
Low-level Design and Implementation Issues

Lecture 8

1

2

Outline

Low-level design

 Implementation issues

 UML Class Diagram in Design

 Design classes

 Design relationships

B. Bühnová, FI MU, PB007 2

Low-level Design

Lecture 8/Part 1

3 B. Bühnová, FI MU, PB007

Low-level design

Purpose:

 Include all code-level details into the model

 Decide how exactly the system shall be implemented

 Typically an implicit part of implementation

 Techniques

 Design patterns

 SOLID principles

 Guidelines for dependable/testable/.. programming

Chapter 7 Design and implementation 4

Design patterns

 A design pattern is a way of reusing abstract knowledge

about a problem and its solution in object-oriented world.

 Pattern descriptions make use of object-oriented characteristics

such as inheritance, polymorphism and interface realization.

 A pattern is a description of the problem and the essence

of its solution.

 Not a concrete design but a template for a design solution that

can be instantiated in different ways.

 It should be sufficiently abstract to be reusable in

different settings.

5 Chapter 7 Design and implementation

The “Gang of Four” design patterns

 Introduced in a book by GoF in 1995

 Collection of 23 classic software design
patterns divided into three groups:

 Creational

 Structural

 Behavioral

 Observer pattern

 Behavioral pattern

 Separates the display of object
state from the object itself when
multiple displays of state are
needed.

6 Chapter 7 Design and implementation

A UML model of the Observer pattern

7 Chapter 7 Design and implementation

Design problems

 Be aware that any design problem you are facing may

have an associated pattern that can be applied.

 Tell several objects that the state of some other object has

changed (Observer pattern).

 Tidy up the interfaces to a number of related objects that have

often been developed incrementally (Façade pattern).

 Allow classes with incompatible interfaces to work together by

wrapping a new interface around that of an already existing class

(Adapter pattern).

 Reduce the cost of creating and manipulating a large number of

similar objects (Flyweight pattern).

 Restrict object creation for a class to only one instance

(Singleton pattern).

 8 Chapter 7 Design and implementation

SOLID principles

 The “first five principles” identified by Robert C. Martin in

the early 2000s that stands for five basic principles of

object-oriented programming and design.

 Single responsibility

 Open/closed

 Liskov substitution

 Interface segregation

 Dependency inversion

B. Bühnová, FI MU, PB007 9

Single responsibility principle

 The principle states that every class should have a

single responsibility, and that responsibility should be

entirely encapsulated by the class.

 A responsibility can be understood as a reason to

change, so a class or module should have one, and only

one, reason to change.

 As an example, consider a module that compiles and

prints a report. Such a module can be changed for two

reasons – because the content or the format changes.

 If there is a change to the report compilation process, there is

greater danger that the printing code breaks.

B. Bühnová, FI MU, PB007 10

Open/closed principle

 The principle states that software entities (classes,

modules, functions, etc.) should be open for extension,

but closed for modification.

 Use inheritance and interfaces to avoid code changes

when extending system functionality.

B. Bühnová, FI MU, PB007 11

Component

Extension1 Extension2

Interface

Implementation1 Implementation2

Liskov substitution principle

 The principle states that, in a computer program, if S is a

subtype of T, then objects of type T may be replaced

with objects of type S without altering any of the

desirable properties of that program (correctness, task

performed, etc.).

B. Bühnová, FI MU, PB007 12

Rectangle

Square

width and height can be

changed independently

width and height must not

be changed independently

T

S

Interface segregation principle

 The principle states that no client should be forced to

depend on methods it does not use.

 ISP splits large interfaces into smaller and more specific

“role” interfaces so that clients will only have to know

about the methods that are of interest to them.

 ISP is intended to keep a system decoupled and thus

easier to refactor, change, and redeploy.

B. Bühnová, FI MU, PB007 13

iATM
iWithdraw

iChangePIN

iCheckBalance

Dependency inversion principle

 The principle refers to a specific form of decoupling

where conventional dependency relationships

established from high-level modules to low-level

modules are inverted. The principle states:

 A. High-level modules should not depend on low-level

modules. Both should depend on abstractions.

 B. Abstractions should not depend upon details. Details

should depend upon abstractions.

B. Bühnová, FI MU, PB007 14

iSwitchable Switch Light Switch Light

Clean code by Robert C. Martin

 A handbook of agile software craftsmanship

 Guidelines for:

 Meaningful names

 Functions

 Comments

 Formatting

 Objects and data structures

 Error handling

 Concurrency

 … and others

 Smells and heuristics

B. Bühnová, FI MU, PB007 15

Design for non-functional qualities

 Design patterns help us to implement specific

functionality while maintaining high code quality

 Respect of design patterns improves system maintainability

What if also other non-functional qualities are of high

importance?

 Are there any “patterns” for dependability, performance,

testability, etc.?

16 Chapter 7 Design and implementation

Dependable programming guidelines

1. Limit the visibility of information in a program
2. Check all inputs for validity
3. Provide a handler for all exceptions
4. Minimize the use of error-prone constructs
5. Provide restart capabilities
6. Check array bounds
7. Include timeouts when calling external components
8. Name all constants that represent real-world values

17 Chapter 13 Dependability Engineering

Limit the visibility of information in a

program

 Program components should only be allowed access to

data that they need for their implementation.

 This means that accidental corruption of parts of the

program state by these components is impossible.

 You can control visibility by using abstract data types

where the data representation is private and you only

allow access to the data through predefined operations

such as get () and put ().

Chapter 13 Dependability Engineering 18

Check all inputs for validity

 All program take inputs from their environment and make

assumptions about these inputs.

 However, program specifications rarely define what to do

if an input is not consistent with these assumptions.

 Consequently, many programs behave unpredictably

when presented with unusual inputs and, sometimes,

these are threats to the security of the system.

 Consequently, you should always check inputs before

processing against the assumptions made about these

inputs.

Chapter 13 Dependability Engineering 19

Validity checks

 Range checks

 Check that the input falls within a known range.

 Size checks

 Check that the input does not exceed some maximum size e.g.

40 characters for a name.

 Representation checks

 Check that the input does not include characters that should not

be part of its representation e.g. names do not include numerals.

 Reasonableness checks

 Use information about the input to check if it is reasonable rather

than an extreme value.

Chapter 13 Dependability Engineering 20

Provide a handler for all exceptions

 A program exception is an error or some

unexpected event such as a power failure.

 Exception handling constructs allow for such

events to be handled without the need for

continual status checking to detect exceptions.

 Using normal control constructs to detect

exceptions needs many additional statements to be

added to the program. This adds a significant

overhead and is potentially error-prone.

21 Chapter 13 Dependability Engineering

Exception handling

22 Chapter 13 Dependability Engineering

Exception handling

 Three possible exception handling strategies

 Signal to a calling component that an exception has occurred

and provide information about the type of exception.

 Carry out some alternative processing to the processing where

the exception occurred. This is only possible where the

exception handler has enough information to recover from the

problem that has arisen.

 Pass control to a run-time support system to handle the

exception.

 Exception handling is a mechanism to provide some fault

tolerance

Chapter 13 Dependability Engineering 23

Minimize the use of error-prone constructs

 Program faults are usually a consequence of human

error because programmers lose track of the

relationships between the different parts of the system

 This is exacerbated by error-prone constructs in

programming languages that are inherently complex or

that don’t check for mistakes when they could do so.

 Therefore, when programming, you should try to avoid or

at least minimize the use of these error-prone constructs.

Chapter 13 Dependability Engineering 24

Error-prone constructs

 Unconditional branch (goto) statements

 Floating-point numbers

 Inherently imprecise. The imprecision may lead to invalid
comparisons.

 Pointers

 Pointers referring to the wrong memory areas can corrupt
data. Aliasing can make programs difficult to understand
and change.

 Dynamic memory allocation

 Run-time allocation can cause memory overflow.

25 Chapter 13 Dependability Engineering

Error-prone constructs

 Parallelism

 Can result in subtle timing errors because of unforeseen
interaction between parallel processes.

 Recursion

 Errors in recursion can cause memory overflow as the
program stack fills up.

 Interrupts

 Interrupts can cause a critical operation to be terminated
and make a program difficult to understand.

 Inheritance

 Code is not localised. This can result in unexpected
behaviour when changes are made and problems of
understanding the code.

26 Chapter 13 Dependability Engineering

Error-prone constructs

 Aliasing

 Using more than 1 name to refer to the same state variable.

 Unbounded arrays

 Buffer overflow failures can occur if no bound checking on
arrays.

 Default input processing

 An input action that occurs irrespective of the input.

 This can cause problems if the default action is to transfer
control elsewhere in the program. In incorrect or deliberately
malicious input can then trigger a program failure.

Chapter 13 Dependability Engineering 27

Provide restart capabilities

 For systems that involve long transactions or user

interactions, you should always provide a restart

capability that allows the system to restart after failure

without users having to redo everything that they have

done.

 Restart depends on the type of system

 Keep copies of forms so that users don’t have to fill them in

again if there is a problem

 Save state periodically and restart from the saved state

Chapter 13 Dependability Engineering 28

Check array bounds

 In some programming languages, such as C, it is

possible to address a memory location outside of the

range allowed for in an array declaration.

 This leads to the well-known ‘bounded buffer’

vulnerability where attackers write executable code into

memory by deliberately writing beyond the top element

in an array.

 If your language does not include bound checking, you

should therefore always check that an array access is

within the bounds of the array.

Chapter 13 Dependability Engineering 29

Include timeouts when calling external

components

 In a distributed system, failure of a remote computer can

be ‘silent’ so that programs expecting a service from that

computer may never receive that service or any

indication that there has been a failure.

 To avoid this, you should always include timeouts on all

calls to external components.

 After a defined time period has elapsed without a

response, your system should then assume failure and

take whatever actions are required to recover from this.

Chapter 13 Dependability Engineering 30

Name all constants that represent real-world

values

 Always give constants that reflect real-world values

(such as tax rates) names rather than using their

numeric values and always refer to them by name

 You are less likely to make mistakes and type the wrong

value when you are using a name rather than a value.

 This means that when these ‘constants’ change (for

sure, they are not really constant), then you only have to

make the change in one place in your program.

Chapter 13 Dependability Engineering 31

Low-level performance tactics

 Reduce the resources required for processing an event

stream.

 Increase computational efficiency.

 Reduce computational overhead.

 Reduce the number of events processed.

 Manage event rate.

 Control frequency of sampling.

 Control the use of resources.

 Bound execution times.

 Bound queue sizes.

32
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Testability tactics

 Record/playback. The information crossing an interface

during normal operation can be saved and accessed.

 Separate interface from implementation. This allows

substitution of implementations for testing purposes.

 Specialize access routes/interfaces. Having

specialized testing interfaces allows the capturing or

specification of variable values for a component through

a test harness, independently from its normal execution.

 Built-in monitors. The component can maintain state,

performance load, capacity, security, or other information

accessible through an interface.

 33
© Software Architecture in Practice

by L. Bass, P. Clements and R. Kazman

Implementation Issues

Lecture 8/Part 2

34 Chapter 7 Design and implementation

Implementation issues

 Some implementation issues that are often not covered

in programming texts:

 Reuse Most modern software is constructed by reusing existing

components or systems. When you are developing software, you

should make as much use as possible of existing code.

 Configuration management During the development process,

you have to keep track of the many different versions of each

software component in a configuration management system.

 Host-target development Production software does not usually

execute on the same computer as the software development

environment. Rather, you develop it on one computer (the host

system) and execute it on a separate computer (the target

system).

35 Chapter 7 Design and implementation

Reuse

 From the 1960s to the 1990s, most new software was

developed from scratch, by writing all code in a high-

level programming language.

 The only significant reuse or software was the reuse of functions

and objects in programming language libraries.

 Costs and schedule pressure mean that this approach

became increasingly unviable, especially for commercial

and Internet-based systems.

 An approach to development based around the reuse of

existing software emerged and is now generally used for

business and scientific software.

36 Chapter 7 Design and implementation

Reuse levels

 The abstraction level

 At this level, you don’t reuse software directly but use knowledge

of successful abstractions in the design of your software.

 The object level

 At this level, you directly reuse objects from a library rather than

writing the code yourself.

 The component level

 Components are collections of objects and object classes that

you reuse in application systems.

 The system level

 At this level, you reuse entire application systems.

37 Chapter 7 Design and implementation

Reuse costs

 The costs of the time spent in looking for software to

reuse and assessing whether or not it meets your needs.

Where applicable, the costs of buying the reusable

software. For large off-the-shelf systems, these costs

can be very high.

 The costs of adapting and configuring the reusable

software components or systems to reflect the

requirements of the system that you are developing.

 The costs of integrating reusable software elements with

each other (if you are using software from different

sources) and with the new code that you have

developed.
38 Chapter 7 Design and implementation

Configuration management

 Configuration management is the name given to the

general process of managing a changing software

system.

 The aim of configuration management is to support the

system integration process so that all developers can

access the project code and documents in a controlled

way, find out what changes have been made, and

compile and link components to create a system.

39 Chapter 7 Design and implementation

Configuration management activities

 Version management, where support is provided to keep track

of the different versions of software components. Version

management systems include facilities to coordinate

development by several programmers.

 System integration, where support is provided to help

developers define what versions of components are used to

create each version of a system. This description is then used

to build a system automatically by compiling and linking the

required components.

 Problem tracking, where support is provided to allow users to

report bugs and other problems, and to allow all developers to

see who is working on these problems and when they are

fixed.

40 Chapter 7 Design and implementation

Host-target development

Most software is developed on one computer (the host),

but runs on a separate machine (the target).

More generally, we can talk about a development

platform and an execution platform.

 A platform is more than just hardware.

 It includes the installed operating system plus other supporting

software such as a database management system or, for

development platforms, an interactive development environment.

 Development platform usually has different installed

software than execution platform; these platforms may

have different architectures.

41 Chapter 7 Design and implementation

Key points

When developing software, you should always consider

the possibility of reusing existing software, either as

components, services or complete systems.

 Configuration management is the process of managing

changes to an evolving software system. It is essential

when a team of people are cooperating to develop

software.

Most software development is host-target development.

You use a development environment on a host machine

to develop the software, which is transferred to a target

machine for execution.

42 Chapter 7 Design and implementation

UML Class Diagram in Design

Lecture 8/Part 3

43 © Clear View Training 2010 v2.6

© Clear View Training 2010 v2.6 44

Design model

 Design model is a refinement of an analysis model to
such a degree that it can be implemented

 In MDD design models include all implementation details and
can be automatically translated into code

 In OO design models:

 All attributes are completely specified

 Analysis operations become fully specified methods

 Many new classes are added to include implementation details,
such as utility classes (String, Date, Time, etc.), middleware
classes (DB access, communication, etc.) or GUI classes
(Applet, Button, etc.)

 Design models are programming-language specific

 Multiple inheritance, templates, nested classes, collections

© Clear View Training 2010 v2.6 45

 A design model may contain 10 to 100 times as many
classes as the analysis model

 The analysis model helps us to see the big picture without
getting lost in implementation details

We need to maintain both models if:

 It is a big system (>200 design classes)

 It has a long expected lifespan

 It is a strategic system

 We are outsourcing construction of the system

We can make do with only a design model if:

 It is a small system

 It has a short lifespan

 It is not a strategic system

Analysis vs. design model

© Clear View Training 2010 v2.6 46

Anatomy of a design class

 A design class shall have:

 A complete set of operations
including parameter lists, return
types, visibility, exceptions, set and
get operations, constructors

 A complete set of attributes
including types and default values

BankAccount

-name:String

-number:String

-balance:double = 0

+BankAccount(name:String, number:String)

+deposit(m:double):void

+withdraw(m:double):boolean

+calculateInterest():double

+getName():String

+setName(n:String):void

+getAddress():String

+setAddress(a:String):void

+getBalance():double

BankAccount

name

number

balance

deposit()

withdraw()

calculateInterest()

analysis design

«trace»

constructor

© Clear View Training 2010 v2.6 47

High cohesion, low coupling

 High cohesion

 Each class should have a set of operations that support the

intent of the class, no more and no less

 Each class should model a single abstract concept

 Low coupling

 A particular class should be associated with just enough

other classes to allow it to realise its responsibilities

 Only associate classes if there is a true semantic link

between them – never to only reuse code!

 Use aggregation rather than inheritance

 Primitive operations

 Each operation shall implement a single functionality, and

each functionality shall be implemented by single operation

Employee

Manager Programmer

john:Programmer

«instantiate»

What is wrong with

this model?

© Clear View Training 2010 v2.6 48

Aggregation vs. inheritance

 An employee has a job,

not is a job.

 An employee can have

more jobs.

just change this link at

runtime to promote john!

Job

Manager Programmer

john:Employee

Employee

:Programmer

«instantiate»

:Manager

«instantiate»

«instantiate»

0..* 0..*

Employee

Manager Programmer

john:Programmer

«instantiate»

© Clear View Training 2010 v2.6 49

With inheritance we get two things:

 Interface – the public operations of the
base classes

 Implementation – the attributes,
relationships, operations of the class

With interface we get one thing:

 Interface – a set of public operations,
attributes and relationships that have
no implementation

Use interface realization when we want to

define a contract.

Inheritance vs. interface realization

Job

Manager Programmer

Job

Manager Programmer

Use inheritance when we want to inherit

implementation.

© Clear View Training 2010 v2.6 50

Key points (design classes)

 Design classes come from:

 A refinement of analysis classes (i.e. the business domain)

 From the solution domain

 Design classes must be well-formed:

 High cohesion

 Low coupling

 Primitive operations

 Don’t overuse inheritance

 Use inheritance for "is kind of"

 Use aggregation for "is role played by"

 Use interfaces rather than inheritance to define contracts

© Clear View Training 2010 v2.6 51

Design relationships

 Refining analysis associations to design associations
involves several procedures:

 refining associations to aggregation or composition

 implementing one-to-many associations

 implementing many-to-one associations

 implementing many-to-many associations

 implementing bidirectional associations

 implementing association classes

 All design associations must have:

 navigability

 multiplicity on both ends

© Clear View Training 2010 v2.6 52

Aggregation and composition

A B

A B A B

«trace» «trace»
{xor} A

n
a
ly

s
is

D

e
s
ig

n

aggregation composition

Some objects are strongly

related like a tree and its leaves

Some objects are weakly related

like a computer and its peripherals

© Clear View Training 2010 v2.6 53

Aggregation semantics

 The aggregate can (sometimes) exist independently of the parts

 The parts can (sometimes) exist independently of the aggregate

 It is possible to have shared ownership of the parts by several

aggregates

Computer Printer
0..* 0..*

whole or

aggregate
part

aggregation is a whole–part relationship

A Computer may be attached to 0 or more

Printers

At any one point in time a Printer is

connected to 0 or more Computers

The Printer exists even if there are no

Computers

The Printer is independent of the Computer

aggregation

© Clear View Training 2010 v2.6 54

Composition semantics

 The parts belong to exactly 1 whole at a time

 The composite has sole responsibility for the disposition of all its
parts. This means responsibility for their creation and destruction

 If the composite is destroyed, it must either destroy all its parts, OR
give responsibility for them over to some other object

Mouse Button
1 1..4

composition is a strong form of aggregation

composite part
composition

always 1

The buttons have no independent

existence. If we destroy the mouse,

we destroy the buttons. They are an

integral part of the mouse

Each button can belong to exactly 1

mouse

© Clear View Training 2010 v2.6 55

• Many-to-one relationships in
analysis imply shared ownership
and are refined to aggregations

• One-to-one associations in analysis
usually imply single ownership and
usually refine to compositions

A B
1 1

A B
1 1

«trace»

roleName

One to one

A B
0..* 1

A B
0..* 1

«trace»

roleName

Many to one

analysis

design

One-to-one and many-to-one associations

© Clear View Training 2010 v2.6 56

One-to-many and many-to-many

associations

 Collection classes instances store a
collection of object references to objects
of the target and provide methods for
operating the collection

 In Java in the java.util library

A B
1 0..*

A B

1 0..*

Vector
1 1

«trace»

Many to many One to many

Task Resource
0..* 0..*

Allocation Task Resource
1 0..* 1 0..*

«trace»

 Many-to-many associations shall be

reified into intermediate design

classes

© Clear View Training 2010 v2.6 57

Many to many associations

 There is no commonly used OO

language that directly supports

many-to-many associations

We must reify such associations

into design classes

 Again, we must decide which

side of the association should

have primacy and use

composition, aggregation and

navigability accordingly

Task Resource
0..* 0..*

Allocation Task Resource
1 0..* 1 0..*

«trace»

this side has primacy

© Clear View Training 2010 v2.6 58

Bi-directional associations

 There is no commonly used OO

language that directly supports bi-

directional associations

We must resolve each bi-

directional associations into two

unidirectional associations

 Again, we must decide which side

of the association should have

primacy and use composition,

aggregation and navigability

accordingly

A B
1 0..*

A B

1
0..*

1 0..*

«trace»

this side has primacy

© Clear View Training 2010 v2.6 59

Association classes

 There is no commonly

used OO language that

directly supports

association classes

 Refine all association

classes into a design class

 Decide which side of the

association has primacy

and use composition,

aggregation and

navigability accordingly

Company Person
0..* 0..*

Job

salary:double

Company Person
Job

salary:double

0..* 0..* 1 1

«trace»

{each Person can only have one

job with a given Company}

this side

has primacy

© Clear View Training 2010 v2.6 60

Key points (design relationships)

 In this section we have seen how we take the incompletely specified

associations in an analysis model and refine them to:

 Aggregation

• Whole-part relationship

• Parts are independent of the whole

• Parts may be shared between wholes

 Composition

• A strong form of aggregation

• Parts are entirely dependent on the whole

• Parts may not be shared

 One-to-many, many-to-many, bi-directional associations and

association classes are refined in design

