing.

Chapter 5 System modeling 49

UML Use case diagram:

 Medical receptionist in health care system

Chapter 5 System modeling 50

UML Class diagram:

 Health care system

Chapter 5 System modeling 51

UML Sequence diagram:

 View patient information in health care system

Chapter 5 System modeling 52

UML Activity diagram:

 Process model of involuntary detention

Chapter 5 System modeling 53

Key points

 A model is an abstract view of a system that ignores system

details. Complementary system models can be developed to

show the system’s context, structure, behavior and

interactions.

 Context models show how a system that is being modeled is

positioned in an environment with other systems.

 Structural models show the organization and architecture of

a system. Class diagrams are used to define the static

structure of classes in a system and their associations.

 Interaction models are used to describe the interactions

between system elements and Behavioral models to detail

the internal dynamic behavior of system elements/processes.

 Chapter 5 System modeling 54

