
PB173 - Tématický vývoj aplikací v C/C++
(podzim 2013)

Skupina: Aplikovaná kryptografie a bezpe čné programování
https://is.muni.cz/auth/el/1433/podzim2013/PB173/inde x.qwarp?fakulta=14
33;obdobi=5983;predmet=734514;prejit=2957738;

Petr Švenda svenda@fi.muni.cz
Konzultace: G.201, Úterý 13-13:50

PB173 2/29

Portability and memory restrictions

PB173 3/29

Memory restrictions

• Size of the code vs. runtime memory requirements
• Depends on the target platform

– usually of little concern (RAM is big enough)
– sometimes critical factor for algorithms selection

• embedded devices, e.g., sensor nodes

• Algorithms usually provides possibility for optimization
– precomputed tables – speed vs. memory
– key schedule vs. on-the-fly key schedule
– optimizations may increase risk for side channel attacks

• Write correct code first, then optimize
– especially true in security

PB173 4/29

Portability – different operating systems

• Usually no problems with algorithms
– plain C code

• Problems with additional functionality
– read file, directory listing, user input, GUI
– often cannot be solved by standardized functions or POSIX
– abstract and separate platform-dependent functions

• move them into distinct modules
• easy to replace/extend for target platform later

• Data generated by your application should be portable
– ASN.1 encoding
– TLV encoding
– binary vs. text formats
– Base64 encoding

PB173 5/29

Portability – different hardware platforms

• Little vs. big endian architecture
– usually problem with bit-based operations
– e.g., bit rotation
– problem with interpretation of binary formats

• Highly optimized implementations
– e.g., Gladman
– may use architecture specific operations and behaviour
– multiple byte operations in single tick
– special representation of memory data
– may use macros heavily

PB173 6/29

Reference vs. optimized version

• Double meaning of “reference” word
– reference implementation from algorithm designers

(Rijndael)
– reference == code you should use

• Reference implementation (e.g., Rijndael)
– usually simple and understandable API
– lower performance
– may not protect against implementation attacks
– typical usage is as supplementary material to algorithm

description document
– is used to create test vectors

PB173 7/29

Reference vs. optimized version (2)

• Optimized version of algorithm
– same results as reference implementation
– portability usually impacted

• Techniques used
– pre-computed tables often
– may use whole size of the architecture registers

• e.g., AES is byte oriented, but x64 can perform eight xor of
single byte per tick

– may use special instruction of particular CPU
– may use specifics of target architecture (e.g., cache size)

• Typically for the production environment

PB173 8/29

Choosing the right length

PB173 9/29

Length of keys/block/hashes

• Choose length with some reserve
– many things can go wrong

• Choose algorithms with corresponding lengths
– key derivation by MD5 of keys for AES256?

• Do not protect keys distribution by keys with lower
entropy
– AES key encrypted by simple DES key

• Asymmetric keys length needs to be much longer
– space of possible values is not continuous

PB173 10/29

Comparable strengths of cryptosystems

Source:
NIST SP800

PB173 11/29

Recommended key sizes

Source:
NIST SP800

PB173 12/29

Symmetric key cryptography

• Key length for symmetric cryptography
– 80 bits not secure enough against brute-force
– always good to have some reserve for algorithm flaws

• flaw => key can be found faster then by brute-force
• AES-128 is still OK
• AES-256 do not have 256 bits of security

• Take your application needs into account!

PB173 13/29

Making the keys

• From what are you making the keys?
– password must have entropy equivalent to derived key
– e.g., AES-128 key derived from “hello” will not have 128 bits

security

• What if you create two keys from one with 128 bits of
entropy?

• Do you really have perfect random generator?
– 128 generated bits will not have 128 bits of entropy
– generate more bits and use hash function to condense into 128 bits

• (2013 - Seems that NSA was involved in intentional
crippling of random generators – implementation and even
standards)

PB173 14/29

Asymmetric cryptography

• RSA is still gold standard
– use (at least) 2048 bits keys
– 768 bits broken by brute-force
– special number with 1024 bits broken by brute-force
– 1024 bits not broken yet, but…

• Elliptic courve cryptography (ECC) seems cool
– Currently (2013), some doubts about ECC security based

on leaked Snowden documents arise
– But do you really need shorter keys?
– You will face harder portability, more coding problems,

lower level of code testiness etc.

PB173 15/29

Practical assignment

PB173 16/29

Practical assignment (2)

• Write following simple unit tests:
– file not exists or cannot be read/written into
– encrypted blob was corrupted
– wrong decryption key was used
– test vectors for encryption and hashing

• Any UT framework (UnitTest++, MinUnit, CxxTest...)
• Code will be used later in architecture

– will be used again and extended, so write it well

• Best practices
– http://blog.stevensanderson.com/2009/08/24/writing-great-unit-

tests-best-and-worst-practises/
– MinUnit http://www.jera.com/techinfo/jtns/jtn002.html

PB173 17/29

Questions?

