
Requirements Engineering

Lecture 2

1 Chapter 4 Requirements engineering

Requirements engineering

 The process of establishing the services that the

customer requires from a system and the constraints

under which it operates and is developed.

 The requirements themselves are the descriptions of

the system services and constraints that are generated

during the requirements engineering process.

 It may range from a high-level abstract statement of a service

or of a system constraint to a detailed mathematical functional

specification.

2 Chapter 4 Requirements engineering

Outline

 Requirements and their types

 Requirements engineering process

 Requirements elicitation and analysis

 Requirements validation

 Requirements management

 UML Use Case diagram

3 Chapter 4 Requirements engineering

Requirements and their Types

Lecture 2/Part 1

4 Chapter 4 Requirements engineering

Types of requirements

 User requirements

 Statements in natural language plus diagrams of the services the

system provides and its operational constraints.

 For client managers, client engineers and system architects.

 System requirements

 A structured document setting out detailed descriptions of the

system’s functions, services and operational constraints.

Defines what should be implemented.

 For client engineers, system architects and system developers.

Which of them are more abstract/concrete?

5 Chapter 4 Requirements engineering

User and system requirements

6 Chapter 4 Requirements engineering

Functional and non-functional requirements

 Functional requirements

 Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

 E.g. A user shall be able to search the appointments lists for all
clinics.

 Non-functional requirements

 Properties and constraints on the services offered by the
system such as timing, reliability and security constraints,
constraints on the development process, platform, standards, etc.

 E.g. The system shall be available on Mon–Fri, 8 am – 5 pm,
with downtime not exceeding five seconds in any one day.

 Can you think of more examples of the two types?

7 Chapter 4 Requirements engineering

Requirements precision, completeness

and consistency

 Precise

 They should have just one interpretation in the system context,

which is enforced by the following two properties.

 Complete

 They should include descriptions of all facilities required.

 Consistent

 There should be no conflicts or contradictions in the descriptions

of the system facilities.

 In practice, it is very hard (sometimes impossible) to

produce a complete and consistent requirements

document.

8 Chapter 4 Requirements engineering

Key points

 Requirements for a software system set out what the

system should do and define constraints on its operation

and implementation.

 Functional requirements are statements of the

services that the system must provide or are descriptions

of how some computations must be carried out.

 Non-functional requirements often constrain the

system being developed and the development process

being used.

9 Chapter 4 Requirements engineering

Requirements Engineering Process

Lecture 2/Part 2

10 Chapter 4 Requirements engineering

Outline

 Requirements elicitation and analysis

 Requirements validation

 Requirements management

11 Chapter 4 Requirements engineering

Requirements engineering processes

 The processes used for RE vary widely depending on
the application domain, the people involved and the
organisation developing the requirements.

 However, there are a number of generic activities
common to all processes

 Requirements elicitation and analysis;

 Requirements validation;

 Requirements management.

 In practice, RE is an iterative activity in which these
processes are interleaved.

 Is there a relation to Boehm’s model from Lecture 1?

12 Chapter 4 Requirements engineering

Requirements elicitation and analysis

 Software engineers work with system stakeholders:

 end-users, managers, maintenance engineers, domain experts,

trade unions, etc.

 To find out about:

 the application domain,

 the services that the system should provide,

 the required system performance,

 hardware constraints,

 other systems, etc.

 As far as possible, it should set of WHAT the system

should do rather than HOW it will do (implement) it.

Chapter 4 Requirements engineering 13

The requirements elicitation and analysis

process

14 Chapter 4 Requirements engineering

+ Requirements validation

Where shall this activity come?

Process activities

 Requirements discovery

 Interacting with stakeholders and studying existing processes
and needs to discover their requirements.

 Requirements classification and organisation

 Groups related requirements and organises them into clusters.

 Prioritisation and negotiation

 Prioritising requirements and resolving requirements conflicts.

 Requirements specification

 Requirements are documented and input into the next round of
the spiral.

 Requirements validation

Requirements discovery

Questionnaires

 Interviews

 Small number of software engineers and stakeholders

Workshops

 Large group of interested parties; free brainstorming

 Ethnography

 Observe existing processes

 Is there a recommended order if the techniques shall be

combined?

Chapter 4 Requirements engineering 16

Interviews and workshops

 Formal or informal interviews with stakeholders are part

of most RE processes.

 Types of interview

 Closed interviews based on pre-determined list of questions

 Open interviews where various issues are explored

 Workshops with brainstorming of all involved stakeholders

 Effective interviewing

 Be open-minded, avoid pre-conceived ideas about the

requirements and are willing to listen to stakeholders.

 Prompt the interviewee to get discussions going using a

springboard question, a requirements proposal, or by working

together on a prototype system.

Chapter 4 Requirements engineering 17

Ethnography

 A social scientist spends a considerable time observing

and analysing how people actually work.

 People do not have to explain or articulate their work.

 Social and organisational factors of importance may be

observed.

 Ethnographic studies have shown that work is usually

richer and more complex than suggested by simple

system models.

18 Chapter 4 Requirements engineering

Requirements classification and

prioritisation

MoSCoW criteria

 Must have – mandatory requirement fundamental to the system

 Should have – important requirement that may be omitted

 Could have – truly optional requirement

 Want to have – requirement that can wait for later releases

 RUP attributes

 Status – Proposed/Approved/Rejected/Incorporated

 Benefit – Critical/Important/Useful

 Effort – number of person days/functional points/etc.

 Risk – High/Medium/Low

 Stability – High/Medium/Low

 Target Release – future product version

Requirements specification

Notation Description

Natural language Numbered sentences in natural language, each sentence expressing one

requirement. E.g. Project assignment.

Structured natural

language

The requirements are written in natural language on a standard form or

template. Each field provides information about an aspect of the requirement.
E.g. Textual specification of UML use cases.

Design description

languages

This approach uses a language like a programming language, but with more

abstract features to specify the requirements by defining an operational model
of the system. E.g. Main flow in the UML UC textual specification.

Graphical

notations

Graphical models, supplemented by text annotations, are used to define the

functional requirements for the system. E.g. UML use case and activity
diagrams.

Mathematical

specifications

Notations based on mathematical concepts; E.g. finite-state machines or sets.

Although they can reduce the ambiguity in a requirements document, most
customers don’t understand them and are reluctant to accept it as a system
contract

20 Chapter 4 Requirements engineering

When shall we choose mathematical specification?

Requirements validation

 Concerned with demonstrating that the requirements

define the system that the customer really wants.

 Requirements error costs are high so validation is very

important

 Fixing a requirements error after delivery may cost up to 100

times the cost of fixing an implementation error.

21 Chapter 4 Requirements engineering

Requirements validation

 Consistency

 Are there any requirements conflicts?

 Completeness

 Are all functions required by the customer included?

 Realism

 Can the requirements be implemented given available budget

and technology

 Verifiability

 Can the requirements be checked?

22 Chapter 4 Requirements engineering

Additional validation criteria

 Comprehensibility

 Is the requirement properly understood?

 Traceability

 Is the origin of the requirement clearly stated?

 Adaptability

 Can the requirement be changed without a large impact on other
requirements?

23 Chapter 4 Requirements engineering

Requirements validation techniques

 Requirements reviews

 Systematic manual analysis of the requirements.

 Both client and contractor staff should be involved.

 Reviews may be formal (with completed documents) or

informal (relying on good communications between developers,

customers and users).

 Prototyping

 Using an executable model of the system to check requirements.

 Test-case generation

 Developing tests for requirements to check testability.

24 Chapter 4 Requirements engineering

Requirements management

 Requirements management is the process of managing

changing requirements during the requirements

engineering process and system development.

 New requirements emerge as a system is being

developed and tested by the users. Some due to

business, organizational and technical changes.

 Traceability and maintenance of links between

dependent requirements is important to assess the

impact of requirements changes.

We need a formal process for making change

proposals and linking these to system requirements.

25 Chapter 4 Requirements engineering

Requirements evolution

26 Chapter 4 Requirements engineering

 Each requirements change should be analysed before

deciding whether to accept it.

 Analyse the problem, check the validity of the change proposal

 Asses the effects of the change, via traceability information

 Integrate the change in the specification documents

Key points

 You can use a range of techniques for requirements

elicitation including interviews and ethnography.

 Requirements validation is the process of checking the

requirements for validity, consistency, completeness,

realism and verifiability.

 Business, organizational and technical changes

inevitably lead to changes to the requirements for a

software system.

 Requirements management is the process of

managing and controlling these changes.

Chapter 4 Requirements engineering 27

UML Use Case Diagram

Lecture 2/Part 3

28 Chapter 4 Requirements engineering

Outline

 Use Case modelling

 System boundary – subject

 Use cases

 Actors

 Textual Use Case specification

 Advanced Use Case modelling

 Actor generalisation

 Use case generalisation

 «include»

 «extend»

29 Chapter 4 Requirements engineering

© Clear View Training 2010 v2.6 30

The purpose of Use Case modelling

 Use case modelling is a form of requirements
engineering

 Use case modelling proceeds as follows:

 Find the system boundary

 Find actors

 Find use cases

• Use case specification

• Scenarios

 It lets us identify the system boundary, who or what uses
the system, and what functions the system should offer

© Clear View Training 2010 v2.6 31

The subject

 Before we can build anything, we need to know:

 Where the boundary of the system lies

 Who or what uses the system

 What functions the system should offer to its

users

 We create a Use Case model containing:

 Subject – the edge of the system

• also known as the system boundary

 Actors – who or what uses the system

 Use Cases – things actors do with the system

 Relationships – between actors and use cases

 Can there be a direct relationship between actors?

SystemName

subject

© Clear View Training 2010 v2.6 32

What are actors?

 An actor is anything that interacts directly
with the system

 Actors identify who or what
uses the system and so indicate
where the system boundary lies

 Actors are external
to the system

 An Actor specifies a role that some external entity adopts
when interacting with the system

 Can one actor represent two physical persons?

 Can one physical person match to two actors?

 Can there be two actors with the same name in the model?

Customer

«actor»

Customer

© Clear View Training 2010 v2.6 33

Identifying Actors (for seminars)

When identifying actors ask:

 Who or what uses the system?

 What roles do they play in the interaction?

 Who installs the system?

 Who starts and shuts down the system?

 Who maintains the system?

 What other systems use this system?

 Who gets and provides information to the system?

 Does anything happen at a fixed time?

Time

© Clear View Training 2010 v2.6 34

What are use cases?

 A use case is something an actor needs the system to

do. It is a “case of use” of the system by a specific actor

 Use cases are always started by an actor

 The primary actor triggers the use case

 Zero or more secondary actors interact with the use case in

some way

 Does the UC diagram tell me which actor is primary/secondary?

 Use cases are always written from the point of view of

the actors

PlaceOrder GetStatusOnOrder

© Clear View Training 2010 v2.6 35

Identifying use cases (for seminars)

 Start with the list of actors that interact with the system

When identifying use cases ask:

 What functions will a specific actor want from the system?

 Does the system store and retrieve information? If so, which
actors trigger this behaviour?

 What happens when the system changes state (e.g. system start
and stop)? Are any actors notified?

 Are there any external events that affect the system? What
notifies the system about those events?

 Does the system interact with any external system?

 Does the system generate any reports?

© Clear View Training 2010 v2.6 36

The use case diagram

Mail Order System

PlaceOrder

SendCatalogue

CancelOrder

CheckOrderStatus Customer

ShipProduct

ShippingCompany

Dispatcher

communication

relationship

actor

subject name

system boundary

Mail Order System use case diagram

use case

© Clear View Training 2010 v2.6 37

Textual use case specification

Use case: PaySalesTax

Primary actors:

Time

Preconditions:

1. It is the end of the business quarter.

Postconditions:

1. The Tax Authority receives the correct amount of Sales Tax.

Main flow:

The use case starts when it is the end of the business quarter.

The system determines the amount of Sales Tax owed to the Tax
Authority.
The system sends an electronic payment to the Tax Authority.

1.

2.

3.

use case name

the actors involved in the

use case

the system state before

the use case can begin

the actual steps of the use

case

the system state when the

use case has finished

Alternative flows:

None.

alternative flows

ID: 1 use case identifier

Brief description:

Pay Sales Tax to the Tax Authority at the end of the business quarter.
brief description

implicit time actor

Secondary actors:

TaxAuthority

© Clear View Training 2010 v2.6 38

Naming use cases

 Use cases describe something that happens

 They are named using verbs or verb phrases

 Naming standard 1: use cases are named using

UpperCamelCase e.g. PaySalesTax

1 UML 2 does not specify any naming standards.

All naming standards here are based on industry best practice.

© Clear View Training 2010 v2.6 39

Pre and postconditions

 Preconditions and postconditions

are constraints

 Preconditions constrain the state of

the system before the use case can

start

 Postconditions constrain the state

of the system after the use case has

executed

 What pre/postconditions does a

delete of a product have?

 What about if the deletion is not

successful?

Preconditions:

1. A valid user has logged on to the

system

Postconditions:

1. The order has been marked

confirmed and is saved by the system

Use case: PlaceOrder

© Clear View Training 2010 v2.6 40

Main flow

 The flow of events lists the steps in a use case

 It always begins by an actor doing something

 A good way to start a flow of events is:
1) The use case starts when an <actor> <function>

 The flow of events should be a sequence of short steps that are:

 Declarative

 Numbered,

 Time ordered

 The main flow is always the happy day scenario

 Everything goes as expected, without errors, deviations and interrupts

 Alternatives can be shown by branching or by listing under Alternative
flows (see later)

<number> The <something> <some action>

© Clear View Training 2010 v2.6 41

Branching within a flow: IF

 Use the keyword IF to

indicate alternatives

within the flow of events

 There must be a

Boolean expression

immediately after IF

 Use indentation and

numbering to indicate

the conditional part of

the flow

 Use ELSE to indicate

what happens if the

condition is false

Use case: ManageBasket

Primary actors:

Customer

Preconditions:

1. The shopping basket contents are visible.

Postconditions:

None.

Main flow:

The use case starts when the Customer selects an item in the

basket.

IF the Customer selects "delete item"

IF the Customer types in a new quantity

1.

2.

3.

The system removes the item from the basket. 2.1

The system updates the quantity of the item in the basket. 3.1

ID: 2

Brief description:

The Customer changes the quantity of an item in the basket.

Alternative flows:

None.

Secondary actors:

None.

© Clear View Training 2010 v2.6 42

Repetition within a flow: FOR

 We can use the
keyword FOR to
indicate the start of a
repetition within the
flow of events

 The iteration
expression immediately
after the FOR
statement indicates the
number of repetitions of
the indented text
beneath the FOR
statement.

ID: 3

Actors:

Customer

Preconditions:

None.

Main flow:

1. The use case starts when the Customer selects "find product".

2. The system asks the Customer for search criteria.

3. The Customer enters the requested criteria.

4. The system searches for products that match the Customer's criteria.

5. FOR each product found

 5.1. The system displays a thumbnail sketch of the product.

 5.2. The system displays a summary of the product details.

 5.3. The system displays the product price.

Postconditions:

None.

Alternative flows:

NoProductsFound

Use case: FindProduct

Brief description:

The system finds some products based on Customer search criteria and

displays them to the Customer.

© Clear View Training 2010 v2.6 43

Repetition within a flow: WHILE

 We can use the

keyword WHILE to

indicate that something

repeats while some

Boolean condition is

true

ID: 4

Primary actors:

Customer

Preconditions:

None.

Main flow:

1. The use case starts when the Customer selects "show company details".
2. The system displays a web page showing the company details.

3. WHILE the Customer is browsing the company details

4. The system searches for products that match the Customer's criteria.
 4.1. The system plays some background music.

 4.2. The system displays special offers in a banner ad.

Postconditions:

1. The system has displayed the company details.
2. The system has played some background music.

3. The systems has displayed special offers.

Alternative flows:

None.

Use case: ShowCompanyDetails

Brief description:

The system displays the company details to the Customer.

Secondary actors:

None

© Clear View Training 2010 v2.6 44

Branching: Alternative flows

 Alternative flows capture
errors, branches, and
interrupts

 They can often be
triggered at any time
during the main flow

 Alternative flows never
return to the main flow

main flow

alternative flows

Use case

Only document enough alternative flows to

clarify the requirements!

© Clear View Training 2010 v2.6 45

Referencing alternative flows

 List the names of the
alternative flows at the
end of the use case

 Find alternative flows
by examining each
step in the main flow
and looking for:

 Alternatives

 Exceptions

 Interrupts

Alternative

flows

Main flow:

Use case: CreateNewCustomerAccount

Preconditions:

None.

Brief description:

The system creates a new account for the Customer.

Postconditions:

1. A new account has been created for the Customer.

Alternative flows:

InvalidEmailAddress
InvalidPassword

Cancel

The use case begins when the Customer selects "create

new customer account".
WHILE the Customer details are invalid

The system creates a new account for the Customer.

The system asks the Customer to enter his or her details

comprising email address, password and password
again for confirmation.

The system validates the Customer details.

1.

2.

3.

2.1.

2.2

ID: 5

Primary actors:

Customer

Secondary actors:

None.

© Clear View Training 2010 v2.6 46

Advanced Use Case modelling

We have studied basic use case analysis, but there are

relationships that we have still to explore:

 Actor generalisation

 Use case generalisation

 «include» – between use cases

 «extend» – between use cases

© Clear View Training 2010 v2.6 47

Actor generalization - example

 The Customer and the
Sales Agent actors are
very similar

 They both interact with
List products, Order
products, Accept payment

 They both can play the
purchaser role.

 Can we always generalize
two actors sharing some
use cases?

Sales system

ListProducts

OrderProducts

AcceptPayment

CalculateCommission

Customer

SalesAgent

© Clear View Training 2010 v2.6 48

Actor generalisation

 If two actors share the
same sub-role, which
makes them communicate
with the same set of use
cases, we can express this
as a generalisation to a
new (possibly abstract)
actor

 The descendent actors
inherit the roles and
relationships to use cases
held by the ancestor actor

 We can substitute a
descendent actor anywhere
the ancestor actor is
expected. This is the
substitutability principle

Sales system

ListProducts

OrderProducts

AcceptPayment

CalculateCommission

Purchaser

SalesAgent Customer

ancestor

or parent

descendents or children

generalisation

abstract actor

Use actor generalization when it simplifies

the model

© Clear View Training 2010 v2.6 49

Use case generalisation

 The ancestor use case
must be a more general
case of one or more
descendant use cases

 Child use cases are more
specific forms of their
parent

 They can inherit, add and
override features of their
parent

Sales system

FindProduct

FindBook FindCD

Customer

© Clear View Training 2010 v2.6 50

«include»

 When use cases share

common behaviour we

can factor this out into a

separate inclusion use

case and «include» it in
base use cases

 Base use cases are

not complete without

the included use

cases

 Inclusion use cases may

be complete use cases,

or they may just specify a

fragment of behaviour for

inclusion elsewhere

 Personnel System

FindEmployeeDetails

ChangeEmployeeDetails

DeleteEmployeeDetails

Manager

ViewEmployeeDetails

«include»

«include»

«include»

base use case

inclusion

use case
include

relationship

B A
«include»

© Clear View Training 2010 v2.6 51

«include» example

Use case: ChangeEmployeeDetails

Primary actors:

Manager

Preconditions:

1. The Manager is logged on to the system.

Postconditions:

1. The employee details have been changed.

Main flow:

include(FindEmployeeDetails).

The system displays the employee details.
The Manager changes the employee
details.

…

1.

2.
3.

ID: 1

Brief description:

The Manager changes the employee details.

Alternative flows:

None.

Use case: FindEmployeeDetails

Primary actors:

Manager

Preconditions:

1. The Manager is logged on to the system.

Postconditions:

1. The system has found the employee details.

Main flow:

The Manager enters the employee's ID.

The system finds the employee details.

1.

2.

ID: 4

Brief description:

The Manager finds the employee details.

Alternative flows:

None.

Seconday actors:

None

Seconday actors:

None

© Clear View Training 2010 v2.6 52

«extend»

 The extension use case

inserts behaviour into the

base use case.

 The base use case provides

extension points, but does
not know about the

extensions.

 The base use case is

complete already without the

extensions.

 There may be multiple

extension points and multiple

extending use cases.

Library system

IssueFine BorrowBook

FindBook

Librarian

ReturnBook

«extend»

base use case

extend

relationship extension

use case

B A
«extend»

B A
«include»

© Clear View Training 2010 v2.6 53

<<extend>> example

 Extension points are not numbered, as they are not part of the flow

Use case: ReturnBook

Secondary actors:

None.

Preconditions:

1. The Librarian is logged on to the system.

Postconditions:

1. The book has been returned.

Main flow:
The Librarian enters the borrower's ID number.

The system displays the borrower's details including the list of
borrowed books.

The Librarian finds the book to be returned in the list of books.

The Librarian returns the book.

…

1.

2.

3.

4.

ID: 9

Brief description:

The Librarian returns a borrowed book.

Alternative flows:

None.

ReturnBook

extension points

overdueBook

IssueFine

«extend»

(overdueBook)

extension point: overdueBook

extension

point

base use case

extension use case

extension

point name

Primary actors:

Librarian

© Clear View Training 2010 v2.6 54

Requirements tracing

There is a many-to-many relationship between
requirements and use cases:

 One use case covers many individual functional
requirements

 One functional requirement may be realised by
many use cases

 Requirements Traceability matrix can help us to
trace if all requirements are covered by our use
case model

R1

R2

R3

R4

R5

U1 U2 U3 U4

Use cases

R
e

q
u

ire
m

e
n

ts

Requirements

Traceability

Matrix

© Clear View Training 2010 v2.6 55

Key points

 Use cases describe system behaviour from the point of

view of actors. They are the best choice when:

 The system is dominated by functional requirements

 The system has many types of user to which it delivers different

functionality

 The system has many interfaces

We have discussed:

 Actors, use cases and their textual specification

 Actor and use case generalization

 Advanced relationships between use cases (include and extend)

 Use advanced features with discretion only where they
simplify the model!

