
Architecture Design

Lecture 9

1 Chapter 6 Architectural design

Topics covered

 Architecture design

 UML Packages (Analysis)

 UML Component Diagram (Design)

 UML Deployment Diagram (Realisation)

2 Chapter 6 Architectural design

Architecture Design

Lecture 9/Part 1

3 Chapter 6 Architectural design

Topics covered

 Architectural views

 Architectural design decisions

 Architectural patterns

 Application architectures

4 Chapter 6 Architectural design

Architectural abstraction

 Architecture in the small (analysis) is concerned with

the architecture of individual programs. At this level, we

are concerned with the way that an individual program is

decomposed into components.

 Architecture in the large (design) is concerned with

the architecture of complex enterprise systems that

include other systems, programs, and program

components. These enterprise systems are distributed

over different computers, which may be owned and

managed by different companies.

5 Chapter 6 Architectural design

4 + 1 view model of software architecture

6 Chapter 6 Architectural design

Logical view shows the key
abstractions in the system as

objects or object classes.

 Physical view shows
system hardware and

how software components
are distributed across system

processors.

Process view shows how, at
run-time, the system is
composed of interacting
processes.

Use cases and
scenarios view

Development view
shows how the software
is decomposed for
development.

Architectural design decisions

 Architectural design is a creative process so the process

differs depending on the type of system being

developed.

 However, a number of common decisions span all

design processes and these decisions affect the non-

functional characteristics of the system.

7 Chapter 6 Architectural design

Architectural design decisions

 How will the system be decomposed into modules?

What approach will be used to structure the system?

What architectural styles are appropriate?

What control strategy should be used?

 Is there a generic application architecture that can

be used?

 How should the architecture be documented?

 How will the system be distributed?

 How will the architectural design be evaluated?

8 Chapter 6 Architectural design

Architecture and system characteristics

 Performance

 Localise critical operations and minimise communications.
Use large rather than fine-grain components.

 Security

 Use a layered architecture with critical assets in the inner layers.

 Safety

 Localise safety-critical features in a small number of
components.

 Reliability and Availability

 Include redundant components and mechanisms for fault
tolerance.

Maintainability

 Use fine-grain, replaceable components.
9 Chapter 6 Architectural design

Architectural patterns

 Patterns are a means of representing, sharing and

reusing knowledge.

 An architectural pattern is a stylized description of good

design practice, which has been tried and tested in

different environments.

 Patterns should include information about when they are

and when the are not useful.

 Patterns may be represented using tabular and graphical

descriptions.

10 Chapter 6 Architectural design

The Model-View-Controller (MVC) pattern

11 Chapter 6 Architectural design

 Separates presentation and interaction from the system

data.

The Model-View-Controller (MVC) pattern

Name MVC (Model-View-Controller)

Description Separates presentation and interaction from the system data. The system is

structured into three logical components that interact with each other. The
Model component manages the system data and associated operations on
that data. The View component defines and manages how the data is

presented to the user. The Controller component manages user interaction
(e.g., key presses, mouse clicks, etc.) and passes these interactions to the

View and the Model.

Example Figure on the next slide shows the architecture of a web-based application

system organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also used

when the future requirements for interaction and presentation of data are
unknown.

Advantages Allows the data to change independently of its representation and vice versa.

Supports presentation of the same data in different ways with changes made
in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and

interactions are simple.

12 Chapter 6 Architectural design

Web application architecture using MVC

13 Chapter 6 Architectural design

The Layered architecture pattern

 Organises the system into a set of layers with interfaces

to other layers. Supports incremental development.

14 Chapter 6 Architectural design

The Layered architecture pattern

Name Layered architecture

Description Organizes the system into layers with related functionality

associated with each layer. A layer provides services to the layer
above it so the lowest-level layers represent core services that
are likely to be used throughout the system.

Example A layered model of a system for sharing copyright documents

held in different libraries.
When used Used when building new facilities on top of existing systems;

when the development is spread across several teams with each
team responsibility for a layer of functionality; when there is a
requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is

maintained. Redundant facilities (e.g., authentication) can be
provided in each layer to increase the dependability of the
system.

Disadvantages In practice, providing a clean separation between layers is often

difficult and a high-level layer may have to interact directly with
lower-level layers rather than through the layer immediately
below it. Performance can be a problem because of multiple

levels of interpretation of a service request as it is processed at
each layer.

15 Chapter 6 Architectural design

The architecture of the LIBSYS system

16 Chapter 6 Architectural design

The Repository architecture pattern

When large amounts of data are to be shared among
subsystems, the repository model offers a solution.

17 Chapter 6 Architectural design

The Repository architecture pattern

Name Repository

Description All data in a system is managed in a central repository that is

accessible to all system components. Components do not
interact directly, only through the repository.

Example Figure on the previous slide is an example of an IDE where

the components use a repository of system design
information. Each software tool generates information which is
then available for use by other tools.

When used You should use this pattern when you have a system in which

large volumes of information are generated that has to be
stored for a long time. You may also use it in data-driven
systems where the inclusion of data in the repository triggers

an action or tool.
Advantages Components can be independent—they do not need to know

of the existence of other components. Changes made by one
component can be propagated to all components. All data can
be managed consistently (e.g., backups done at the same

time) as it is all in one place.
Disadvantages The repository is a single point of failure so problems in the

repository affect the whole system. May be inefficiencies in
organizing all communication through the repository.
Distributing the repository across several computers may be

difficult. 18 Chapter 6 Architectural design

The Client-server architecture pattern

 Distribution of data and processing across stand-alone
service-providing servers and clients calling the services.

19 Chapter 6 Architectural design

The Client–server pattern

Name Client-server

Description In a client–server architecture, the functionality of the system is

organized into services, with each service delivered from a
separate server. Clients are users of these services and access
servers to make use of them.

Example Figure on the previous slide is an example of a film and video/DVD

library organized as a client–server system.
When used Used when data in a shared database has to be accessed from a

range of locations. Because servers can be replicated, may also be
used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be

distributed across a network. General functionality (e.g., a printing
service) can be available to all clients and does not need to be
implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of

service attacks or server failure. Performance may be unpredictable
because it depends on the network as well as the system. May be
management problems if servers are owned by different

organizations.

20 Chapter 6 Architectural design

The Pipe and filter architecture pattern

 Functional transformations process their inputs to
produce outputs.

 Variants of this approach are very common. When
transformations are sequential, this is known as batch
sequential model used in data processing systems.

21 Chapter 6 Architectural design

The Pipe and filter pattern

Name Pipe and filter

Description The processing of the data in a system is organized so that each

processing component (filter) is discrete and carries out one type of
data transformation. The data flows (as in a pipe) from one component
to another for processing.

Example Figure on the previous slide is an example of a pipe and filter system

used for processing invoices.
When used Commonly used in data processing applications (both batch- and

transaction-based) where inputs are processed in separate stages to
generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style

matches the structure of many business processes. Evolution by
adding transformations is straightforward. Can be implemented as
either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between

communicating transformations. Each transformation must parse its
input and unparse its output to the agreed form. This increases system
overhead and may mean that it is impossible to reuse functional

transformations that use incompatible data structures.

22 Chapter 6 Architectural design

Application architectures

 Application systems are designed to meet an

organisational need.

 As businesses have much in common, their application

systems also tend to have a common architecture that

reflects the application requirements.

 A generic application architecture is an architecture for a

type of software system that may be configured and

adapted to create a system that meets specific

requirements.

23 Chapter 6 Architectural design

Examples of application types

 Data processing applications

 Data driven applications that process data in batches without

explicit user intervention during the processing.

 Transaction processing applications

 Data-centred applications that process user requests and update

information in a system database.

 Event processing systems

 Applications where system actions depend on interpreting

events from the system’s environment.

 Language processing systems

 Applications where the users’ intentions are specified in a formal

language that is processed and interpreted by the system.
Chapter 6 Architectural design 24

The architecture of a transaction processing

application (ATM system)

25 Chapter 6 Architectural design

Layered architecture of a transaction

processing application (Information system)

26 Chapter 6 Architectural design

The architecture of a language processing

system

27 Chapter 6 Architectural design

Pipe and filter architecture of a language

processing system (Compiler)

28 Chapter 6 Architectural design

Repository architecture of a language

processing system

29 Chapter 6 Architectural design

Key points

 A software architecture is a description of how a

software system is organized.

 Architectural design decisions include decisions on the

type of application, the distribution of the system, the

architectural styles to be used.

 Architectural patterns are a means of reusing

knowledge about generic system architectures. They

describe the architecture, explain when it may be used

and describe its advantages and disadvantages.

 Application systems architectures embody a common

architecture that the businesses have in common.

Chapter 6 Architectural design 30

© Clear View Training 2010 v2.6 31

UML Packages (Analysis)

Lecture 9/Part 2

© Clear View Training 2010 v2.6 32

Packages

 A package is a general purpose mechanism for
organising model elements into groups

 Group semantically related elements

 Define a “semantic boundary” in the model

 Provide units for parallel working and configuration management

 In UML 2 a package is a purely logical grouping
mechanism

 Use components for physical grouping

 Analysis packages contain:

 Use cases, analysis classes, use case realizations, analysis
packages

© Clear View Training 2010 v2.6 33

Package syntax

«framework»

«modelLibrary»

standard UML 2 package stereotypes

A package that contains model elements that specify a reusable architecture

A package that contains elements that are intended to be reused by other packages
Analogous to a class library in Java, C# etc.

Membership

+ClubMembership
+Benefits
+MembershipRules
+MemberDetails:Member
-JoiningRules

Membership

Membership:MemberDetails

Membership

ClubMembership

MembershipRules

Benefits JoiningRules

MemberDetails

Member

«access»

public
(exported)
elements

private
element

qualified
package
name

accessed from
another package

© Clear View Training 2010 v2.6 34

Nested packages

 If an element is visible within
a package then it is visible
within all nested packages

 e.g. Benefits is visible
within MemberDetails

 Show containment using
nesting or the containment
relationship

 Use «access» or «import» to
merge the namespace of
nested packages with the
parent namespace

Membership

ClubMembership

MembershipRules

Benefits

JoiningRules

MemberDetails

Member

«import»

containment relationship

anchor icon

Membership

ClubMembership

MembershipRules

Benefits JoiningRules

MemberDetails

Member

«import»

© Clear View Training 2010 v2.6 35

Package dependencies

Supplier «use» Client

Supplier «import» Client

Supplier «access» Client
Public elements of the supplier namespace are added as private
elements to the client namespace. Not transitive.

Public elements of the supplier namespace are added as public
elements to the client namespace. Transitive.

An element in the client uses an element in the supplier in
some way. The client depends on the supplier. Transitive.

«trace» usually represents an historical development of one
element into another more refined version. It is an extra-model
relationship. Transitive.

Analysis
Model

«trace» Design
Model

dependency semantics

C B A
transitivity - if dependencies x and y are transitive,
there is an implicit dependency between A and C

y x

not transitive

© Clear View Training 2010 v2.6 36

Package generalisation

 The more specialised child

packages inherit the public and

protected elements in their parent

package

 Child packages may override

elements in the parent package.

Both Hotels and CarHire

packages override Product::Item

 Child packages may add new

elements. Hotels adds Hotel and

RoomType, CarHire adds Car

+Price
+Market
+Item
-MicroMarket

Product

+Product::Price
+Product::Market
+Item
+Hotel
+RoomType

Hotels

+Product::Price
+Product::Market
+Item
+Car

CarHire

children

parent

© Clear View Training 2010 v2.6 37

Architectural analysis

 This involves organising the analysis classes into a set

of cohesive packages

 The architecture should be layered and partitioned to separate

concerns, such as to specific and application general layers

 Coupling between packages should be minimised

Products

Inventory
Management

Sales

Account
Management

application
specific layer

application
general layer

partitions

© Clear View Training 2010 v2.6 38

Finding analysis packages

 A cohesive group of closely related classes or a class hierarchy

 4 to 10 classes per package

 Minimise dependencies between packages

 Localise business processes in packages where possible

 Minimise nesting of packages

 Don’t worry about dependency stereotypes and package generalisation

 Refine package structure as analysis progresses

 Avoid cyclic dependencies!

A merge split A B A B

C

© Clear View Training 2010 v2.6 39

Key points

 Packages are the UML way of grouping modeling

elements

 There are dependency and generalisation relationships

between packages

 The package structure of the analysis model defines the

logical system architecture

© Clear View Training 2010 v2.6 40

UML Component Diagram (Design)

Lecture 9/Part 3

© Clear View Training 2010 v2.6 41

Example of layered architecture

«subsystem»

GUI

«subsystem»

Customer
«subsystem»

Order
«subsystem»

Product

«subsystem»

Accounts

«subsystem»

java.sql

«subsystem»
{global}

java.util
«subsystem»

javax.swing

Customer
Manager

Product
Manager

OrderManager

Account
Manager

presentation

business
logic

utility

© Clear View Training 2010 v2.6 42

What is a component?

 The UML 2.0 specification states that, "A component

represents a modular part of a system that encapsulates

its contents and whose manifestation is replaceable

within its environment"

 A black-box whose external behaviour is completely defined by

its provided and required interfaces

 May be substituted for by other components provided they all

support the same protocol

 Components can be:

 Physical – can be directly instantiated at run-time e.g. an

Enterprise JavaBean (EJB)

 Logical – a purely logical construct e.g. a subsystem

© Clear View Training 2010 v2.6 43

«delegate»

Component syntax

 Components may have provided and required interfaces,
ports, internal structure

 Provided and required interfaces usually delegate to internal parts

 You can show the parts nested inside the component icon or
externally, connected to it by dependency relationships

«component»

A I1 I2

provided
interface

required
interface

component
«component»

A

B C

I1

I2

I2

part

«delegate»

black box notation white box notation

I1

© Clear View Training 2010 v2.6 44

Provided interface syntax

 A provided interface indicates that a classifier
implements the services defined in an interface

CD Book

Borrow

«interface»
Borrow

borrow()
return()
isOverdue()

CD Book

“Lollipop” style notation
(note: you can’t show interface operations
or attributes with this notation)

“Class” style notation

interface

realization
relationship

© Clear View Training 2010 v2.6 45

Required interface syntax

 A required interface indicates that a classifier uses the

services defined by the interface

Borrow

Library

required interface

Borrow

Library

«interface»
Borrow

Library

class style notation lollipop style notation

© Clear View Training 2010 v2.6 46

Assembly connectors

 You can connect provided and required interfaces using

an assembly connector

Borrow

Book CD

Library
1 1

0..* 0..*

assembly
connector

© Clear View Training 2010 v2.6 47

Ports for organizing interfaces

 A port specifies an interaction point between a classifier

and its environment

 A port may have a name and is typed by its provided and

required interfaces:

 It is a semantically cohesive set of provided and required

interfaces

DisplayMedium

Print, Display

Book

presentation

port
Viewer

Book

presentation

© Clear View Training 2010 v2.6 48

Designing with interfaces

 Promote information hiding and separation of concerns.

 Design interfaces based on common sets of operations and roles.

 Organize the system into subsystems with interfaces (Facades).

 Challenge each association and message send.

 Does the association have to be to a class, or can it be an
interface?

 Look for possible future expansion.

 Design interfaces for new plug-in features.

 Look for cohesive sets of provided and required interfaces
and organize these into named ports.

 Look at the dependencies between subsystems – mediate
these by an assembly connector where possible.

© Clear View Training 2010 v2.6 49

Using interfaces

 Advantages:

 When we design with classes, we are designing to specific

implementations

 When we design with interfaces, we are instead designing to

contracts which may be realised by many different implementations

(classes)

 Designing to contracts frees our model from implementation

dependencies and thereby increases its flexibility and extensibility

 Disadvantages:

 Flexibility may lead to complexity

 Too many interfaces can make a system too flexible!

 Too many interfaces can make a system hard to understand

© Clear View Training 2010 v2.6 50

Key points

 Interfaces specify a named set of public features:

 They define a contract that classes and subsystems may realise

 Programming to interfaces rather than to classes reduces

dependencies between the classes and subsystems in our

model

 Programming to interfaces increases flexibility and extensibility

 Design subsystems and interfaces allow us to:

 Componentize our system

 Define an architecture

© Clear View Training 2010 v2.6 51

UML Deployment Diagram (Realisation)

Lecture 9/Part 4

© Clear View Training 2010 v2.6 52

Deployment model

 The deployment model models system’s physical architecture and
the mapping of the software architecture to the physical nodes

 Each node is a type of computational resource

 Nodes have relationships that represent methods of communication

 Artifacts represent physical software e.g. a JAR file or .exe file

«device»

WindowsPC

«execution environment»

IE6

«device»

LinuxPC

«execution environment»

Apache

0..* 0..* «http»

node

association

Descriptor
form model

© Clear View Training 2010 v2.6 53

Instance form model

 A node instance represents an
actual physical resource

 e.g. JimsPC:WindowsPC - node
instances have underlined names

«device»

JimsPC:WindowsPC

«execution environment»

:IE6

«device»

WebServer1:LinuxPC

«execution environment»

:Apache

node instance

«device»

IlasPC:WindowsPC

«execution environment»

:IE6

«http»

Instance
form model

© Clear View Training 2010 v2.6 54

1 1

Artifacts and components

 Artifacts and components

represent the software

deployed on physical nodes

 An artifacts represents a

concrete deployed real-world

thing, such as a file

 Artifacts = Physical level

 Artifacts provide the physical
manifestation for one or more
components

 Components = Logical level

«component»
Library

«component»
Book

«artifact»
librarySystem.jar

«manifest» «manifest»

«component»
Ticket

«manifest»

BookImpl

ISBN

1

LibraryImpl

TicketImpl

TicketID

1

Book Library Ticket

«artifact»
jdom.jar

depends

© Clear View Training 2010 v2.6 55

Example

 Artifacts are deployed on nodes, artifact instances are deployed on

node instances

deployment descriptor
artifact instance

«device»
client:WindowsPC

«device»
server:WindowsPC

«execution environment»
:J2EE Server

«RMI»

«JAR»
:ConverterApp.ear

«JAR»
:ConverterClient.jar

«deployment spec»
converterDeploymentSpecification

EnterpriseBeanClass: ConverterBean
EnterpriseBeanName: ConverterBean
EnterpriseBeanType: StatelessSession

© Clear View Training 2010 v2.6 56

Key points

 The descriptor form deployment diagram

 Allows you to show how functionality represented by artifacts is

distributed across nodes

 Nodes represent types of physical hardware or execution

environments

 The instance form deployment diagram

 Allows you to show how functionality represented by artifact

instances is distributed across node instances

 Node instances represent actual physical hardware or execution

environments

